OGNIAN KASABOV (*)

On conformally flat totally real submanifolds (**)

1 - Introduction

Let \widetilde{M}^{2m} be a 2m-dimensional Kähler manifold with Riemannian metric g, complex structure J and Riemannian connection $\widetilde{\nabla}$. The curvature tensor, the Ricci tensor and the scalar curvature of \widetilde{M}^{2m} are denoted by \widetilde{R} , \widetilde{S} , $\widetilde{\tau}$, respectively. The Bochner curvature tensor \widetilde{B} of \widetilde{M} is given by

$$\widetilde{B} = \widetilde{R} - \frac{1}{2(n+2)}(\varphi + \psi)(\widetilde{S}) + \frac{\widetilde{\tau}}{8(n+1)(n+2)}(\varphi + \psi)(g)$$

where the operators φ and ψ are defined by

$$\varphi(Q)(x, y, z, u) = g(x, u) Q(y, z) - g(x, z) Q(y, u) + g(y, z) Q(x, u) - g(y, u) Q(x, z)$$

$$\psi(Q)(x, y, z, u) = g(x, Ju) Q(y, Jz) - g(x, Jz) Q(y, Ju) - 2g(x, Jy) Q(z, Ju)$$

$$+g(y, Jz)Q(x, Ju) - g(y, Ju)Q(x, Jz) - 2g(z, Ju)Q(x, Jy)$$

for a tensor field Q of type (0,2), and x, y, z, u are vector fields of \widetilde{M}^{2m} .

Let M be a *submanifold of* \overline{M} . The Gauss and the Weingarten formulas are given respectively by

$$\widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y)$$
 $\widetilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi$

for vector fields X, Y tangent to M and ξ normal to M, where ∇ is the Rieman-

^(*) Higher Transport School «T. Kableschkov», Section of Mathematics, Slatina, 1574 Sofia, Bulgaria.

^(**) Received June 1, 1995. AMS classification 53 C 40. The research has been partially supported by the Ministry of Education of Bulgaria, Contract MM 413/94.

nian connection on M, D is the normal connection, σ is the second fundamental form of M and $A_{\xi}X$ is the tangential component of $\widetilde{\nabla}_X \xi$. It is well known that $g(\sigma(X,Y),\xi)=g(A_{\xi}X,Y)$. The mean curvature vector H is defined by $H=\frac{1}{n}\operatorname{tr}\sigma$. If H=0, M is called minimal. In particular, if $\sigma=0$, M is said to be totally geodesic. A normal vector field ξ is said to be parallel, if $D_X\xi=0$ for each vector field X on M.

An *n*-dimensional submanifold M^n of \widetilde{M}^{2m} is said to be a *totally real submanifold* of \widetilde{M}^{2m} , if for each point $p \in M^n$, $JT_pM^n \subset T_p(M^n)^\perp$. Then $n \leq m$. In the following we suppose that M^n is a totally real submanifold of \widetilde{M}^{2m} and m = n. In this case it is not difficult to find

(1.1)
$$\sigma(X, Y) = JA_{JX}Y = JA_{JY}X$$

$$(1.2) D_X J Y = J \nabla_X Y.$$

See e.g. [10].

Let \widetilde{R} be the curvature tensor of \widetilde{M}^{2n} . Then using (1.1), the Gauss equation can be written as

$$\{\widetilde{R}(X, Y)Z\}^t = R(X, Y)Z - [A_{JX}, A_{JY}]Z$$

where t denotes the tangential component.

Let $\overline{\nabla}$ denote the connection of van der Waerden-Bortolotti. Then M is said to be a parallel submanifold of \widetilde{M} if $\overline{\nabla}\sigma=0$. More generally M is called a semiparallel submanifold of \widetilde{M} , if $\overline{R}(X,Y).\sigma=0$, where

$$(\overline{R}(X,\,Y).\,\sigma)(Z,\,U)=R^\perp(X,\,Y)\,\sigma(Z,\,U)-\sigma\left(R(X,\,Y)\,Z,\,U\right)-\sigma(Z,\,R(X,\,Y)\,U)$$

 R^{\perp} being the curvature tensor of the normal connection D. The investigation of semiparallel submanifolds initiated with J. Deprez [2]. For a semiparallel manifold by (1.1) and (1.2) we obtain

(1.3)
$$R(X, Y)A_{JZ}U = A_{JZ}R(X, Y)U + A_{JU}R(X, Y)Z.$$

On the other hand the submanifolds with semiparallel mean curvature vector are defined by $R^{\perp}(X,Y)H=0$ [3]. Note that the class of submanifolds with semiparallel mean curvature includes the semiparallel submanifolds and the submanifolds with parallel mean curvature vector.

Let S and τ denote the Ricci tensor and the scalar curvature of M, respectively. Then as it is well known for n > 3 M is conformally flat, if and only if

the Weil conformal curvature tensor C of M vanishes, where

$$C = R - \frac{1}{n-2}\varphi(S) + \frac{\tau}{2(n-1)(n-2)}\varphi(g).$$

In Sections 2 and 3 we prove

Theorem 1. Let M^n be a conformally flat totally real submanifold of a Kähler manifold \tilde{M}^{2n} , n > 3. Assume also that the mean curvature vector of M^n is semiparallel. If M^n is not minimal at a point p, then, in a neighborhood of p, M^n is either flat or a product $M_1^{(n-1)}(c) \times I$, where $M_1^{n-1}(c)$ is an n-1-dimensional manifold of constant sectional curvature $c \neq 0$ and I is a segment.

Theorem 2. Let M^n be a conformally flat totally real semiparallel submanifold of a Kähler manifold \tilde{M}^{2n} , n > 3. If M^n is not totally geodesic at a point p, then, in a neighborhood of p, M^n is flat or $M^n = M_1^{n-1}(c) \times I$.

In Section 4 we deal with products of Kähler manifolds with vanishing Bochner curvature tensor.

2 - Proof of Theorem 1

First we prove

Proposition. Let M^n be a conformally flat totally real submanifold of a Kähler manifold \widetilde{M}^{2n} , n > 3, such that the mean curvature vector H is semiparallel at a point p. If M^n is not minimal at p, it is quasi-Einstein at p with $S(JH_p, JH_p) = 0$.

Proof. Let $\{e_i\}$ $i=1,\ldots,n$ be an orthonormal basis of T_pM , such that $S_{1,1}(e_i)=\lambda_ie_i$ for $i=1,\ldots,n$, where $S_{1,1}$ is the Ricci tensor of type (1,1). From C=0 and $R(e_i,e_i)JH=0$ we obtain

$$(\lambda_i + \lambda_j - \frac{\tau}{n-1})g(e_j, JH) = 0.$$

If $g(e_j, JH) = 0$ for each j, M^n is minimal at p. Let e.g. $g(e_1, JH) \neq 0$. Then (2.1) implies

$$\lambda_1 + \lambda_i - \frac{\tau}{n-1} = 0$$

for $i=2, \ldots n$. Hence $\lambda_i=\lambda_j$ for $i, j=2, \ldots, n$, i.e. M^n is quasi-Einstein at p. Moreover (2.2) implies $\lambda_1=0$. If there exists i>1, such that $g(e_i,JH)\neq 0$, it follows that M^n is Einstein at p, with $\tau=0$, so S=0 at p. If $g(e_i,JH)=0$ for $i=2,\ldots,n$ it follows that $(JH)_p$ is proportional to e_1 , thus proving our assertion.

Now we can prove Theorem 1. Since H does not vanishes at p, then this holds also in a neighborhood of p. Then Theorem 1 follows from our Proposition and a theorem of Kurita, see [4].

If H has constant length, then M is minimal or H does not vanishes. Hence we have:

Corollary 1. Let M^n be a conformally flat totally real submanifold of a Kähler manifold \tilde{M}^{2n} . Assume also that the mean curvature vector H of M be semiparallel and with constant length. Then one of the following holds:

 M^n is minimal

 M^n is locally flat or a product $M_1^{n-1}(c) \times I$, $c \neq 0$.

In particular the result is true when H is parallel.

3 - Proof of Theorem 2

As in Section 2 let $\{e_i\}$ $i=1,\ldots,n$ be a basis of T_pM such that $S_{1,1}(e_i)=\lambda_ie_i$ for $i=1,\ldots,n$. Under the assumptions of Theorem 2 we prove some lemmas.

Lemma 1. Let there exist $i \neq k$, such that $g(A_{Je_i}e_i, e_k) \neq 0$. Then $\lambda_i = \lambda_j$ for all $j \neq k$ and $\lambda_k = 0$.

Proof. We put in (1.3) $X=e_j,\ Y=e_k,\ Z=U=e_i$ for $j\neq i,\,k$ and we obtain

$$(\lambda_j + \lambda_k - \frac{\tau}{n-1}) g(A_{Je_i} e_i, e_k) = 0$$

which implies

$$\lambda_j + \lambda_k - \frac{\tau}{n-1} = 0.$$

Now we put in (1.3) $X = e_k$, $Y = Z = U = e_i$ and we find

(3.2)
$$(\lambda_i + \lambda_k - \frac{\tau}{n-1})(2A_{Je_i}e_k + g(A_{Je_i}e_i, e_k)e_i - g(A_{Je_i}e_i, e_i(e_k)) = 0$$

which implies

$$\lambda_i + \lambda_k - \frac{\tau}{n-1} = 0.$$

From (3.1) and (3.3) it follows $\lambda_i = \lambda_i$. Then (3.1) implies $\lambda_k = 0$.

Lemma 2. Let there exists i, such that $g(A_{Je_i}e_i, e_i) \neq 0$. Then $\lambda_i = 0$ and $\lambda_i = \lambda_k$ for all $j, k \neq i$.

Proof. If we have

$$\lambda_i + \lambda_k - \frac{\tau}{n-1} = 0$$

for any k = 1, ...n the assertion follows immediately. Let us assume that there exists a k such that

$$\lambda_i + \lambda_k - \frac{\tau}{n-1} \neq 0$$
.

As in Lemma 1 we find (3.2) and hence we have

$$2A_{Je_i}e_k + g(A_{Je_i}e_i, e_k)e_i - g(A_{Je_i}e_i, e_i)e_k = 0$$

which implies $g(A_{Je_k}e_k, e_i) \neq 0$. Using Lemma 1 we obtain $\lambda_i = 0$ and $\lambda_j = \lambda_k$ for $j, k \neq i$.

Lemma 3. Let M be minimal at p. Then M is totally geodesic at p or there exists k, such that $\lambda_k = 0$ and $\lambda_i = \lambda_j$ for $i, j \neq k$.

Proof. If there exists i, such that $A_{Je_i}e_i \neq 0$, the assertion follows from Lemmas 1 and 2. So let $A_{Je_i}e_i = 0$ for any i = 1, ..., n. Suppose that M is not totally geodesic at p. Then $g(A_{Je_i}e_j, e_k) \neq 0$ for some $i \neq j \neq k \neq i$. We put in (1.3) $X = U = e_s$, $Y = e_j$, $Z = e_k$ for $s \neq j$, k and we obtain

$$(\lambda_s + \lambda_j - \frac{\tau}{n-1})(A_{Je_j}e_k + g(A_{Je_s}e_k, e_j)e_s) = 0$$

which implies

$$\lambda_s + \lambda_j - \frac{\tau}{n-1} = 0$$

Analogously

$$\lambda_s + \lambda_k - \frac{\tau}{n-1} = 0$$
 $\lambda_t + \lambda_k - \frac{\tau}{n-1} = 0$

for $t \neq i, k$. Hence it follows $\lambda_l = 0$ for any l = 1, ..., n, which proves the Lemma.

Now we are in position to prove Theorem 2. If M is not minimal at p, Theorem 2 follows from Theorem 1. Let M be minimal at p. Then the assertion follows from Lemma 3 and [4].

4 - Submanifolds of Bochner flat Kähler products

Let \widetilde{M}^{2n} be a Kähler manifold with vanishing Bochner curvature tensor and constant holomorphic sectional curvature. Then \widetilde{M}^{2n} either has constant holomorphic sectional curvature or is locally a product of two Kähler manifolds of constant holomorphic sectional curvature μ and $-\mu$, respectively, $\mu > 0$, [5]. Totally real submanifolds of Kähler manifolds of constant holomorphic sectional curvature have been studied by many authors, see e.g. [1], [9], [10]. Now we consider the case of Kähler products with vanishing Bochner curvature tensor.

Theorem 3. Let M^n be a totally real semiparallel submanifold with commutative second fundamental form and mean curvature vector of constant length of a Kähler product $\widetilde{M}^{2k}(\mu) \times \widetilde{M}^{2(n-k)}(-\mu)$, $\mu \neq 0$, n > 3, $k \geq n - k \geq 1$. Then M^n is a product $M^k(\frac{\mu}{4}) \times M^{n-k}$, where $M^k(\frac{\mu}{4})$ is a manifold of constant curvature $\frac{\mu}{4}$ and is totally geodesic in $\widetilde{M}^{2k}(\mu)$. If in addition n - k > 1, then M^{n-k} is totally geodesic in $\widetilde{M}^{2(n-k)}(\mu)$ and has constant sectional curvature $-\frac{\mu}{4}$.

Proof. Since M^n has commutative second fundamental form (i.e.

 $A_{\xi}A_{\eta}=A_{\eta}A_{\xi},\ \forall \xi,\ \eta\in TM^{\perp},\ [10],\ \mathrm{p.}\ 29),\ \mathrm{the}\ \mathrm{Gauss}\ \mathrm{equation}\ \mathrm{implies}$

$$\widetilde{R}(X, Y, Z, U) = R(X, Y, Z, U)$$

for arbitrary vectors X, Y, Z, U in T_pM . Let X, Y, Z, U be orthogonal. Since $\widetilde{B}=0$ we obtain R(X,Y,Z,U)=0 and hence M^n is conformally flat, see e.g. [7] p. 307. If M^n is totally geodesic, it is straightforward that it is a product $M^k(\frac{\mu}{4})\times M^{n-k}(-\frac{\mu}{4})$, where $M^k(\frac{\mu}{4})$, resp. $M^{n-k}(-\frac{\mu}{4})$, is totally geodesic in $\widetilde{M}^{2k}(\mu)$, resp. $\widetilde{M}^{2(n-k)}(-\mu)$.

Let M^n is not totally geodesic. According to Theorem 2 it is locally flat or a product $M_1^{n-1}(c) \times I$. As it is easily seen, if M^n is flat, it follows $\mu=0$, which is not our case. So M^n is locally $M_1^{n-1}(c) \times I$. Denote by π_1 and π_2 the projections of $\tilde{M}^{2k}(\mu) \times \tilde{M}^{2(n-k)}(-\mu)$, onto $\tilde{M}^{2k}(\mu)$ and $\tilde{M}^{2(n-k)}(-\mu)$, respectively. The induced differentials will be denoted also by π_1 and π_2 . Let $F=\pi_1-\pi_2$. Then we have [6], [8]

$$(4.1) \begin{split} \widetilde{R}(\widetilde{x},\,\widetilde{y},\,\widetilde{z},\,\widetilde{u}) &= \frac{\mu}{8} \left\{ g(F\widetilde{x},\,\widetilde{u}) \, g(\widetilde{y},\,\widetilde{z}) - g(F\widetilde{x},\,\widetilde{z}) \, g(\widetilde{y},\,\widetilde{u}) \right. \\ &+ g(\widetilde{x},\,\widetilde{u}) \, g(F\widetilde{y},\,\widetilde{z}) - g(\widetilde{x},\,\widetilde{z}) \, g(F\widetilde{y},\,\widetilde{u}) + g(J\widetilde{x},\,\widetilde{u}) \, g(JF\widetilde{y},\,\widetilde{z}) \\ &- g(J\widetilde{x},\,\widetilde{z}) \, g(JF\widetilde{y},\,\widetilde{u}) + g(JF\widetilde{x},\,\widetilde{u}) \, g(J\widetilde{y},\,\widetilde{z}) - g(JF\widetilde{x},\,\widetilde{z}) \, g(J\widetilde{y},\,\widetilde{u}) \\ &+ 2g(F\widetilde{x},\,J\widetilde{y}) \, g(J\widetilde{z},\,\widetilde{u}) - 2g(\widetilde{x},\,J\widetilde{y}) \, g(JF\widetilde{z},\,\widetilde{u}) \right\}. \end{split}$$

Let X, Y, Z be orthogonal tangent vectors at a point p of M^n . Then (4.1) and $[A_{JX}, A_{JY}] = 0$ imply

(4.2)
$$R(X, Y, Z, X) = \frac{\mu}{8} g(X, X) g(FY, Z).$$

Let $X, Y \in T_p(M_1^{n-1}(c))$. Then we find R(X, Y)Z = 0 for any vector $Z \in T_pM$, orthogonal to X and to Y. Hence using (4.2) we obtain g(FY, Z) = 0. Consequently for any $Y \in T_pM_1^{n-1}(c)$ it follows $\pi_1Y = 0$ or $\pi_2Y = 0$. Suppose now that there exist nonzero vectors $U, V \in T_pM_1^{n-1}(c)$, such that $\pi_1U = 0$ and $\pi_2V = 0$. But we must have $\pi_1(U + V) = 0$ or $\pi_2(U + V) = 0$. Let for example $\pi_1(U + V) = 0$. Then $\pi_1V = 0$, which is a contradiction. Consequently we have either $\pi_1 = 0$ or $\pi_2 = 0$ on $T_pM_1^{n-1}(c)$. Hence we obtain easily that k = n - 1 and $M_1^{n-1}(c) \subset \widetilde{M}_1^{2(n-1)}(\mu)$, $I \subset \widetilde{M}_1^{2(n-1)}(c)$. Since $M_1^{n-1}(c)$ is semiparallel in $\widetilde{M}_1^{2(n-1)}(\mu)$ and $\mu \neq 0$ it follows that $M_1^{n-1}(c)$ is totally geodesic

in
$$M_1^{2(n-1)}(\mu)$$
, see [3], so $c = \frac{\mu}{4}$.

References

- [1] B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
- [2] J. Deprez, Semi-parallel hypersurfaces in Euclidean space, Journal of Geometry 25 (1985), 192-200.
- [3] O. KASSABOV, On tatally real submanifolds, Bull. Soc. Math. Belg. 38 (1986), 136-143.
- [4] M. Kurita, On the holonomy group of the conformally flat Riemannian manifold, Nagoya Math. J. 9 (1955), 161-171.
- [5] M. Matsumoto and S. Tanno, Kählerian spaces with parallel or vanishing Bochner curvature tensor, Tensor 27 (1973), 291-294.
- [6] Y. Matsuyama, Complex hypersurfaces of the product of two complex space forms, Ködai Math. Sem. Rep. 28 (1977), 144-149.
- [7] J. SCHOUTEN, Ricci Calculus, Springer, Berlin 1954.

168

- [8] S. Tachibana, Some theorems on locally product Riemannian manifolds, Tôhoku Math. J. 12 (1960), 281-292.
- [9] K. Yano and M. Kon, Totally real submanifolds of complex space forms II, Ködai Math. Sem. Rep. 27 (1976), 385-399.
- [10] K. Yano and M. Kon, Anti-Invariant Submanifolds, M. Dekker, New York, 1976.

Sommario

In una varietà kähleriana si considerano le sottovarietà totalmente reali e conformemente piatte con vettore di curvatura media parallelo e le sottovarietà con seconda forma fondamentale semiparallela.

Sono anche considerate le sottovarietà totalmente reali di una varietà prodotto di varietà kähleriane, avente tensore di Bochner nullo.

* * *