Riv. Mat. Univ. Parma (5) 4 (1995), 161-168

OGNIAN KasaBov (%)

On conformally flat totally real submanifolds (*¥)

1 - Introduction

Let M*" be a 2m-dimensional Kdihler manifold with Riemannian metric g,
complex structure J and Riemannian connection V. The curvature tensor, the
Ricei tensor and the scalar curvature of M2%™ are denoted by R, S, %, respec-
tively. The Bochner curvature tensor B of M is given by

B=R-_—1

2wt (p +vyXg)

& T
(@ + wXS) + SmEDm+ D)

where the operators ¢ and vy are defined by
V(@ (@, y,2,%) =g(@, %) Qy,2) — 9(x,2) Qy, w) + 9(y, 2) Qx, ) — g(y, u) A, 2)
P&, y, 2, u) = g(x, Ju) Qy, Jz) — g(x, J2) Qly, Ju) — 29(x, Jy) Qz, Ju)
+9(y, J2) Qx, Ju) — gy, Ju) Q(x, J2) — 2¢(z, Ju) Q(x, JYy)

for a tensor field @ of type (0,2), and =, ¥, 2, 4 are vector fields of mn,
Let M be a submanifold of M. The Gauss and the Weingarten formulas are
given respectively by

VYV =VyY +0(X,Y) Vy&é=-AX+Dx&

for vector fields X, Y tangent to M and £ normal to M, where V is the Rieman-
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nian connection on M, D is the normal connection, ¢ is the second fundamental
form of M and A.X is the tangential component of Vy&. It is well known that
9(0(X,Y), &) =g(A:X,Y). The mean curvature vector H is defined by

H= -7—12—tr o.If H = 0, M is called minimal. In particular, if o = 0, M is said to be

totally geodesic. A normal vector field £ is said to be parallel, if Dy& = 0 for each
vector field X on M. '

An n-dimensional submanifold M” of M?™ is said to be a totally real subma-
nifold of M?™, if for each point p e M*, JT,M"c T,(M")*. Then n < m. In the
following we suppose that M™ is a totally real submanifold of M*™ and m = n.
In this case it is not difficult to find

1.1 o(X,Y)=JAY=JApX
(1.2) DyJY = JVxY.
See e.g. [10].

Let R be the curvature tensor of M2". Then using (1.1), the Gauss equation
can be written as

{(RX,MVZV=RX,VZ — Ay, Ayl Z

where ¢ denotes the tangential component.

Let V denote the connection of van der Waerden-Bortolotti. Then M is said
to be a parallel submanifold of M if Vo = 0. More generally M is called a semi-
parallel submanifold of M, if R(X,Y).o =0, where

(BX, V).0)(Z, U)=R* (X, Y)o(Z, U)o (R(X, Y)Z, U)~0(Z, R(X, Y) U)

R* being the curvature tensor of the normal connection D. The investigation of
semiparallel submanifolds initiated with J. Deprez [2]. For a semiparallel mani-
fold by (1.1) and (1.2) we obtain

(1.3) R(X,Y)Ap,U=ARX, V)U +AyRX, Y)Z.

On the other hand the submanifolds with semiparallel mean curvature vector
are defined by R+ (X, Y)H = 0 [3]. Note that the class of submanifolds with se-
miparallel mean curvature includes the semiparallel submanifolds and the sub-
manifolds with parallel mean curvature vector.

Let S and 7 denote the Ricci tensor and the scalar curvature of M, respec-
tively. Then as it is well known for = > 8 M is conformally flat, if and only if
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the Weil conformal curvature tensor C of M vanishes, where

—p_ 1 T
C=R n_2¢(5)+2(n__1)(n_2)¢(g).

In Sections 2 and 3 we prove

Theorem 1. Let M™ be a conformally flat totally real submanifold of a
Kihler manifold M*", n > 3. Assume also that the mean curvature vector of
M™ is semiparallel. If M™ is not minimal at o point p, then, in a neighborhood
of p, M™ is either flat or a product M"YV (¢) X I, where M~ (c) is an n — 1-
dimensional manifold of constant sectional curvature ¢ =0 and I is a seg-
ment.

Theorem 2. Let M™ be a conformally flat totally real semiparallel sub-
manifold of a Kihler manifold M?", n > 3. If M" is not totally geodesic at a
point p, then, in a meighborhood of p, M™ is flat or M™ =M} "1(c) X I.

In Section 4 we deal with products of Kihler manifolds with vanishing
Bochner curvature tensor.

2 - Proof of Theorem 1
First we prove

Proposition. Let M™ be a conformally flat totally real submanifold of a
Kihler manifold M n > 3, such that the mean curvature vector H is semipa-
rallel at a point p. If M™ is not minimal at p, it is quasi-Einstein at p with
S(JH,, JH,) = 0.

Proof. Let {e;} i=1,..., % be an orthonormal basis of T,, such that
Sy,1(e;) =Ase; for i=1,...,n, where S; | is the Rieci tensor of type (1,1).
From C=0 and R(e;, ¢;)JH = 0 we obtain

@.1) A+ A, — %-z—l)g(ej, JH)=0.

If g(e;, JH) = 0 for each j, M™ is minimal at p. Let e.g. g(e;, JH) # 0. Then (2.1)
implies

T _
22) IAd— —E= =0
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for i =2, ...m. Hence 4; =4, for 1, =2, ..., n, ie. M" is quasi-Einstein at p.
Moreover (2.2) implies 1, = 0. If there exists 7 > 1, such that g(e;, JH) = 0, it
follows that M™ is Einstein at p, with 7 =0, so S = 0 at p. If g(e;, JH) = 0 for
i=2,..,n it follows that (JH), is proportional to ¢, thus proving our
asser t1on.

Now we can prove Theorem 1. Since H does not vanishes at p, then this hol-
ds also in a neighborhood of p. Then Theorem 1 follows from our Proposition and
a theorem of Kurita, see [4].

If H has constant length, then M is minimal or H does not vanishes. Hence

we have:

Corollary 1. Let M™ be a conformally flat totally real submanifold of a
Kihler mamifold M?". Assume also that the mean curvature vector H of M be
semiparallel and with constant length. Then one of the following holds:

M?" is minimal
M™ is locally flat or a product M7 '(¢c) X I, ¢ # 0.

In particular the result is true when H is parallel.

3 - Proof of Theorem 2

As in Section 2 let {e¢;} i=1,...,n be a basis of T,M such that
Sy, 1(e;) = A;e; for i =1, ..., n. Under the assumptions of Theorem 2 we prove
some lemmas.

Lemma 1. Let there exist i # k, such that g(Ay,e;, ex) = 0. Then 1;=14;
for all j#k and A, =

Proof. We put in (1.3) X=¢;, Y=¢, Z=U=¢; for j#1i,k and we
obtain

A+ A, — -nz—l)g(AJeieiy ep) =0
which implies

1 A; -t =
(8.1) jthe= = =0
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Now we put in (13) X=¢,, Y=Z=U=¢; and we find

(3.2) (M+Ak—%{HQ@AMQ+MAM@m9%—gm%&,@ww=o

which implies

(3.3) i+ A= =L =0

From (3.1) and (3.3) it follows A;=1,. Then (3.1) implies 1; = 0.

Lemma 2. Let there exists i, such that g(As,e;, ;) #0. Then 1; =0 and
Aj= Ay for all j, k= i.

Proof. If we have

li+lk_’n_?——-l_=0

for any k =1, ...n the assertion follows immediately. Let us assume that there
exists a & such that

@+1V*nf1¢o.
As in Lemma 1 we find (3.2) and hence we have
2450, + g(Aj e, ) e; — 9(A e, €) e, =0
which implies g(A, €, ¢;) # 0. Using Lemma 1 we obtain A; = 0 and 4; = 1, for
i k&1

Lemma 3. Let M be minimal at p. Then M is totally geodesic at p or there
exists k, such that A,=0 and ;= 2; for i,j =k.

Proof. If there exists ¢, such that A, e; # 0, the assertion follows from
Lemmas 1 and 2. So let Aj,,e; = 0 for any ¢ = 1, ..., ». Suppose that M is not to-
tally geodesic at p. Then g(4,,,¢;, e;) # 0 for some i # j # k # 5. We put in (1.3)
X=U=¢, Y=¢;, Z=y¢, for s#j, k and we obtain

(s + Ay = —E NAgy e + 94, 01, ¢ 0) =0
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which implies

/13+lj_nz =0

1
Analogously
T T
A+ Ag i Ay + A p— 0
for t # 1, k. Hence it follows A;,=0 for any [l=1, ..., n, which proves the
Lemma.

Now we are in position to prove Theorem 2. If M is not minimal at p,
Theorem 2 follows from Theorem 1. Let M be minimal at p. Then the assertion
follows from Lemma 3 and [4].

4 - Submanifolds of Bochner flat Kihler products

Let M?" be a Kshler manifold with vanishing Bochner curvature tensor and
constant holomorphic sectional curvature. Then 2" either has constant holo-
morphic sectional curvature or is locally a product of two Kéhler manifolds of
constant holomorphie sectional curvature u and —u, respectively, 4 > 0, [5]. To-
tally real submanifolds of Kihler manifolds of constant holomorphie sectional
curvature have been studied by many authors, see e.g. [1], [9], [10]. Now we con-
sider the case of Kihler products with vanishing Bochner curvature tensor.

Theorem 3. Let M™ be a totally real semiparallel submanifold with com-
mutative second fundamental form and mean curvature vector of constant len-
gth of a Kdhler product M (u) X M** B (—w), u# 0, n>8, k=n—-k=1.

Then M™ is a product M*( —Z—) X M™% where M*( %) is @ manifold of constant

curvature % and is totally geodesic in M (u). If in addition n — k > 1, then
M™~F is totally geodesic in M*™~®(u) and has constant sectional curvature
_#

i

Proof. Since M" has commutative second fundamental form (.e.
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AA, =A, A, VE, ne TM*, [10], p. 29), the Gauss equation implies

RX,Y,Z,U)=RX,Y, Z, U)

for arbitrary vectors X, Y, Z, U in T,M. Let X, Y, Z, U be orthogonal. Since
B = 0 we obtain R(X, Y, Z, U) = 0 and hence M™" is conformally flat, see e.g. [7]
p. 307. If M™ is totally geodesic, it is straightforward that it is a product

M’”’(—Z—) X MPE(~ %), where M"(%), resp. M™ ¥ (~ %), is totally geodesic in

M (u), resp. M** =9 (~p).

Let M™ is not totally geodesic. According to Theorem 2 it is locally flat or a
product M{*~!(c) X I. As it is easily seen, if M™ is flat, it follows x = 0, which is
not our case. So M™ is locally M}~ (c) X I. Denote by 7, and 7, the projections
of M () x M*»=® (—py), onto M? (u) and M>*~ 9 (~p), respectively. The in-
duced differentials will be denoted also by 7; and 7. Let F = 7y — w,. Then we
have [6], [8]

R, §,7 @) = 5 {gF&, D) 9@, ) - 9(FF, D 9(§, B)
+9&, WY, D) ~ g(&, Dg(FY, ) + 9(JF, TgUFF, )
~gUE, ) gUFF, @) + gUFE, © g7, D - 9JFF, ) g(J5, B)

4.1)

Let X, Y, Z be orthogonal tangent vectors at a point p of M™ Then (4.1) and
[Ax, A;y] =0 imply

4.2) R(X,Y,Z, X)= %g(X, X)g(FY, Z).

Let X, Ye T,(M7 1 (c)). Then we find R(X, Y)Z = 0 for any vector Z e T,M,
orthogonal to X and to Y. Hence using (4.2) we obtain g(FY, Z) = 0. Conse-
quently for any Y e T,M{ !(c) it follows 7, Y =0 or 7,Y = 0. Suppose now
that there exist nonzero vectors U, Ve T,,M{“l(c), such that 7#;U =0 and
72V = 0. But we must have 7, (U + V) = 0 or 7,(U + V) = 0. Let for example
7 (U+V)=0. Then 7; V=0, which is a contradiction. Consequently we
have either 7; =0 or 7, =0 on T,M7 !(c). Hence we obtain easily that
k=n—1 and M? '(c)c MZ*~Y(u), IcM?(—p). Since M* '(c) is semi-
parallel in M~ (u) and =0 it follows that M?~1(c) is totally geodesic

in MZ"=V(u), see [3], so ¢ = %
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Sommario

In una varieta kihleriana si considerano le sottovarietd totalmente reali e conforme-

mente piatte con vettore di curvatura media parallelo e le sottovarietd con seconda for-
ma fondamentale semiparallela.

Sono anche considerate le sottovarieta totalmente reali di una varietd prodotto di va-
rieta kihleriane, avente tensore di Bochmer nullo.
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