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Generalized Lucas polynomials and Fibonacci polynomials (**)

1 - Introduction

In some preceding articles (see e.g. [15], [3], [4]), the generalized Luecas po-
lynomials of the second and first kind have been studied. These polynomials na-
turally arise in the study of the solutions of a bilateral homogeneous recurrence
relation with constant (real or complex) coefficients u;, (k=1, 2, ..., 7), (u, #= 0)

1.1) Xy =Xy 1= Xy—g+ ...+ (=1Vu,X,_, neZ.

A particular case of these multivariable polynomials is constituted by the
multivariable Chebyshev polynomials, which have been studied by R. Lidl [11],
M. Bruschi and P. E. Ricci [4]. More general definitions and generalizations of
these multidimensional polynomials can be found in papers by R. Lidl et al. [6],
{10], T. Koornwinder [8], [9], R. J. Beerends [1].

It is well known that the generalized Lucas polynomials of the second kind
are closely related to the representation formulas for the power of a square ma-
trix (see e.g. M. Bruschi and P. E. Ricci [3]). They have also been applied succes-
sfully in order to obtain representation formulas for the sum rules of the zeros
of Orthogonal Polynomial Sets (see P. E. Rieci [16], P. Natalini [14]). The gene-
ralized Lucas polynomials of the first kind have been used in the problem of
computing the moments of the density of zeros for Orthogonal Polynomial Sets
(see e.g. B. Germano, P. Natalini and P. E. Ricei [7]).

The classical Chebyshev polynomials are also included as particular solutions
of the recurrence (1.1). Nevertheless there is another class of polynomials in one
variable which is worth to be considered, the Fibonacei polynomials. These have
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probably the same importance as the classical Chebyshev ones, but the literatu-
re in this field has not the same extension.

In this paper some properties of these polynomials are deduced from the ge-
neral properties of the above mentioned Lucas polynomials.

I want to point out that the definition for the Fibonacci polynomials I consi-
der here is different from the usual one considered e.g. by M. Bichnell and V. E.
Hoggatt [2]. This difference leads to interesting properties for the zeros of the
polynomials under consideration.

2 - Fibonacei polynomials

By letting u; = @, up = —1, and u3 = ... = u, = 0 the recurrence relation (1.1)
becomes

X,=2X, 1+X,.. mneZ.
The corresponding Lucas polynomials
2.1) Fy (@, —1) = @,(x, —1) = ¢,(x)
are defined by the recurrence relation and initial conditions
(2.2) Pal) =T @y -1 () + @y 2(2) $-1(x)=0 Polx)=1.

The Fibonacci polynomials are defined by the same recurrence relation but
different initial conditions, i.e.

2.3) F,(x)y=aF, (&) +F,_ () F_(x)=Fy(x)=1.
Then we have

Fi(x)=x+1

Fo(@)=af+x+1

Fo@)=a2+2%+2x+1

Fiaxy=2*+2%+32%+ 20 +1

Fi(x)=a+x*+ 42 + 322+ 8z + 1

Fe(x) = 2% + 2% + ba? + 42® + 622 + 8z + 1

Note that F,(1) =f,, ke N, are the Fibonacci numbers.
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By definition (2.3) a table for the coefficients of F, (x) can be obtained by
using the following law of construction of squares, by means of which the subse-
quent table can be completely derived

a b c d
2.4)
a a+b ¢ c+d
1 x a? a? v x® a® x’ a® xd
1 0
1 1 0
1 1 1 0
1 2 1 1 0
1 2 3 1 1 0
1 3 3 4 1 1 0
1 3 6 4 5 1 1 0
1 4 6 10 5 6 1 1 0
1 4 10 10 15 6 7 1 1 0

Theorem 1. For any n = —1 we can write

2.5) Fo(x)= @, (x) + @,_1(@).

Proof. Use induction and verify initial conditions.
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Formula (2.5) can be generalized in different ways.
A first generalization can be obtained by induction, by writing

(2.6) Fo@)=foon @)+ froo1@n-p-1(x).

A second generalization can be obtained by using the isobaricity property of
the Lucas polynomials of the second kind @, (tx, —t2) =t" &, (x, —1), Vt % 0
(see e.g. [4]). Namely

@, (te, —t%) + D, _, (tx, —t?)

Vi=0.
tn

@1 F,(2) =

By putting ¢ =1, formula (2.5) follows.

3 - Reflection properties

By using the reflection property of the Lucas polynomials of the second kind
(see [4]), we have:

F—n(x) =F1, —n(x’ —-1) +Fl, —n—l(m, _1)
Fl,—n(xy_1)=Fl,n—2('~m:'—1) Le. ‘P—n(x)=(ﬂn—2(_ib‘) Vn > 1
and consequently

F—n(x) = ¢n—2(_x) + <Pn—1(—90) =Fn—1(-—x)-

Theorem 2. For any neZ we can write

8.1) F—n(x)=Fn—1(_x)

Remark. Note that by using formulas (3.1) the result of Theorem 1 can be
extended to be true for all n e Z.
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4 - Generating functions and integral representations

By using the generating function of the generalized Lucas polynomials of the
second kind (see e.g. [4])

1
11—t + ...+ (=1)ut"

o0
20@n+r—2(u1a Uz, -'-aur)tn=
n=

and the reflection properties of Section 3, we find

Theorem 3. The generating functions of the Fibonacci polynomials are
given by

@) S R = —LFE
n=0 1—axt—1t?

4.2) S F (@)= - —itt
n=-1 1—xt—t?

By the integral representation for the Lucas polynomials of the second kind
(see [4]) we deduce

Theorem 4. Denote by y a circle (if n = —1) or an annulus (if n < —1),
with center at the origin surrounding the zeros of A2 — xl — 1 = 0. Then the fol-
lowing integral representation for the Fibonacci polynomials is true

A4+ 1)

(4.3) F,(x)= f o1

+y

5 - Matrix representation and location of the zeros

Consider for any n = 1, the n X n matrix

-1 -i 0 - 0 0 0

-0 =i .0 0 0

5.1 P I o 0 0
o 0 0 - 0 i

o 0 0 0 -i 0

Theorem 5. The zeros of F,(A) (n = 1) are the eigenvalues of A.
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Proof. It is sufficient to note that the function

v+1 ) 0 0 0 0

1 @ 1 0 0 0

62 det@s-w=| "t F T o0
0 0 0 7 x 1

0 0 0 1 x

verifies the same recurrence relation (2.3) of the Fibonacci polynomials. This can
be checked developing the above determinant with respect to the last column
and applying the same method to the resulting determinant which is multiplied
by —1t. Furthermore the first two determinants (for » =1 and »n = 2) coincide
respectively with F,(«) and F,(x).

By using the Gershgorin’s theorem a further result immediately follows

Theorem 6. If F,(x) =0, then |x] <2.

Corollary. All the zeros of the polynomials &,(x) = F,,(2x) are inside the
unit circle.

6 - Analogues of Christoffel-Darboux formulas and related formulas

Theorem 7. For any n =1 the following identities hold true

@ =9 3~ FR@Fe) = Fu @ Fa@) = Fas ) Fa @)
S (1R @) = Fla @ Fa@) = Faa @) F @)
Fi@)= 3 Fion@ Fu@) = For @) Fi @),

Proof. The above identities can be obtained by applying the same techni-
que used in the proof of the classical Christoffel-Darboux formulas.

For the second kind Lucas polynomials (2.2) a similar argum-ent leads to the
following identities

61 YPon-2Y) Qop—1(X) — TPy 2(X) Pay -1 (Y)
' = @on 1Y) Pon—3 (&) = o -1 () P25 (Y)
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©2) Y Pon (W) Qo —1(%) — TPy (8) Py -1 (H)
. = Q1Y) Pon—1(®) = Pop s 1 (®) Pop -1 (¥) -

7 - Representation of the even and the odd part of F,, (%)

By induction, and using the recurrence relation and initial conditions (2.2), it
is easy to see that @, _; is an odd function, and @, is an even function. Then
we can write

FZn—l(x) = ¢2n—2(x) + QDZn-—l(x) = (p2n~2($) + m(g‘zﬁ{i&)

Pon-1 (x)
&

For () = @2, (@) + @y _1(®) = @3, () + 2 ( )

ie.

Pon-1 ({1})
X

EF gy 1(X) = @op—2(x)  O(Fg, _1(2)) = a( )

Pon—1(X)
X

8(F2y () = @2 () O(Fyy (%)) = x( )

where &, © denote the even-part, the odd-part, respectively.

8 - Stability of F,(x)

We remember here a classical result for stability, which is due to A. Liénard
and A. Chipart [12], and is equivalent to the Routh-Hurwitz conditions.
Let f(x) be a polynomial. Put:

8.1 fl) = ¢p(x?) + zy (x?) = &(f(x)) + O(f(x))
2 2y _ 2 2
82) e, y?) = Py*)p( ; ¢2(w )Y (y*)
Yy -
(8.3) 22y? Fx?, y?) = D ey (@) (2 Y
(84) Oy, Agy ooy Ay) = DCapAady .

Then, a necessary and sufficient condition in order that the polynomial f(x)
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is stable (ie. all zeros of it have a negative real part) is given by the
conditions:

1. the quadratic form @ is positive definite

IL. the polynomial ¢ (x?) is complete and all of its coefficients have the same
sign as the leading coefficient of f.

In order to apply this result to the Fibonacci polynomials F,, (), we must di-
stinguish two cases:

Case 1. m=2n—1 (odd)

FZn—l(m) = (p2n—2(ﬂ7) + ‘pZn—l(w) = §02n—2(x) + x((pz_n_xl(—a‘:‘?‘)

By using formula (6.1) we can write:

Yy
yz — g2

902?/257(952, ?/2) = [YP2n —2(Y) Pon—1(X) — 2@ay —2(2) P2y - 1(y)]

- yﬁf’ 5 P21 (1) 920 -3(@) ~ G201 @) P23 W],

Case 2. m =2n (even)

Fon(&) = 02 (0) + 93 1@) = 920 (@) + (22212,

By using formula (6.2) we can write

&X
sy, ") = _ymz (Y20 () P21 (@) = 2P, () P ()]

X
Y (G0 1) Pr0 -1 ®) = P 1 (@) P21 ()]
y -

Note that by Sturm’s theorem F, (x) can not have positive real roots. The
absence of complex roots with positive real part can be proved by using the con-
dition of A. Liénard and A. Chipart, or by direct inspection for the first values of
the index n. -

The stability condition has been checked for the consecutive values of n from
1 to 12.

By using Bendixon theorem it can be easily seen that the zeros of the Fibo-
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nacci polynomials always belong to the rectangle of the complex plane with ver-
texes at the points (0, 27), (-1, 2%), (—1, —21), (0, —24%).
This leads to the

Conjecture. The Fibonacci polynomials F, (x) verify the stability condi-
tion for any ne N

The problem is to prove that the zeros of the considered Fibonacci polyno-
mials can never be purely imaginary.
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Sommario

Partendo dai polinomi di Lucas generalizzati, vengono dedotte alcune proprieta di
unae particolare classe di polinomi di Fibonaccei, i cut valori, nell'origine, generano la
classica successione dei numeri di Fibonacct.
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