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HaroLp ExXTON (*)

New Neumann and Kapteyn series
of confluent hypergeometric functions
and modified Bessel functions (*¥)

1. - Introduction

Neumann and Kapteyn series are important in the theory of Bessel fun-
ctions. In this note, this concept is generalised to a class of confluent hypergeo-
metric functions. New expansions involving Bessel functions are then for-

med.
In 3], Lemma 1, put C(u) = I{a +,u)(%x)2". Hence
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Unless otherwise indicated, it is taken that any indices of summation run over
all the non-negative integers, and that any values of parameters for which any
expression does not make sense are tacitly excluded.

This funetion is interesting in that it is a confluent hypergeometric function
capable of expansions of Neumann and Kapteyn type.

Furthermore, by suitable specialisation, new expansions including Bessel
funetions may be deduced. The reader is referred to [3] and the references the-
rein for the general background.

(*) Nyuggel, Lunabister, Dunrossness, Shetland ZE2 9JH, United Kingdom.
(**) Received January 11, 1995. AMS classification 33 C 15.
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2. - A Neumann expansion

By appealing to Lemma 1 of [3], it will be seen that
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provided that this series converges. In order to investigate this, we note that
from (1.1), for sufficiently large values of the integer & > 0, we have
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and the series on the right of (2.1) converges with
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The series (2.2) converges for all finite values of «, so that the Neumann expan-
sion (2.1) converges likewise.

3. - A Kapteyn expansion

Lemma 2 of [3] gives a formal expansion of Kapteyn. With the above values
of C(u), we see that
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As in the corresponding case arising in the theory of Bessel functions, the in-
vestigation of the convergence of the expansion (3.1) is not so straightforward
as in the case of (2.1).

In order to obtain an estimate of X, , o, (a; (v + 2k) ) for large values of k,
we consider the corresponding asymptotic expansion of its representation as a
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confluent hypergeometric function for large values of its argument using an
expression given by [2], Vol. 1, p. 278.
Hence, we see that:
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For |argz| < % 7, the first term on the right of (8.2) dominates, otherwise, the

second term, involving the exponential function, is dominant.
For sufficiently large values of k, k = K say, with |argz| < —jzn,
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converges with
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If the k™ term of the series (3.3) is denoted by T}, then after some algebra, we
may write
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By appealing to the tests given in [1] p. 40, the expansions (8.1) and (3.3) con-
verge for all values of @ and v, provided that |argz| < i 7. Outside of this ran-

ge of |argx| the second term on the right of (3.2) must be taken into account,
and the expansions are then divergent.
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4, - New expansions involving the modified Bessel function

If we consider the special case of the previous results in which a = %, the

funetion X, ( %; x) can be expressed as a modified Bessel function by employing

the representation
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given in [2], 2, p. 5. It then follows from (4.1) and (1.1) that
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If (4.2) is inserted into (2.1) and (8.1), we have, respectively, the interesting

results
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The expressions (4.83) and (4.4) do not seem to have been previously mentio-
ned in the literature.
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Sommario

Sono indicati alcuni sviluppi in serie del tipo di Neumann e Kapteyn, che fanno in-
tervenire funzioni ipergeometriche confluenti. Opportune specializzazioni permettono di
ottenere nuovi sviluppi dello stesso tipo, che fammo intervenire funzioni di Bessel

modificate
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