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FRANCESCA PASSARELLA (%)

Reciprocal and variational principles on thermoelasticity

for porous piezolectric materials (**)

1 - Introduction

The problem of the interaction of electromagnetical fields with elastic dielec-
trics was the subject of important investigations (cf. C. Truesdell and R. Toupin
[16], Parkus [14], Grot [5], Nowacki [12], Maugin [10]).

The theory of infinitesimal deformations and weak fields superimposed on a
finite deformation and strong electromagnetic field has been defined in the fun-
damental work of Toupin [15]. In this context the photoelastic effect is only an
example of the several phenomena connected with the sphere of applications of
this theory.

Goodman and Cowin [4] presented a continuum theory for the flowing of gra-
nular materials. Using the fundamental concept of distributed body introduced
in [4], Nunziato and Cowin [13] have defined a theory for porous solids in which
the skeletal (matrix material) is elastic and the interstices are void of material.
In this theory the (bulk) mass density of the material turns out to be the pro-
duct of two fields, the matrix material density field and the volume fraection
field. This representation introdueces an additional degree of kinematic freedom.
The linear theory of elastic material with voids was established by Cowin and
Nunziato in [3]. The dynamic theory of (prestressed) thermoelastic dielectrics
with voids seems to be an adeguate tool to describe the behaviour of numerous
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kinds of (prestressed) dielectric materials (piezoceramics, piezoelectric pressed
powders, ecc.).

The context of this work is based on the dynamical theory of elastic dielec-
triecs developed by Toupin [15], the theory of elastic materials with voids presen-
ted by Cowin and Nunziato [13], [3] and the theory of incremental thermoelasti-
city presented in [7], [8]. This study is a v%*c 2 approximation (v is the velocity
field in the material and ¢ is the velocity of light in vacuum) to a relativistic in-
variant theory (ef. [3)).

Starting from the constitutive equations established for the problem in con-
cern in [8)], we shall deal with reciprocal and variational theorems (considering
the case of a quasi-static electric field).

We establish the reciprocal relations by applying the method given in [9];
these relations are then used to prove a variational principle for the initial-boun-
dary value problem in concern.

2 - Notation and basic equations

Let © be the region of the physical 3-dimensional space R?® occupied by a
continuum body with voids in a reference (stressed) state, and I =[0, + =) be
the time interval in concern. Position and time will be denoted by (x, {) e 2 X [,
while the motion of the body is referred to a fixed orthonormal frame in
R3.

We shall denote the tensor components of order p =1 by latin subsecripts,
ranging over {1, 2, 3}. Summation over repeated subscripts is implied. Super-
posed dots or subscripts preceded by a comma will mean partial derivative with
respect to the time or the corresponding coordinates. Occasionally, we shall use
bold-face character and typical notations for vectors and operations upon
them.

As is well-known (see, e.g., [8], [1]), the behaviour of a porous elastic body
submitted to quasi-static electric field, is governed by the following local balan-
ce equations:

S;i.; + ofi = 0¥, balance of momentum

1 i+ g+ ol = oxyp balance of equilibrated stress
Tonp=4q;; +or energy equation
d;=F e;= —@,;  quasi-static electric field.

In these equations, we mean:
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S, f stress tensor and body force

h,g,l equilibrated stress vector, extrinsic and intrinsic equilibrated
body foree, respectively

7,9, 7  entropy, heat flux and heat supply, respectively

d,e electric displacement and electric field.

Moreover, we consider as independent variables of this theory the displace-
ment u, the change in volume fraction from the reference configuration v, the
temperature & and the electric potential @. All the above fields, of course, repre-
sent incremental quantities with respect to the referential values.

Finally, 0, x, Ty and F are bulk mass density, equilibrated inertia, tempera-
ture in the reference state and volume density of free charge.

The system of field equations is completed by the following constitutive
equations:

Sy = (Cyps + Ti5 0. ) Uy, s + Myzp + My, — Birep — B0
ki =M + Biyp + Dyy ; + Pye, — N;
g = —Myu,; —Cy — By ; — Ape, + mid
n =ﬁyu1]+mw+N1/) +Ck€k+Pﬁ
d; =Byt — A — Py + e + ;0
= Kj; 1’,1‘

(2)

where T); denotes the Cauchy pre-stress tensor.

We note that the incremental stress Sj; is not symmetric unless Ty 0y,
vanishes.

If we set Aj; = Cyjys + Ty 0, We achieve the symmetric relations of the con-
stitutive coefficients, which were discussed by Ciarletta and Secalia (see [2]) in
connection with the problem of a thermoelastic dielectric with voids, i.e.

) Ajirg=Argsi  Myg=Mu=My;  My=M; Dy=D;
By = Bja &y = &ji Bi=Bi  Kyj=K;.
According to the classical interpretation of system (1), (2), we assume

iowu,peCP2(QXI) 9eC*(QXxI) @eC>"(QXI)
ii. o,xeC%Q)
iii. Sy, ki, qi, ;e CP0(Q XD neC*1(Qx1I)
iv. fi,9,L,reC"%(Qx1I)

v. the constitutive coefficients are continuously differentiable on Q.
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Let us denote four pairs of disjoint and complementary subsets of the (smoo-
th) boundary 3R by {Z,;, X;,,} with i =1, 3, 5, 7. The surface traction #, the
heat flux ¢, the surface equilibrated stress &, and the normal component of the
electric diplacement d are defined by

t=S8n g=q-n h=hn d=d-n on 0Q x I

where n is the outward unit normal to 0%.
We consider the following initial-boundary conditions

u(x, 0) = uy(x) (x, 0) =v,(x) n(x, 0) = 174(x)
(4) Plx, 0) =vyex)  Px, 0)=1y(x)
d(x, 0) =d,(x) plx, 0) = @y(x)

w=un onZX;xXI[ t=t on Xy X1
(5) 1/)=E7) on 2y X1 h=h on X, x1I
$=70 onZ;xI[ qg=4q on Ty X1
p=¢ onX;xI d=—0 on XgXI[

where right-hand terms stand for (sufficiently smooth) assigned fields.

3 - Reciprocity

Let a; and a, be scalar fields on £ X I that are continuous in time. We deno-
te by a;*a, the time convolution of a; and a,

t
ay# ag(x, t) = fa,(x, t — s)ay(x, s)ds.
0

We introduce the funections:
Lit)=1 EW=L«L#)=t tel

and for any continuous function a(x, t) on £ X I we denote by @ the function on
Q x I, defined by

t
alx,t)=L=alx,t)=[alx, s)ds.
0

The energy equation (1); and initial condition (4); are, together, equivalent to
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the integro-differential equation
(6) Ton=¢;,;+W on Q2XI, where W=Tyn,+o7.

Now, let U = @@, p @, 9@ @) a=1,2 denote two regular solutions,
corresponding to different sets of data

(a) pla) (@) _(a) _ () (@) < ( (a) (a)
F(a)"—"{fia7la:u0a,00aa770a!1/)0 7w0a)5d0a:§00a1
w(a), ii(a), t(“), z,b(a), h(a)’ 0(a), q(a), ('i)(a)’ O.(a)}.

Moreover, define Si(j“), RE?, 9, 72, ¢, df® by means equations (2), (1)s for
each a =1, 2,
We have the lemma

Lemma 1. Let U™ be solutions corresponding to different sets of data I''®
(a=1,2), and assume that the symmetry relations (3) hold. Then we ob-
tain

(M Eog(r,s) =FEpg,(s, 7).
where

Eo5(r, 8) = [{o[f{®(r) — 4 M uP (5) + o[19 (r) — x3p @ ()] 9 P(s)} A2
ke
— [ {FD ) p®(s) + % [W ) 3P(s) — g2 (9P ()]} d@
Q 0

+ L0 6) + KO @)y P (s) +dD 1) 9P (s) — - 7O () 9P (5)] 4
a8 0

for all r,sel and a,8=1,2.
In Lemma 1 and in the sequel the argument x is understood.
Proof. Consider the expression
Fog(r, ) = 82 Muf)(s) + B2y B (s)
—g@@pP(s) = n @@ 9P (s) + & MR (s).
From the constitutive equations and the symmetry relations we deduce

(8) Fog(r, 8) = Fpo(s, 7).
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Since we have
aﬁ (7' S) = [S](za) (T)u ﬁ)(s)] ¥ Sj(za; (? ) Uy B (S) + [h(a) (,, ) w(ﬁ) (8)] ;= h(a)(’)") w(ﬂ)(s)
+[d ) @ PU$)) s — A () 9 P(8) = g (1) 1 PAs) = 7 () D Ps)

we can write

Fos(r, 8) = [S5 (M uD ()] + o9 () — 4 (M1uP (s) + [ (1) p P(s)] ;
+oll@ (1) — xp @)y P(s)

~[ GO 3P+ [0 P+ = T 720) 9 P(s) — W) §P(s)

T‘Z

taking into account equations (8);, (3)z, (6). If we integrate Foz(r, s) over Q and
use the divergence theorem and the field equation (1);5, we finally obtain

éfFaﬂ(’r‘, S)dQ = Eaﬂ(’r, S).

Then, the lemma follows by (8).
Lemma 1 forms the basis of the

Reciprocal Theorem. Let U be solutions corresponding to different
sets of data 'Y (a =1, 2), and assume

i. the symmetry relations (3) hold
il. K is a symmetric tensor.

Then, we obtain I5(t) = I (t), t € I where
aﬁ - f (7(a>xu(ﬂ) + £(a)*1/}(.8) Ex [ W@ 4 9B 4 pla), (p(ﬂ)]d.Q
+ [ Ex[t 9% u® + h P yp® — —%— @9 + D% P4
EYe) 0

and

(9 FO=olExf¥+u + 1] L@ =[x+ i + 1]

Proof. Ifweputin () r=r1,s=1t— 1 (rel0, t]) and integrate from 0 to ¢
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with respect to 7, we get
t t
(10) JEp(t,t—r)dr=[E5( —17,7)dr.
0 0
If we remark that for (any) function a = a(x, t) the following equation holds

&+ a(®) = at) — [a(0) +1da(0)],

we easily obtain the desired result, since the convolution of the relation (10) with
& gives

t
Ex [ Bup(r,t—1)de
0

a « 1 3 (a
=Ly~ [{olu® i + 3 @xp @1~ 7- £ K07+ 9.7} 4.

4 - Variational principle
Following Gurtin [6], it is a simple matter to prove

Lemma 2. The functions u;, ¥; Sy, hi, e; and 1 satisfy the equations of
motion (1) on Q X I and the initial conditions (4), if and only if

ExSuj+F=ou; Exh;+Exg+L=0py
Ex(Tom)=Exq;; +E+W Exd;;=&E=F
where &, £ and W are defined in (6), (9).

If we introduce the notations

A‘I,Li=gui-§*Sﬁ,j ('L=1,2,3) A‘u4=gx1/)—§*hi,i—§*g

AUs=Ex —2 —Exy  AUg= —Exd;;

the field equations (1), (2) along with the initial conditions (4), thanks to Lemma 2,
can be equivalently written in form of one only vector equation

AUu=Q on 2x1
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where A is a linear operator, U is an admissible vector field and
0 = (@i: @By, s, @6) with

@=F, =& W= -frg  Gg= —ExF.
0

Let &, be the domain of definition of A. By means of constitutive equations, to
any V= (', yp', %', ') e &, correspond well defined fields
t(=8;n; =t h(V)=h'-n=h'
g(V)=q"'n=¢q d(V)=d n=d.

Denote &, the subdomain of all vector fields Ve &, such that

u' =0 on X2 XI t' =0 on Zyx/
' =0 on Ty xI B'=0 onZXT,xI
(1) ¥ =0 onZTy3xI g =0 onXZgx][
@' =0 on ;X[ d'"=0 onXgxlI

Lemma 3. The restriction of A to &, is symmetric in convolution, i.e.

JAPD 9@ — 49@ 9 dR =0 VOO, 9P eg,.
Q

Proof. The proof is an immediate consequence of the definition of A and the
symmetry properties of the reciprocal theorem.

Let Se &4 be a given (six) vector that meets all the boundary conditions (5),
and let U be a regular solution of the mixed problem; then V= U — S satisfies
equation

(12) AV=0"= D — AS
and the homogeneous boundary conditions, so that ©e 8, .

Recalling that the functional on &,

D(V) = [(AV V- 20+ @' )dQ
2
is stationary at ¥ if and only if ¥ solves the homogeneous problem (11), (12) [11],
we can finally state the

Variational Principle. Let &5 be the subdomain of those U = (u, ¥, ¥, @)
" of 84 that meet the lefi-side boundary conditions in equation (5). Then, the fun-
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ctional on 8 defined by

@(U) '—“Qf5*[Sﬁ*ui,j+hi*1/),i"g*1/)‘77*19+di*¢,i]d9
+ [loGuswi+yy +9) = 7= £+ 8,142
& 0
. W .
—2[[Fxu+ Lxp— &+ T*ﬁ—’E*F*(P]dQ
2 0

—2f Est+ud -2 Exh=ypdX
P A

+2 2 Eged dS42[ Exong dT

TO Zg P

has a stationary point at, and only at, the solution of the initial boundary value
problem (1), (2), (3), (4), (5).

Proof. The proof can be safely reduced to note that, defining

DU =P(U-9)

(13)
=[[AU*U+ (AS* U—AU* 8~ 2Ux @ — AS* S+ 28+ @]dR.
o]

The expression (13) can be explicitly worked out from the above equation neglec-
ting inessential terms.
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Sommario

In questo lavoro consideriamo il problema della termoelasticitd incrementale per ma-
teriali piezoeletirici porosi. Usando tecniche recenti vengono stabilite proprieta di recipro-
citd ed una caratterizzazione variazionale.
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