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Distributional products with invariance

for the action of unimodular groups (**)

1 - Introduetion

Suppose to each real & we associate a real or complex value g(x), which re-
sults from an average concerning some physical system; e.g. for each x we can
think of g (x) as the mean-value of an unknown real or complex function f(¢) of a
real variable {.

Under appropriate probabilistic hypotheses of markovian type it is possible
to interpret f(t) as a random variable with probability density a(f — =), the
traslation by x of some function a(t) = 0 with [ a = 1. By putting a(t) = a(—t),
te R, we will have R

g@) = [ft)alt —x)dt = Rf&@c — @) dt = (& * f)@).

So, we have obtained the mean value operator f— s,(f) = &« f = g which is
linear and verifies

(1) 84 (Df) = D(sq f)

(2) Isaf=[Ff
R R
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where D is the derivative operator, but it does not verify

(3) S (i f2) = 8,(f1)8.(S2)

Thus, if the mathematical description of the physical system involves formal-
Iy the operator of product of functions to be averaged, we will not be able to
operate simply using the usual product of functions.

This simple remark is at the origin of the present paper, as a matter of fact
we will be able to multiply distributions in @’ coherently with the average ope-
rations. To reach our goal it will be necessary to define a space £ (a reminis-
cence of operator representations that we hidden in physical theories) endowed
with the operations of sum, multiplication by a complex number, derivative,
change of variable and product of two elements of £. We also define an integral
on K and a mean-value operator, which is linear and verifies the properties (1),
(2) and (3). Of course, F will be endowed with a whole class of produets that sat-
isfy (3) but, suprisingly enough, all these products (which are naturally non-com-
mutative) are ruled by a simple system of axioms which is given at the begin-
ning of Sec. 1.

Then we prove existence of an isomorphism betweem E and @' preserving as
much structure as possible; this enable us to define products on @' with physical
significance (Sec. 4).

Next (Sec. 5) we present simple examples and consider the relationships be-
tween these products and the products we have defined in our preceding papers
[2], [3].

A simplified scattering problem is studied (Sec. 6) in the form of a linear
Cauchy problem and the existence of certains shock waves solutions of Burger’s
equation is reanalised (Sec. 7).

Finally (Sec. 8) we define new convolutive products of slow grouth distribu-
tions, which are closely related to the Fourier transform and to multiplicative
products.

1 - The axioms of the product

We denote by @ the algebra of indefinitely differentiable complex funetions
with bounded support defined on RY. ' means the space of all distribu-
tions.

Let us consider the axiomatic Ax for a product X on &'.

Ax1. The map (T, S) > T X S from @' X @' into @' is bilinear.
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Ax2. For each Se @' the map T'— T X 8 from @' into @' is continuous for
the usual topology in @'.

Ax3. For each T, Se® and each ke {l,2,..., N} we have
Dk(T X S) = (DkT) X S + T X (DkS)
where D, means the usual k-partial derivative operator.

Ax4. For each Te @', 1 X T = T where 1 means the distribution which cor-
responds to the constant function equal to 1 all over RY.

Ax5. Foreach T, Se @', (T x 1) - § =T x S where the dot means the clas-
sical distribution produect.

Note that, if there exists such a product, we have:

Proposition 1. For each T e @', we have D, (T X 1) = (D, T) X 1.
Proof. By Ax3 we have D,(T X 1) = (D, T) x 1+ T X D1 =(D,T) X 1.
Proposition 2. For each Te @', we have T X1 C*.

Proof. Because Ax5 is true for all Se®'.

Remark. We also can replace Ax3 with Prop. 1 and prove Ax3. In fact,
using Prop. 1 and Ax5 we have

D (Tx8)=D[(Tx1)-S]1=Dp(Tx1)-8S+(TX1)-DS

=D, TYyX1]- S+ (Tx1) - D S=D,T) XS+ T XD;S.

Lemma 1. If a product X verifies Ax there exist age @ with [ag=1
such that for all Te @', T X1=ay=xT.

Note. All integrals are taken all over RV when they are not specified.

Proof. Let L:®' — @' be defined by L(T) =T x 1. By Ax1 and Ax2 L is
linear continuous and verifies L (D, T) = D, L(T) on account of Prop. 1. Thus, by
a note which follows Theorem X, cap. VI of Schwartz [4], there exist age &
(space of distribuitons of bounded support) such that for all Te®',
L(T)=ay# T. Then, T X 1 =ay* T and by Prop. 2 ag* Te C* for all Te &'.
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Putting T'= 6 we conclude that age C® and so age ®. Also 1 X 1 = a4+ 1 and
by AX4’ fa() =

Theorem 1. A product in ' verifies Ax if and only if there exist aye O
with [a,=1, such that T X S = (ay+ T)-S.

Proof. By Ax56 TXS=(T'x1)-S and by Lemma 1 there exist age ®
with fa,=1 such that 7 X S = (a¢+ T)-S. The reciprocal is easily veri-
fied.

We also prove

Proposition 3. A product in O satisfying Ax is separately continuous,
and for all T, Se®' and a RN we have

1, (T X8)=(z,T) X (v,8) and supp(T X S)csupp S.

Proof. By Ax2 it is sufficient to prove that, for each T e @' the map
S—>TxS fr om @' into @' is continuous. Th1s map is sequentially continuous
because if S, 2 S when n— o then T X S, 2.7 x S when 7 — . In fact, by
Theorem 1 there exists aye @ such that T X S, = (a¢* T) - Sn—>(a0* 7-8
when n — . Also recall that @' is a bornological and locally convex space and
all sequentially continuous linear operators, defined in a bornological space with
values in a locally convex space are continuous.

Again by Theorem 1 we have:

T (T' X 8) = 7,[(ag* T) - S]
=g ao* T) - 748 = [agx (T, D] - (7,8) = (7, T) X (7,8)
supp (7' X S) = supp[(ae+ T) - STcsupp S.

Next we recall some concepts and define the integral of an operator. For de-
tails the reader must see [3].

2 - Some basic operations in L(®)

Let us denote by L(®) the algebra of all continuous endomorphism
¢ 1 — @, where the usual composition product wiil be indicated by a dot.
An operator ¢ e L(®) is said to vanish on an open set Q iff ¢(x) = 0 for all
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x € @ the support of which is contained in 2. We denote by supp ¢ the comple-
ment of the largest open set in which ¢ vanishes.

We call natural representation of a function fe C* the operator ¢ € L(®)
defined by ¢(x) = fx for all t e @ (C™ means the algebra of indefinitely diffe-
rentiable complex functions defined on RY endowed with the usual topology).
The representation ¢:C® — L(®), in which ¢(3) denotes the operator that
maps © € M onto B € M, is the natural extension to C® of the regular represen-
tation of the algebra @.

The concept of support, we have defined, is coherent with the natural repre-
sentation of the C®-functions in the sense that, if S C® then we have

supp o(B) = supp B.

2.1 - The change of variable in L(®)

Let & be a C*-diffeomorphism of RY and consider the operator S,: @ — ®
defined by S,(x) =xoh for all xe ®@. Then, we will say that the operator
pOh=3S, ¢ S,-1 results from ¢ through the change of variable 4. For this
operation we have

Proposition 4. Let h, s be C*-diffeomorphisms of RV, AeC, ¢, ye L(®)
and feC”. Then

AP)Oh=1(pOh) (p+yY)Oh=9pOhR+yvOh
(- P)Oh=(@Oh)- (YO (POROs=¢pO(hos)
supp (¢ © k) = b~ (supp ¢) e(B)Oh=0(Boh)

Thus, given a C*-diffeomorphism h of RY, ¢ — ¢ O h is an automorphism
of L(®).

Considering h: RY — RY defined by h(t) =t — a with o € RY we can define
the a-translation of pe L(D) by T, ¢ =¢p Oh.

2.2 - Partial derivative of an operator ¢ e L(®M)

For each ke {1, 2, ..., N} we call k-partial derivative of ¢ € L(®), the ope-
rator Dy =Dy, - ¢ — ¢ - D, where D, is the usual k-partial derivative opera-
tor, that is, the commutator [D,, ¢1.

The operator Dy : L(M)— L(®) is linear, verifies the usual law of the
derivative of a product Dy (¢ - ¥) = (D¢) - ¥ + ¢ - (D), for all ¢, v e L(D),
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contracts the support of ¢, i.e. supp Dy ¢ csupp ¢ and is compatible with the
natural representation of the C*-functions, ie. D,o(8) = o(D,f) for all peC”.

2.3 - The physical value of an operator ¢ € L(®)

The map ¢ — C(¢) of L(®) onto @', which associates to ¢ the distribution
defined by

(@), )= [ () for all xe®

is linear and verifies

Proposition 5. For ¢, 9 € L(®), h: RY — RY linear bijective, a € RY and
BeC”® we have:

a. (o -yp)=C@) -y (T v with Te® and y e L(D) denotes the dis-
tribution 'y (T))

b. €(D,¢)=D,l(¢p) (D, denote the k-partial derivative on @')

c. Z((p ORr)=T(p)oh (Toh with T € ® denotes the distribution T after
the change of variable h).

d  TGE.¢) =1, E(qﬁ) (r,T with T e ® and a € RY means the a-transla-
tion of the distribution T')

e. CloB)=p (taken as a distribution).

We call physical value of the operator ¢ e L(®) the distribution £(¢).

24 - The integral of an operator ¢ e L(®D)

The operator ¢ e L(®) is said to be integrable on RY, when its physical value
Z(¢) is integrable on RY in the sense of Silva [5], [6]. In this case we will write
[ ¢ = [T(¢) (in this paper all integrals of distributions are taken in the sense of
Silva).

The consistence of this definition follows from

Proposition 6. If e C* is Silva-integrable on RY and ¢ = 0(B) € L(®),
then [¢ = [p.

Proof. [¢=[T(¢) =P
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The operation ¢ — [¢ is linear. Moreover, we have

Proposition 7. If h: RN — RY is defined by h(t) = At + b, where A is an
N X N regular matriz, be RN and ¢ e L(®) is integrable on RY, then
(@ Oh)- |det A| is integrable on RY and [¢ = [(¢p O h)|det A].

Proof. T Ok)|det Al)=T(p OR)|det A] = (E(p)oh)|det Al by
Prop. 5 c. By Theorem 14.2 of Silva [5], [T((¢p O k) | det A|) = [E(¢), which
proves that (¢ © &) | det A| is integrable on RY and also that [(¢p © k) | det A| = [ ¢.

Also it is easy to prove

Proposition 8. If¢, v e L(®) with ¢ — v e ker £ and one of them is inte-
grable on RY, then the other is also integrable on RN and [¢ = [v.

2.5 - The mean value operator s,: L(®)— L{(®)

Given ae® with fa=1, we define the operator s,:L(®M)— L{(W) by
3, (¢p) = v, where v is given by (¢ (x)) (¥) = [ ¢ (a(y — D x(®))dt for all x e B
and all ¥ € RY. Here ¢, denotes the operator ¢ when it acts on functions of ¢ in
®. Thus (y (@) (y) = [ ¢z, &) ).

S, is a linear operator and if y € @ with [y = 1, then s, o5, = 5,. In particu-
lar, taking vy = o we have s, 0 s, = s,, which proves that s, is a projector and so
the principal left (right) ideal generated by s, is idempotent. The proof that
8,08, =8, is essentially the same we have done in [3] for proposition 1.3.3f,
p. 303.

Moreover, for s, we have

Proposition 9. Let ¢ e L(®), h:RY —>RY wunimodular (linear with
|[deth'| =1), ae RY and ae® be such that [a =1 with aoch = a. Then

a. $a(Dy¢) = Dy(s.9) b. S (pOR)=5,(0)Oh
e 5.(To@) =To(5,9) d. Tos,=¢
e. kers,=ker? f. supp s,(¢) = supp Z(¢)

g. (s.(pN@)=axT(p)x for all xe®.

Proof. See[3]for a, b, ¢, d, e and f. We shall prove g. Putting E(gb) =T we
have ¢ = ¢ + &, where 4 is such that Z(y) = T and £ e kerC. Let 8 € @ be such
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that [B = 1. Taking w(x) = (T, x), we have C(y) = T. Then we get:
(8e @)() = (s, ¥)(@) + (5,E) &) = (s,9)(x)  because ker s, = ker ¢

(Sa (WX @N(Y) = [ (aly — Da@)dt = [BE(T;, aly — Dx(A))dt

= (T}, aly — Dx ) =(Trx), aly — 1)) = (a = Tx)(y).

Thus 5. (D) @) = s, (Y)w) =a* Te=ax(p)x.

As we refer in the introduction for usual functions;

Proposition 10. If ¢ € L(®) is integrable on RY, then s,¢ is also inte-
grable on RY and [s,¢ = [ ¢.

Proof. [s,¢ = [T(s.$)=JC(¢)=[¢ applying Prop. 9d.
Moreover

Proposition. 11. If ¢ e L(®) and ¢ =0(B), feC” then we have
Sa(@ - P) = (8a9) - 9.

Proof. Let xe® and y e R". Then
8.(¢ - Y)@)y) = [ ¢ - p((z, D) m) = [ p(B(T, @) ) = 5,(P)Bx)Y)

which means that s,(¢ - ¥)(a) = s, (@)(Bx) = ((s.¢) - ¥)x) and so we get
Sa (P - P) = (8.9) " Y.

Thus, we have not in general s,(¢ - ¥) = s,(¢) - 8,(¢); the space £ which
we define in the following will remove this problem.

3 - The space F and the basic operations

We call £ the quotient space L(G))/kerf whose elements [¢], [v], ... are
classes of operators in L(®) and we define the sum of two elements in E and the
product of a complex number A e C by an element of £ as usually

[p] + [yl =[¢ +y], forall[gllylel
Alp] = [1¢], forall AeCall[¢] cE.

We also can define the support of an element of E by supp[¢] = supp C(¢)
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and this definition does not depend of the element ¢ e L (M) which represents
the class [¢] because for all &£eker{ we have

supp [¢ + E] = supp Z(¢ + &) = supp (E(¢) + T(E)) = supp L(¢) = suppg].

Note that if 8: L(®) — L(®) is additive and verifies 0 (ker ) cker, then 6
can be defined on £ by 6({¢]) =[0(¢)] for all [¢p]e E because

0g + ED =[6(p + )] = [0(p) + 0O = [6(p)] = O([p]) for all Eekerl

and so 8([¢]) does not depend of the element ¢ that represents [¢].
Thus, we can define on E the following operations we have defined in
L(®)

a [p]l—>[p1Oh=[¢p Oh] where h: RY — R" is linear and bijective
b. [p]1>T.[p] = [T, ¢] where o e RY

c. [p]— Dy [¢] = [Dy 4] where ke {1,2,...,N}

d. [¢p]—s.[p]=[s.0] where ae® and fa=1.

because for all & kert we have

a'. LEOR) =T(&E)oh=0 (Prop. 5 ¢)
0. T(FE) =7,5(&) =0 (Prop. 5 d)
¢'. T(D &) =D, T =0 (Prop. 5 b)

A’ T(5,(E) = (Tose NE) =C(E) =0 (Prop. 9 d).

The integral of a class [¢] € £ can also be defined: [¢] € E is said to be inte-
grable on RY, iff ¢ is integrable on RY and in this case we will write
Jlpl=[¢ = JL(g).

Obviously this definition is independent of the operator ¢ which represents
[¢]. Also,

Proposition 12. If h: RY — RY is defined by h(t) = At + b, where A is a
regular N XN matriz, beRY and [¢pleE is integrable on RY, then
({p1Oh) | det A| is integrable on RY and [[¢p]= [(¢1Ok)|det A].

Proof. ([¢p1Oh)|det A| =[(¢p Oh)|det A|] and (¢ Ok)|det A| is inte-
grable on RY by Prop. 7. Thus, ([¢] O k) | det A] is integrable on RY and, taking
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account of Prop. 7, we have

JUp1Oh) |det A] = [(p O k) |det A| = [ = [[p].

The properties of operations a, b, ¢ are similar to the correspondent ones on
L(®) and with the help of 2.1, 2.2 and 2.3 we can prove the following three
propositions

Proposition 13. Let h, s: RY — RN be linear bijective maps, AeC and
(9], [yleE. Then

AMl@lOh =2([¢]OR) 1+ [WDOL=[010R+ (91O
[p]OR)Os =[] O (hos) supp ([p]1 O k) = h~* (supp [p])

Proposition 14. Let [¢),[A]1€E, A eC and a,beRY. Then

T, (Alp)) = A7, [9] T, ([p] + [y]) =7,[9] +7,[%]
ToTpl@l =Tosp[@]  supp T,[¢] =supple] +a.

Proposition. 15. Let [¢],[yleE, AeC and ke {1,2,..., N}. Then

D, (g1 + [¢]) =D,[¢] + D, [y] D, (A[p]) = iDy[p]
supp D [¢] c supp[¢].

Unfortunately, the natural definition of product [¢][v] =1[¢ - ¥] of two
elements of E is not consistent, because if & #nekerf we obtain
(p+8 -W+m=¢ -yp+(@p-n+& - yp+&-¢) and ¢-n+&-yp+&-7 is
not always in ker{. However, there are many ways of defining a consistent
product on K.

In fact, let G be a group of unimodular transformations z: RY — RY and «
e M be G-invariant with [« = 1. We define the (G, a)-product [¢] ;] of two
elements in £ by the formula

(9] .[w] =10 - s (¥)].
This definition is consistent; in fact

Proposition 16. If [¢]l, [v]leE and E, nekerf, then we obtain
[¢p + &1 [y +75l=1[¢] . [v]
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Proof. Using Prop. 9 e we can write
(¢ + &1l +nl=Up+ &) s (p+ml=Ue+ &) s.(¥)].
But [(¢ + &) sa(W]=1[¢ s.(¥) + & s (W]=1[¢ s, ()] =[] [9]

because by Prop. 5 a we have C(E - s,(p) = E(&) - Sq () = 0.
This product is bilinear and verifies

Proposition 17. Ifl¢l[v]leE, a e @ is G-invariant wzth Ja=1,heG,
ke{l,2,...,N} and aeR" then

a. D (¢] ;[wD = DileD ([w] + [p] ;DilwD
b. T[], [¥D = T l9D (Tolw)

c. (#],[¥) Ok =U¢1OR) ,Ap1O k)

d. supp ([¢] ; [v]) csupp[yp].

Note that, as we have said in the introduction, we are now able to
derive

Proposition 18. If a, ye ® with [a = [y =1, then we have

(1) Syﬁk[gb] = E}csy [¢]
(2) Is,[9]1=Jlg]
(3) sy (@] o [vD = (s, [¢]) (s, [9D.

Indeed, the operation on E defined by the mean value operator s, is given by
s (9] =1[s,01=1[¢] and so s, is the identical operator on & for any a e @ with
Ja=1.

4 - The multiplicative products in @'

Thus, the bijection &: E — @' defined by E([¢]) = Z(¢) for all [¢] e E allows
us to define a class of products of distributions with physical significance.
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Definition 1. Given a group of unimodular transformations G of RN and a
function a € @, G-invariant with [a = 1, we define the (G, a)-product T ; S of
two distributions 7, S @' by

T,S=8¢E& D, 571 (8.
It is easy to prove

Proposition 19. The map &: E ~> @' is an isomorphism for the structure
defined by the operations 01, 0y, 03, 04, 05, Oy and 0; and the correspondent ones
mn M.

0,. Addition: ((¢1,[v]D — o]+ [y] from E X E onto E

0,. Right product induced by vy e o(C®):[¢p]l—[¢ - v] from E into E
05. k-partial derivation: [¢]— D,l¢] from E into E

0. Translation defined by a e RY :[¢p]—T,[¢] from E onto E

05. Change of variable defined by he G:[¢p]—>[p1 O h from E onto E
0s. (G, a)-product: [¢1,[vD—I[¢]  lv] from E X E onto E

07. Integration: [¢p]1— [[p] defined on the subset of integrable elements
of E.

Note that the correspondent in @' to operation 0, is the usual product in-
duced by B =po(y) e C*. In fact, for all x € @ taking account of Prop. 5 a, we
have

(Elg -yl x) = (C(o - v), @) = (C(¢) - ¥, @)

= (T(#), v (@) = (E(p), fx) = (T(p)B, )

and so Z[¢ - v]1=C(¢)B = L(¢)o(w). Also Silva integral is the correspondent
in @ to operation 0;. The correspondent in @' to the mean value operator
[p] —s,[p]=[¢] is obviously the identical operator in @' and so, given
TeD', s,T is the distribution T itself. Thus, we use ordinary distributions in-
stead of classes (elements of E) in the description of a physical system, interpre-
ting the product as the (G, a)-product and the integrals as Silva integrals.
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Proposition 20. Fach (G, a)-product verifies the axioms Ax for the pro-
duct X introduced in Section 1.

Proof. Let T,Se®'. Taking ¢e& ' (T) and vy e Z71(S), we have
C(¢)=T and Z(y) =S and by Definition 1

T.8=C0pl [v]=C00 5D =T s.9) =C(P) 8. (¥) =T - 8, (3)

(see Prop. 5 a). Thus, we can compute the product 7 , Sby T, S=1T - s,(¥),
where e L(®) is such that Z(y)=S.
Also, for all x e @, using Prop. 9 g at the third step, we have

(T8, 2)=(T - s,(p), x) = (T, s5,(¥)@) = (T, a » Sw)

= (T, (S,2(®), a(u — 1)) = (T, (S;, alu — ) (t)))

=(T,®S;, alu —)e®) =(T,®S,, alt —u)x(w)) = (S, ® Ty, a(t — u) x(u))
= {8y, (T, a(t — w2 (w))) = (Su, (T, alt — w)w(w)) = (S, (T}, &l — ) m ()
=(S,(&* T)a)=((&=T)-S,x). Thus

Proposition 21. For any S, T of @', we have T ; S = (&=T)-8.

Taking ag = ¢ in Theorem 1, we prove Prop. 20.

Taking G = {I}, where I: RY — R" is the identical transformation, we can
see that the ({I}, a)-products (Definition 1) are exactly the same we have de-
fined in See. 1.

Now, we list the principal properties of the (G, a)-product.

Proposition 22. Let G be a group of unimodular transformations of R,
ae®, G-invariant with fa=1, neN, aeRY, heG, ke{1,2,...,N} and
T,Se®. Then

a. T .8 is a bilinear function of T and S separately continuous
b.  7,(T;8)=(z,T) ;(z,8)

e. (T ;8oh=(Toh), (Soh)

d D (T, S)=WD,T) ,S+T, (DS

e. supp(T ,S)csupp S.
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Proof. a,band e are direct consequence of Prop. 20 and Prop. 3, d is Ax3, ¢
is a direct consequence of Prop. 19 and Prop. 17 c.

5 - Examples and comments

Let us denote by T+ S the a-product in the sense of [3]. The product we
have defined here in the sense of Definition 1 is not an extension of the product
defined in [3] but, when Te @' and Se ®,, we have T'- S =T ; S§. (We recall
than @, means the space of distributions with nowhere dense support).

If S ¢ @, the two products may be different. For instance, if we take as G
the orthogonal group, as we usually do in non-relativistic physics, we can com-
pute in dimension N

8:0=a(0)s H;,a=-élﬁa 6 2 (Dyd) = a(0) Dy (Do) ;6=0

where 6 is the Dirac measure, H the Heaviside function, ke {1, 2, ..., N} and
these products coincide with the products in the sense of [3]. However,
0 ,H=Ha and 6 - H does not exist because He¢ C” ® @,.

HTe® andfeC® thenT ; f=p(a=T)and B ; T = T(a = ). The distri-
bution 7" - j is the same in classical sense or in the sense of [3], while 8 - T is not
always defined. Recall that the product in the sense of [3] is consistent with the
classical product when the C”-function 3 is on the right. The product in the
sense of this paper has a limit consistence with classical products, that is, T ;, 8
and § ; T are near the classical T' - 3 if we cloose a near J. In a concrete physical
situation there are always the possibility of choosing a in such a way that we
cannot distinguish experimentally these differences from a macroscopic or aver-
age point of view.

In [3], p. 311, we considered a point with mass m moving in the real line to-
wards the origin in the negative part of the x axis with a constant velocity v. At
the instant ¢ = 0 it collides with an obstacle situated at the origin. Supposing
that the collision was completely inelastic, we computed the work done by the
force field F'(t) = mx' () = —mo(t)

w=[Ft)a' (t)dt =mv*[H(-t)6(t)dt = —”;“mvz
R R
In the sense of this paper we can also compute

—mo[8(8) ; H(—)dt = —mw? [ H(—t)(a(t)« () dt
R R

i

w

0
= —m? [H(~t)a(~)dt = —mo® [ a(~t)dt = ———%—mvz
R — o
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and both results coincide with the value of the cinetic energy of the motion be-
fore the instant ¢ = 0. This is not a coincidence. As in the heuristic calculations

of quantum physics the product is commutative under the simbol of integral.
More precisely

Theorem 2. Let (G, a) be as in Definition 1 and let the map t — —t of RY
onto RN belong to G. Then if T, Se @' and alx —t) [T(t) ® S(x)] is Silva inte-
grable on R?™, T . S and S ; T are Silva integrable on RN and we have

f[r.8=JS,T.
Note. When T or S has bounded support, a(x — ) [T(¥) ® S(x)] is always
Silva-integrable on RZY,
Proof. Since
T,8=(@+T) - S=[Ja@—-)T@)dt]S(x) = [alz — ) T({)S(x)dt
applying theorem 14.1 of Silva [4] we conclude that T ; S is integrable and
IT.S=[Jalx—-)T@®) S dtlde = [ [alx — ) T(t) S(x) dt de.
On the other hand
S, T=(a+=HT=[Jal®-x)S)dt]- T{) = [a(t —2)S(x) T () dx
and for the same reason S ; T integrable and
IS . T=[lfalt—2)S@) TE) deldt = [ [ale—t)S(x)T(t)dwdt.
Hence [T .S =[S, T because a is G-invariant and so a=a.

Note also that by Prop. 21, when we multiply distributions we can replace
the hypotesis a e @ with a e C* (if necessary for a more general probabilistic
interpretation of a), if we restrict ourselfs to the product of a distribution 7' e &'
by a distribution Se @'.
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6 - A liner Cauchy problem

Let us consider the Cauchy problem
(6.1) X' =igd'X X(tg) =1

where 7 is the imaginary unit, 6’ is the derivative of Dirac measure J concen-
trated at the origin of R, ¢ and {, are real numbers with g # 0 and £, <O0.

In the classical framework 6'e ®''(R) and so we must have Xe C!(R),
otherwise the product 6’ X has no meaning. Then, supp X' = {0} or X' = 0. The
first condition is impossible because X' is a continuous function. The second con-
ditions is also impossible because X ought to be the null function on R which is
against X(¢,) = 1. Thus, we would seek for solutions of (6.1) in C'(R), that don’t
exist.

In the context of this paper we can ask for solutions X of (6.1) in @' (R)
which are continuous in a neighbourhood of ¢y, (in order that initial condition
X(ty) = 1 makes sense).

Cosider now a pair (G, a) as in Definition 1 and the problems

6.2) X'=igo . X Xt)=1
(6.3) X'=q9X . 0" X()=1.
By Prop. 21 X' =1igé’ ;X is equivalent to X' =14g (& * 6")X or X' =ig(a)'X
and so X = @' (~)=«'(=1) i5 the only solution of (6.2).

By Prop. 22 e supp(igX ; 6')c {0} and so (6.3) leads us to X' =0 or to

supp X' = {0}. But X' = 0 is impossible because it implies X(¢) = 1 for all t e R,
which is incompatible with X' =1igX ; é'. If supp X' = {0}, we have

X' =c¢d+e¢ 0 +...+¢, 0 with ¢, ¢, ...,c,eC.
Then
X=cH+c¢ 6+ ...+¢c, 6D
X&6'=(a*X)5'=(a*(COH+016+...+Cné("_1)))'5'.
Putting B=a * (cH + ¢, 0+ ... + ¢,0" ) we have Be C* and

X8 =p-8"=(B6")—p'6=p0)d" =B (0).
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Now X'=1gX , o' is equivalent to
b +cd" + ...+, 0™=1gB(0)6' —igp'(0)S
and so ¢g= —igpB’'(0), ¢; =19p(0), ¢z=0,...,¢,=0 and
X=—igB' (0)H +igp(0)d

which is incompatible with X(f) =1 and t, <0 and proves that (6.3) is
impossible.

In quantum physics the scattering operator can be defined in an heurtiste
form by the Cauchy problem

S’ (t) =g H(t)S(t) S(ty) =1

where g € R, H(t) is the Hamiltonean interaction (distribution valued operator)
and I is the identical operator on a Fock space. If we call S, () the heuristic sol-
ution of this problem the scattering operator is defined by S_. (+ ®).

After these considerations, Colombean [1] p. 70, with a drastic simplification,
which consists in considering C as a Fock space, considers the problem (6.1) with
another approach and the scattering operator is computed in example 2 p. 75
with the result X_,(+®)=1.

In our setting X, (¢) =¢¥@ (") ~«=® and we also have X_(+»)=1.
Note that in Colombean approach X, (¢) = ¢¥°® is not a distribution but an ele-
ment of a space GO ®@'.

7 - The Burger’s equation and the velocity of certain shock waves

Let us consider a one dimensional fluid moving on the real line in the ab-
sence of external forces. Let % (x, t) be the velocity of the particle in the position
x at the instant ¢. The law of motion x(¢) of a particle in the fluid is clearly a
solution of the differential equation

dz

i u(x(t), t)

2

and we have a2 T e dt ot

on account of the absence of external forces.
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Thus, we can consider the equation

u u
(7.1) I % + % =0

and ask for pure shock wave solutions, that is, solutions of the form
(7.2) w(z, 1) = uy + (U — uy ) H(x — 0t)

where v is the velocity of the shoch wave, u; and u, are complex constants with
%, # Uy and H is the Heaviside function on R.

In the sense of this paper we can associate to equation (7.1) two equa-
tions:

ou u _
(7.3) o aut 5 =0
. Ou , du _
(74) %, 8:c+ n 0

where a e M(R?) is G-invariant with [a = 1. We take as G the orthogonal
group on RZ
Let 6(x — vt) be the distribution defined by

(6(x — vt), @lx, ) = [@(vt, t)dt 9 € D(R?).
R

Then

—g% = (g — 1) (& — o)

Su

3 —v(uy — uy) 6(x — vt)

and (7.3) is equivalent to
(tg — %) (2 — Q)t)‘;l[ul + (up — u ) H(xe — vt)] —v(ug — u) 8 (x — v8) = 0.
We have

O —vt) ;, Uy = uy[alx, t)+ 6(x — vb)] = ulf&(x -z, t —2)dz
R

ow—vt) , Hx—vt)y=H@—vt)a(x, t)= d(x—vt)]=H(x—vt) falx —vz, t —2)dz.
R
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Thus (7.3) is equivalent to

(Ug — up) U fale —ve, t —z)dz
B

(7.5)
+(p — u P H(x — vt) falx — vz, t —2)dz — v(ug — u)S(x — vt) = 0.
R

At the instant £ =0 we have for all x <0 (us — %) uy falx — vz, —2)dz =0
R

0
and so uy [ [Jale —wvz, —2)dz]dx =90
IR
or u [ Ja(x — vz, —z)dedz =0.
x<0

Making the change of variable (z, 2) — (7, s) defined by
xT—vE="T -z2=35

we have u; [ [ a(r, s)drds = 0, equivalent to u; = 0.
r-vs<0

Returning to (7.5) at the instant ¢=0 we have for all x>0
uz [ a(x — vz, —z)dz = 0 and by the same change of variable we conclude that
uy = 0, which is impossible because u; # us.

Now, considering equation (7.4), noting that wu(x,)ed (R?),
o

ox
(7.2) is a solution of (7.4), if and only if v = %(ul + 2%5) (see [3], p. 314). This is in

®) (R?) and remembering what we have said in Sec. 5, we conclude that

agreement with physical reality. Note also that in [3] we cannot consider equa-
tion (7.3) because u ¢ O, (R?).

8 - The (G, a)-convolution product in §'

We denote by S the space of all C*-rapidly decreasing functions defined on
RY and complex valued. §' means the space of distributions of slow growth. The
usual convolution product will be denoted by =.

Definition 2. Given a group of unimodular transformations G of RY and a
function a € @, G-invariant with [« = 1, we define the (G, a)-convolution pro-
duct f% g of two distributions f, ge 8’ by

fag=9+01Fa) f]
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where 78— 8 is the Fourier transform defined by (F)(x) = [e 2™ 0 () dt

for all pes.
Recall that, if we define the extension of F to & as usually by

(51, @) = {f, Fop) forallfe$ and gpe S,
we have Ffe §'. Hence, a = Jf e Oy, space of C* functions of slow growth, (see
[4] p. 245) and so F '(a = Ff) € O, space of rapidly decreasing distributions.
Thus, (F'a)-fe®, and fyge s for ges'.

We shall prove the principal properties of the (G, a)-convolution pro-
duct.

Proposition 23. Let (G, a) be as in Definition 2, a e RY, ke {1,2,...,N},
O the Dirac measure concentrated at the origin of RY and f,ge 8. Then

a. 039=9 b t.(fs0)=Ff37.9 e D(f59)=f4Dig

d Ffx0)=(FF) ,(Fg) e FNfyq)=5"f35 g

Moreover, if the map t—> —t belongs to G, we also have

£ Fag) =00 g 70 = () 5 5.

Proof:

@ 059=g*[(F a) 8l=gx[(Fla)0) - S]=gxd=g
because (Fla)0) = fa®)dt=1.

b. 1. (fs9) =109+ [(Fra) fll=1,9 % (Fla) f=Ff%1,.9.

¢ Di(f59) =Dplg+ (T a) fll=Dig = (F ') f=[3Dyg.

d Ffx9)=lg+(Fa) - fll=Fg FU(F 'a) - f]

=Jg - (a=s Ff)=Tf, Fg.
e. FIF 5T 'gl=Ff,9 byd, ande follows.

Note that the (G, a)-product of two distributions of slow growth is a distri-
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bution of slow growth.
L FAF, 5 gl=Fla=F ) Flgl=UFa) fl=g
=[(F ) flrg=F3g
because Fo = F la once a is G-invariant.

g. FUFf+TFgl=f,9 Dbyf, andg follows.
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Sommario

Le entita fisiche macroscopiche sono comunemente interpretate come distribuziont di
Schwartz (spazio ®') e spesso devono essere considerate come medie di variabili micro-
scopiche o «impulsive». L'operatore s di media o di valore medio, applicato a funzioni
C™ integrabili, ¢ lineare e verifica le proprietd (1) e (2) della introduzione (D & un opera-
tore differenziale a coefficienti costanti), ma non verifica la proprieta (3) relativa all’u-
suale prodotto di funmzioni.

In questo articolo si definisce uno spazio E in modo che le proprieta (1), (2) e (8) sia-
no soddisfatte. Da sottolineare il fatto che E risulta isomorfo a @'. Cid da luogo, in tutto
@', ad un prodotto dipendente da s, descritto dal sistema di assiomi presentato al nume-
ro 1. Questo prodotto viene applicato al caso di un problema di Cauchy lineare e di un’e-
quazione di Burger non lineare. Viene infine definito un nuovo tipo di convoluzione per
distribuzioni a crescita lenta.






