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The specific Hermitian geometry
of certain three-folds (**)

1 - Introduction

The non-Kdihlerian Hermitian manifolds appear to be quite challenging due
to the lack of analytic tools. For, to study an Hermitian manifold it is always
useful to pick a metric with some special properties. Especially, for description
of the Hermitian deformations, one needs to impose an additional condition
which ean be a substitute of the K&hler one. It is natural to suppose in the first
place that such conditions are to be found in the terms of the torsion. Here is a
possible list:

I. K3jhler metrics: T =10
II. Semi-Kdhler or balanced metrics: 6 =0

III. Gauduchon metrics; 38F™ 1 =0

1
m—1

IV. Metrics with vanishing conformal torsion: JOF -+ ONF =0
V. Metries with holomorphice torsion: 37 =0
VI. Metrics with holomorphic (2, 1) torsion: 3F = 0

VII. Hermitian-Einstein Metrics.
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Here T is the (2, 0) vector-valued torsion of the Chern connection of an Hermi-
tian metric g on a complex manifold of complex dimension m, 6 its torsion (1, 0)
form and F is the fundamental (or Kihler) form of g.

For notations and further elements of Hermitian non-Kéhlerian differential
geometry see [5], [9], [12], [8], [1].

Our purpose is to examine which of the above conditions hold for a class of
compact, simply connected 3-folds M with trivial canonical bundle and the follo-
wing Hodge numbers:

h1’0=h0’1=0 h2’0=h0’2=h1'1=0 h3’0=h0’3=1.

Existence of such M is due to R. Friedman [4], who proved that M is diffeo-
morphic to the connected sum of 7 copies of S* X S3, where n = 103 [4]. Recen-
tly, P. Lu and G. Tian [11] showed that for any # = 2 the connected sum of % co-
pies of 8% X S? possesses a complex structure with trivial canonical class. It can
also be proved that A®'=mn —1 [2].

With the paper [2] we have initiated a search for different sorts of conditions
in order to have a rigidity theorem (as on K3 surfaces), which could suggest the
existence of a canonical metric on M. There we proved that the holomorphic tan-
gent bundle 9 of M is stable with respect to any Gauduchon metric. Hence, by
the theorem of Li and Yau [8], we concluded that there is an Hermitian-Einstein
metric on M. Actually, it is shown in [2] that any Hermitian metrie g determines
a unique Hermitian metric » which is Hermitian-Einstein with respect to g. If
we suppose that g = &, this metric could be a Calabi-Yau substitute for M. How-
ever, to investigate its deformations, supposing that such Hermitian-Einstein
metric exists, we need to impose an additional condition, which replaces the
Kéhler one.

In Section 2 we discard the condition IV. The conditions V, VI and VII are
considered in Section 3, where we prove that VI cannot happen on M and that
there is no Hermitian-Einstein metric on M which satisfies V.

2 - Conditions on the torsion

The heuristic justification of the list of conditions I-VII presented in the In-
troduction is the classification of almost Hermitian manifolds by Gray and Her-
vella [7]. According to this classification there are sixteen classes of almost Her-
mitian manifolds. Further we have the following four classes of Hermitian mani-
folds of dimension m = 3:
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i. Kihler manifolds: dF =0
ii. Semi-Kihler manifolds: 0 =0

i, W,: oF + —
p—

19/\F=0

iv. H - Hermitian manifolds.

See [1]. The third condition is equivalent to T,% = ——(0,0% — 0,,63), where
T,'s are the components of the torsion T [1]. "=

Note that there are many Gauduchon metrics — one in each conformal class
of any Hermitian manifold of complex dimension at least 2 (see [5]). Therefore
III always holds.

Let us concentrate on M. We reject i, since M is not a Kéhler manifold be-
cause by (M) = 0. Furthermore, we shall prove the following

Lemma 1. M is not in the class Wy, that is, M does not admit metrics of
vanishing conformal torsion.

Proof. Suppose M has a metric g in Wy. Since W, is invariant under con-
formal changes of the metric [7], we can also suppose that g is a Gauduchon me-
tric. Then applying the J-operator to the defining condition iii we obtain

GONF —-6NF =0.

Replace 0F = — %6 AF in the above equation. Therefore 80 A F =0 since

8 A6 NAF =0 because 6 is an (1, 0)-form. Hence 96 = 0 since the following lem-
ma holds.

Lemma. Let ¢ be a (m — 1, 0)-form on a complex compact manifold N of
complex dimension m such that ¢ A F = 0, where F is the ﬁmdamental form of
an Hermitian metric on N. Then ¢ = 0.

This statement is Theorem 3.1 (¢), p. 182, [12] with p=m — 1.

We continue with the proof of Lemma 1. From 86 =0 we deduce that
6 e Hy (M) = Hy " (M). Thus, since B”* = 0, we have 6 = 3f, where fis a fun-
ction. Since g is a Gauduchon metric 6’6 = 0 (see [5]; 6 is the L, formally ad-
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joint to J operator). Hence and from the formula ([5])
b9 =58'9=-D'g;+ T 0,
for ¢ =6, we obtain D*0, = |0]%. But

D}91=g'{’7Dﬁ6;=gm8ﬁ0;=g7‘—‘8,—,<9;f
— 1912 _oa_ O
Therefore L(f) = |6|% where L = g% — .

4 gz+

From the maximum principle fis a constant and therefore 6 = 0. Since ¢ is in
the class W, this implies T = 0, which is impossible since M is not a Kihler
manifold.

3 - Holomorphic torsion

As we showed in the previous section, the unique possible linear condition
which involves only the first derivatives of the metric is 6 = 0. But if M is not
semi-Kihler, M will be a general Hermitian manifold without any linear condi-
tion on the first derivatives of the metric. Thus, except the Hernitian-Einstein
condition, we shall seek some other conditions in terms of second derivati-
ves.

To begin with, note that the torsion 7' is a (2, 0) vector-valued form, that is,
TeA%°Q® g, where J'is the holomorphic tangent bundle. Now if T' is holomor-
phie:

@™ T, =0,
that is Dﬁ Taal = Taauﬁ =0.
where D is the Chern connection of ¢ and | denotes covariant differentiation

with respect to D. Now, supposing that there is on M an Hermitian-Einstein
metric (see [8]) we have the following

Proposition 1. The torsion of any Hermitian-Einstein metric on M is
not holomorphic.
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Proof. Suppose that T is holomorphic. According to a lemma in [1], if the
torsion of an Hermitian-Einstein metric on a compact manifold is holomorphic,
then it is parallel. Thus T,%, = 0. Relation (1) means that

TeH? (M, 7) = H (M, Q*(9) =H'(M, 0@ 9)

since the canonical bundle K = A3J* is trivial and therefore Q%= 0,
where

@? = {holomorphic 2-forms} © = O(J) = {holomorphic vector fields} .
In this way we see that 7' determines a map ¢: §— J%, and also
det (t): A3T— A3T*.

But the canonical bundle K, = A% J* is trivial. Hence, if the rank of det () is
not maximal, the kernel of ¢ would be a non-trivial holomorphie subbundle of g
since T is parallel and therefore nowhere vanishing. However, according to the
Corollary in Section 4 of [2], § does not have any non-trivial holomorphic sub-
bundles. Therefore det(f) has maximal rank and in this case ¢{ must be an iso-
morphism. This means that the holonomy group of M is included in 6@, C).
Hence, since M is an Hermitian manifold, its holonomy group is the maximal
compact subgroup of SU(8) N 9(3, C). Thus, the holonomy group is reduced to
SO(8) and the tangent bundle has the following decomposition

T=EQC=EQik,

where E is a real rank 3 bundle. By the defining propeties of the Chern clas-
ses we know that ¢;(F ® C) = 0 if i - odd. But the Euler characteristic of M is
—2(n—1)< —2 <0 since h®! =n — 1 [2]. Therefore ¢3(J9) = c3(EQ C) # 0,
which leads to contradiction.

So far, the conditions V and VII in the Introduction can not mutually
hold.

Now let consider another possibility. For complex surfaces the Gauduchon
condition is

2) 3F =0.
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Since in [2] we have not essentially used the Gauduchon condition, (2) seems to
be a nice substitute in higher dimensions. From (2) we obtain

3 . ar=0,

where 9F = £T and the (2,1) torsion T has components T, 75 = g5 T 5.
In local coordinates (3) has the form

) 0; Toap = 5 Topp-

On the other hand, using (4), it is easy to show that
(5) 2160|2+258'6 = |T|2.
Integrating (5) we have

6) 2|6l = 171z

Therefore among all metrics which satisfy (2) or (8) none is semi-Kéhlerian.
Otherwise (6) will give T = 0, which is impossible on M as we have already seen.
Also on non-Kihler manifolds there are no metries in W, for which (2) holds. In-
deed, if a metric is in Wy, it is easy to see that ||0].: = |T]|,:, which together
with (6) implies T=6=0.

Note also that (2) is equivalent to the vanishing of the invariant K; [6] and
also that (2) appeared in [3] as a technical condition.

The equation (3) means that the (2, 1) torsion T is holomorphic and therefore
(2) is actually the condition VI in the Introduction. Hence, the torsion determi-
nes a class in Hg' (M), which could play the role of the cohomology class of the
Kahler form on K3 surfaces. Unfortunately, on M it is trivial as the following ar-
gument shows.

~ First, note that due to Friedman-Lu-Tian’s construction [4], [11], the 83-lem-

ma holds on M. This lemma says: if a form is S-exact and J-closed, then it is
83-exact. We shall use it to investigate the solutions of (2).

Let ¢ = F. ¢ is 8-exact. By (2) ¢ is 8-closed. Therefore the 93-lemma im-
plies ¢ = 39y, where v is a (1, 0) form. Thus 8F = 38y or 3(F — 3y) = 0. The-
refore the (1,1) form F — 3y belongs to Hy'= HZ?=0. Hence we have
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F=03y+08y=23j+3p since F is real Further 9F = 337 = 33y and
383G — ) = 0. It follows that (7 — ) e Hy *(M) = 0, that is, 87} — ¥) =0.
This means that 7 —yweH}'= §‘ =0 and therefore 7 — vy =03f or

n =1 + df. Thus
N F =03y + oy + 95

where the function f satisfies f = —f.
It is obvious that any F' determined by (7) is a solution of (2). Summarizing,
we have obtained

Lemma 2. On M any solution (2) is given by (7).

However, if F' is as in (7), the torsion T does not determine a non-trivial
cohomology class in Hy ' (M) since

®) oF = %T=aé¢.

Moreover, actually (2) does not hold on M. Indeed,
ITAT=4[0FAN3F =4[80y N33y =0,
M M M

by Lemma 2, (8) and the Green’s formula. Hence T = 0. Therefore there are no
Hermitian metries on M, which satisfy (2).
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Sommario

Si propone una lista di metriche hermitiane naturali, non-kdhleriane, determinate
da condizioni sulla loro torsione. Si esamina quali di queste condizioni sono valide nel
caso particolare di varietd complesse compatte di dimensione complessa 3, semplice-
mente connesse con ¢, =0 e aventi i seguenti mumeri di Hodge: h%°=hr%1=0,
h2,0 = h0,2 = hl,l - 0, h3,0 - h0,3 =1



