YURI BOZHKOV (*)

The specific Hermitian geometry of certain three-folds (**)

1 - Introduction

The non-Kählerian Hermitian manifolds appear to be quite challenging due to the lack of analytic tools. For, to study an Hermitian manifold it is always useful to pick a metric with some special properties. Especially, for description of the Hermitian deformations, one needs to impose an additional condition which can be a substitute of the Kähler one. It is natural to suppose in the first place that such conditions are to be found in the terms of the torsion. Here is a possible list:

- I. Kähler metrics: T = 0
- II. Semi-Kähler or balanced metrics: $\theta = 0$
- **III.** Gauduchon metrics: $\partial \bar{\partial} F^{m-1} = 0$
- IV. Metrics with vanishing conformal torsion: $\partial F + \frac{1}{m-1}\theta \wedge F = 0$
- V. Metrics with holomorphic torsion: $\bar{\partial}T = 0$
- VI. Metrics with holomorphic (2, 1) torsion: $\partial \bar{\partial} F = 0$
- VII. Hermitian-Einstein Metrics.

^(*) Dip. di Matem., Univ. Trieste, Piazzale Europa 1, 34127 Trieste, Italia.

^(**) Received September 19, 1994. AMS classification 53 C 55. Research supported by Univ. Trieste, ICTP Trieste and FAPESP São Paulo. Part of the paper is derived from author's Ph. D. Thesis [1].

Here T is the (2,0) vector-valued torsion of the Chern connection of an Hermitian metric g on a complex manifold of complex dimension m, θ its torsion (1,0) form and F is the fundamental (or Kähler) form of g.

For notations and further elements of Hermitian non-Kählerian differential geometry see [5], [9], [12], [8], [1].

Our purpose is to examine which of the above conditions hold for a class of compact, simply connected 3-folds M with trivial canonical bundle and the following Hodge numbers:

$$h^{1,0} = h^{0,1} = 0$$
 $h^{2,0} = h^{0,2} = h^{1,1} = 0$ $h^{3,0} = h^{0,3} = 1$.

Existence of such M is due to R. Friedman [4], who proved that M is diffeomorphic to the connected sum of n copies of $S^3 \times S^3$, where $n \ge 103$ [4]. Recently, P. Lu and G. Tian [11] showed that for any $n \ge 2$ the connected sum of n copies of $S^3 \times S^3$ possesses a complex structure with trivial canonical class. It can also be proved that $h^{2,1} = n - 1$ [2].

With the paper [2] we have initiated a search for different sorts of conditions in order to have a rigidity theorem (as on K3 surfaces), which could suggest the existence of a canonical metric on M. There we proved that the holomorphic tangent bundle \mathcal{T} of M is stable with respect to any Gauduchon metric. Hence, by the theorem of Li and Yau [8], we concluded that there is an Hermitian-Einstein metric on M. Actually, it is shown in [2] that any Hermitian metric g determines a unique Hermitian metric g which is Hermitian-Einstein with respect to g. If we suppose that g = h, this metric could be a Calabi-Yau substitute for g. However, to investigate its deformations, supposing that such Hermitian-Einstein metric exists, we need to impose an additional condition, which replaces the Kähler one.

In Section 2 we discard the condition IV. The conditions V, VI and VII are considered in Section 3, where we prove that VI cannot happen on M and that there is no Hermitian-Einstein metric on M which satisfies V.

2 - Conditions on the torsion

The heuristic justification of the list of conditions I-VII presented in the Introduction is the classification of almost Hermitian manifolds by Gray and Hervella [7]. According to this classification there are sixteen classes of almost Hermitian manifolds. Further we have the following four classes of Hermitian manifolds of dimension $m \ge 3$:

i. Kähler manifolds: dF = 0

ii. Semi-Kähler manifolds: $\theta = 0$

iii.
$$W_4: \partial F + \frac{1}{m-1}\theta \wedge F = 0$$

iv. H - Hermitian manifolds.

See [1]. The third condition is equivalent to $T_{\alpha\beta}^{\lambda} = \frac{1}{m-1} (\theta_{\beta} \delta_{\alpha}^{\lambda} - \theta_{\alpha} \delta_{\beta}^{\lambda})$, where $T_{\alpha\beta}^{\lambda}$ are the components of the torsion T [1].

Note that there are many Gauduchon metrics – one in each conformal class of any Hermitian manifold of complex dimension at least 2 (see [5]). Therefore III always holds.

Let us concentrate on M. We reject i, since M is not a Kähler manifold because $b_2(M) = 0$. Furthermore, we shall prove the following

Lemma 1. M is not in the class W_4 , that is, M does not admit metrics of vanishing conformal torsion.

Proof. Suppose M has a metric g in W_4 . Since W_4 is invariant under conformal changes of the metric [7], we can also suppose that g is a Gauduchon metric. Then applying the ∂ -operator to the defining condition iii we obtain

$$\partial \theta \wedge F - \theta \wedge \partial F = 0$$
.

Replace $\partial F = -\frac{1}{2}\theta \wedge F$ in the above equation. Therefore $\partial \theta \wedge F = 0$ since $\theta \wedge \theta \wedge F = 0$ because θ is an (1,0)-form. Hence $\partial \theta = 0$ since the following lemma holds.

Lemma. Let φ be a (m-1, 0)-form on a complex compact manifold N of complex dimension m such that $\varphi \wedge F = 0$, where F is the fundamental form of an Hermitian metric on N. Then $\varphi = 0$.

This statement is Theorem 3.1 (c), p. 182, [12] with p = m - 1.

We continue with the proof of Lemma 1. From $\partial \theta = 0$ we deduce that $\theta \in H^{1,0}_{\bar{\partial}}(M) = H^{0,1}_{\bar{\partial}}(M)$. Thus, since $h^{0,1} = 0$, we have $\theta = \partial f$, where f is a function. Since g is a Gauduchon metric $\delta' \theta = 0$ (see [5]; δ' is the L_2 formally ad-

joint to ∂ operator). Hence and from the formula ([5])

$$\delta\varphi = \delta' \varphi = -D^{\lambda} \varphi_{\lambda} + T_{\bar{\mu}}^{\bar{\mu}\lambda} \varphi_{\lambda}$$

for $\varphi = \theta$, we obtain $D^{\lambda}\theta_{\lambda} = |\theta|^2$. But

$$D^{\lambda}\,\theta_{\lambda}=g^{\lambda\bar{\mu}}\,D_{\bar{\mu}}\,\theta_{\lambda}=g^{\lambda\bar{\mu}}\,\partial_{\bar{\mu}}\,\theta_{\lambda}=g^{\lambda\bar{\mu}}\,\partial_{\bar{\mu}}\,\partial_{\lambda}\,f.$$

Therefore
$$L(f)=|\theta|^2$$
, where $L=g^{\lambda\bar\mu}\,\frac{\partial^2}{\partial z^\lambda\,\partial \bar z^\mu}$. From the maximum principle f is a constant and therefore $\theta=0$. Since g is in

From the maximum principle f is a constant and therefore $\theta = 0$. Since g is in the class W_4 , this implies T = 0, which is impossible since M is not a Kähler manifold.

3 - Holomorphic torsion

As we showed in the previous section, the unique possible linear condition which involves only the first derivatives of the metric is $\theta=0$. But if M is not semi-Kähler, M will be a *general* Hermitian manifold without any linear condition on the first derivatives of the metric. Thus, except the Hernitian-Einstein condition, we shall seek some other conditions in terms of second derivatives.

To begin with, note that the torsion T is a (2,0) vector-valued form, that is, $T \in \Lambda^{2,0} \otimes \mathcal{T}$, where \mathcal{T} is the *holomorphic tangent bundle*. Now if T is holomorphic:

$$\partial_{\bar{u}} T_{\alpha \lambda}^{\ \sigma} = 0 \,,$$

that is
$$D_{\bar{\mu}} T_{\alpha \ \bar{\lambda}}^{\ \sigma} = T_{\alpha \ \bar{\lambda} | \bar{\mu}}^{\ \alpha} = 0 \ .$$

where D is the Chern connection of g and | denotes covariant differentiation with respect to D. Now, supposing that there is on M an Hermitian-Einstein metric (see [8]) we have the following

Proposition 1. The torsion of any Hermitian-Einstein metric on M is not holomorphic.

Proof. Suppose that T is holomorphic. According to a lemma in [1], if the torsion of an Hermitian-Einstein metric on a compact manifold is holomorphic, then it is parallel. Thus $T_{\alpha}{}^{\sigma}{}_{\lambda|\mu}=0$. Relation (1) means that

$$T\in H^{2,\,0}_{\bar\partial}(M,\,\mathcal I)=H^0(M,\,\Omega^2(\mathcal I))=H^0(M,\,\Theta\otimes\mathcal I)$$

since the canonical bundle $K_M=\Lambda^3\,\mathcal{J}^*$ is trivial and therefore $\Omega^2=\Theta,$ where

 $\Omega^2 = \{\text{holomorphic 2-forms}\} \qquad \Theta = \mathcal{O}(\mathcal{T}) = \{\text{holomorphic vector fields}\}.$

In this way we see that T determines a map $t: \mathcal{T} \rightarrow \mathcal{T}^*$, and also

$$\det(t): \Lambda^3 \mathcal{I} \to \Lambda^3 \mathcal{I}^*$$
.

But the canonical bundle $K_M = \Lambda^3 \mathcal{J}^*$ is trivial. Hence, if the rank of $\det(t)$ is not maximal, the kernel of t would be a non-trivial holomorphic subbundle of \mathcal{J} since T is parallel and therefore nowhere vanishing. However, according to the Corollary in Section 4 of [2], \mathcal{J} does not have any non-trivial holomorphic subbundles. Therefore $\det(t)$ has maximal rank and in this case t must be an isomorphism. This means that the holonomy group of M is included in $\mathcal{O}(3, \mathbb{C})$. Hence, since M is an Hermitian manifold, its holonomy group is the maximal compact subgroup of $SU(3) \cap \mathcal{O}(3, \mathbb{C})$. Thus, the holonomy group is reduced to SO(3) and the tangent bundle has the following decomposition

$$\mathcal{J} = E \otimes \mathbf{C} = E \otimes iE$$
,

where E is a real rank 3 bundle. By the defining properties of the Chern classes we know that $c_i(E \otimes C) = 0$ if i - odd. But the Euler characteristic of M is $-2(n-1) \leq -2 < 0$ since $h^{2,1} = n-1$ [2]. Therefore $c_3(\mathcal{F}) = c_3(E \otimes C) \neq 0$, which leads to contradiction.

So far, the conditions V and VII in the Introduction can not mutually hold.

Now let consider another possibility. For complex surfaces the Gauduchon condition is

$$\overline{\partial}\partial F = 0.$$

Since in [2] we have not essentially used the Gauduchon condition, (2) seems to be a nice substitute in higher dimensions. From (2) we obtain

$$\overline{\partial} T = 0 ,$$

where $\partial F = \frac{i}{2}T$ and the (2, 1) torsion T has components $T_{\alpha\bar{\gamma}\beta} = g_{\lambda\bar{\gamma}} T_{\alpha\beta}^{\lambda}$. In local coordinates (3) has the form

(4)
$$\partial_{\bar{\mu}} T_{\alpha \bar{\lambda} \beta} = \partial_{\bar{\lambda}} T_{\alpha \bar{\mu} \beta}.$$

On the other hand, using (4), it is easy to show that

(5)
$$2|\theta|^2 + 2\delta' \theta = |T|^2.$$

Integrating (5) we have

(6)
$$2\|\theta\|_{L^2} = \|T\|_{L^2}.$$

Therefore among all metrics which satisfy (2) or (3) none is semi-Kählerian. Otherwise (6) will give T=0, which is impossible on M as we have already seen. Also on non-Kähler manifolds there are no metrics in W_4 for which (2) holds. Indeed, if a metric is in W_4 , it is easy to see that $\|\theta\|_{L^2} = \|T\|_{L^2}$, which together with (6) implies $T=\theta=0$.

Note also that (2) is equivalent to the vanishing of the invariant K_1 [6] and also that (2) appeared in [3] as a technical condition.

The equation (3) means that the (2, 1) torsion T is holomorphic and therefore (2) is actually the condition VI in the Introduction. Hence, the torsion determines a class in $H_{\bar{\partial}}^{2,1}(M)$, which could play the role of the cohomology class of the Kähler form on K3 surfaces. Unfortunately, on M it is trivial as the following argument shows.

First, note that due to Friedman-Lu-Tian's construction [4], [11], the $\partial \bar{\partial}$ -lemma holds on M. This lemma says: if a form is ∂ -exact and $\bar{\partial}$ -closed, then it is $\partial \bar{\partial}$ -exact. We shall use it to investigate the solutions of (2).

Let $\varphi = \partial F$. φ is ∂ -exact. By (2) φ is $\bar{\partial}$ -closed. Therefore the $\partial\bar{\partial}$ -lemma implies $\varphi = \partial\bar{\partial}\psi$, where ψ is a (1,0) form. Thus $\partial F = \partial\bar{\partial}\psi$ or $\partial(F - \bar{\partial}\psi) = 0$. Therefore the (1,1) form $F - \bar{\partial}\psi$ belongs to $H_{\bar{\partial}}^{1,1} = H_{\bar{\partial}}^{2,2} = 0$. Hence we have

 $F=\overline{\partial}\psi+\partial\eta=\overline{\partial}\overline{\eta}+\partial\overline{\psi}$ since F is real. Further $\partial F=\partial\overline{\partial}\overline{\eta}=\partial\overline{\partial}\psi$ and $\overline{\partial}(\partial(\overline{\eta}-\psi))=0$. It follows that $\partial(\overline{\eta}-\psi)\in H^{2,\,0}_{\overline{\partial}}(M)=0$, that is, $\partial(\overline{\eta}-\psi)=0$. This means that $\overline{\eta}-\psi\in H^{1,\,0}_{\overline{\partial}}=H^{2,\,3}_{\overline{\partial}}=0$ and therefore $\overline{\eta}-\psi=\partial\overline{f}$ or $\eta=\overline{\psi}+\overline{\partial}f$. Thus

(7)
$$F = \bar{\partial}\psi + \partial\bar{\psi} + \partial\bar{\partial}f$$

where the function f satisfies $\bar{f} = -f$.

It is obvious that any F determined by (7) is a solution of (2). Summarizing, we have obtained

Lemma 2. On M any solution (2) is given by (7).

However, if F is as in (7), the torsion T does not determine a non-trivial cohomology class in $H_{\bar{a}}^{2,1}(M)$ since

(8)
$$\partial F = \frac{i}{2} \mathbf{T} = \partial \bar{\partial} \psi .$$

Moreover, actually (2) does not hold on M. Indeed,

$$\int\limits_M T \wedge \bar{T} = 4 \int\limits_M \partial F \wedge \bar{\partial} F = 4 \int\limits_M \partial \bar{\partial} \psi \wedge \bar{\partial} \partial \bar{\psi} = 0$$
,

by Lemma 2, (8) and the Green's formula. Hence T = 0. Therefore there are no Hermitian metrics on M, which satisfy (2).

References

- [1] Yu. D. Bozhkov, Specific complex geometry of certain complex surfaces and three-folds, Ph.D. thesis, Math. Inst., Univ. Warwick, England 1992.
- [2] Yu. D. BOZHKOV, The geometry of certain three-folds, Rend. Ist. Mat. Univ. Trieste 26 (1994), 79-93.
- [3] J-P. Demailly, Sur l'identité de Bochner-Kodaira-Nakano en géometrie Hermitienne, Lecture Notes in Math., 1198, Springer, Berlin 1986.
- [4] R. Friedman, On threefolds with trivial canonical bundle, Proc. Symp. AMS 53
- [5] P. GAUDUCHON, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann. 267 (1984), 495-516.
- [6] P. GILKEY, Spectral geometry and the Kähler condition for complex manifolds, Invent. Math. 26 (1974), 231-258.

- [7] A. Gray and L. Hervella, The sixteen classes of almost Hermitian manifolds and theirs linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.
- [8] S. Kobayashi, Differential geometry of complex vector bundles, Publ. Math. Soc. Japan 15, Iwanami Shoten Publ., Tokyo 1987.
- [9] S. Kobayashi and K. Nomizu, Foundations of differential geometry 2, Interscience, New York 1969.
- [10] J. Li and S.-T. Yau, Hermitian-Yang-Mills connections on non-Kähler manifolds, Mathematical aspects of string theory, Ed. S.T. Yau, World Scientific Publ., London 1987.
- [11] P. Lu and G. Tian, The complex structures on the connected sums of $S^3 \times S^3$, Courant Institute (1993), Preprint.
- [12] R. O. Wells, Differential analysis on complex manifolds, Springer, Berlin 1980.

Sommario

Si propone una lista di metriche hermitiane naturali, non-kähleriane, determinate da condizioni sulla loro torsione. Si esamina quali di queste condizioni sono valide nel caso particolare di varietà complesse compatte di dimensione complessa 3, semplicemente connesse con $c_1 = 0$ e aventi i seguenti numeri di Hodge: $h^{1,0} = h^{0,1} = 0$, $h^{2,0} = h^{0,2} = h^{1,1} = 0$, $h^{3,0} = h^{0,3} = 1$.
