ANNA RITA SAMBUCINI (*)

Un teorema di Radon-Nikodym in spazi localmente convessi rispetto alla integrazione per seminorme (**)

Introduzione

Teoremi di Radon-Nikodym sono stati forniti da molti autori, nel caso numerabilmente additivo da Z. Artstein [2], F. Hiai [12], J. Ban [3], C. Castaing, A. Touzani, M. Valadier [9] quando l'integrazione utilizzata è quella di Aumann, da D. Gilliam [10], C. Blondia [4] per misure a valori in uno spazio vettoriale topologico E localmente convesso e nel caso finitamente additivo da H. B. Maynard [14], J. W. Hagood [11], D. Candeloro, A. Martellotti [6], [7], A. Martellotti, A. R. Sambucini [16], A. Martellotti, K. Musiał, A. R. Sambucini [17], ed altri.

L'integrazione qui utilizzata è quella per seminorme [18] che è una estensione di quella di Bochner. In questo lavoro è stato ottenuto un teorema di Radon-Nikodym multivoco in assetto finitamente additivo per mezzo di un confronto tra l'esistenza della derivata di Radon-Nikodym e alcune proprietà dei ranghi. Nel Teorema 1 e nel Corollario 1 sono state fornite condizioni necessarie e sufficienti per l'esistenza di una derivata di Radon-Nikodym limitata. Dalle condizioni fornite, la (4), più forte delle analoghe presenti in [14], [11], [16], introdotta in [4] e sostituita dall'introduzione di uno strong integral (S.I) in [10], è necessaria per l'esistenza della derivata di Radon-Nikodym.

Nel caso in cui la derivata di Radon-Nikodym non sia limitata si ottiene solo una condizione necessaria. La condizione sufficiente è attualmente un problema aperto; in ogni caso la proprietà di avere rango medio piccolo localmente esaustivo non sembra sufficiente ad assicurare l'esistenza della derivata se la famiglia delle seminorme è più che numerabile.

Infine si considerano alcuni casi particolari; nel caso in cui lo spazio localmen-

^(*) Dip. di Matem., Univ. Perugia, Via Pascoli, 06123 Perugia, Italia.

^(**) Ricevuto il 6.9.1994. Classificazione AMS 46 G 05. Lavoro eseguito nell'ambito del GNAFA del CNR.

te convesso è di Fréchèt, si ottiene che l'ereditarietà della proprietà di avere rango piccolo è sufficiente per l'esistenza della derivata e nel caso numerabilmente additivo, l'esistenza della derivata implica la proprietà di avere rango medio localmente p-precompatto. Per quanto riguarda le tecniche dimostrative non è stato possibile adottare quelle utilizzate in [4], [5], [10] poiché nel caso finitamente additivo non si hanno lifting.

1 - Preliminari e definizioni

Sia Ω un insieme e Σ una sua σ -algebra. Siano X uno spazio vettoriale localmente convesso e T_2 e Q un insieme filtrante di seminorme continue su X definenti la topologia di X.

Denoteremo con $\mathcal{C}_c(X)$ l'insieme dei non vuoti, chiusi limitati e convessi di X e con Y un sottospazio di $\mathcal{C}_c(X)$ completo. Per ogni $p \in Q$ sia h_p la pseudometrica di Hausdorff associata a p. Un insieme \mathcal{X} contenuto in $\mathcal{C}_c(X)$ si dice limitato se per ogni $p \in Q$ esiste un $r_p > 0$ tale che $\sup_{C \in \mathcal{X}} h_p(C, \{0\}) \leq r_p$.

Definiamo poi, per ogni $p \in Q$, il p-diametro dell'insieme $\mathcal X$ il numero $\delta_p(\mathcal C) = \sup_{C,\,D\,\in\,\mathcal X} h_p(C,\,D) \leqslant 2\sup_{C\,\in\,\mathcal X} h_p(C,\,\{0\}).$

Sia $M: \Sigma \to \mathcal{C}_c(X)$ una multimisura finitamente additiva. Per ogni $p \in Q$ e per ogni $E \in \Sigma$ la *p-variazione* di M su E è definita da:

$$|M|_p(E) = \sup_{(A_i) \in P(A)} \sum_{i \in I} h_p(M(A_i), \{0\})$$

dove P(A) denota la famiglia di tutte le partizioni finite di E costituite da insiemi Σ -misurabili. Si dice che M è b.v. se, per ogni $p \in Q$, $|M|_p(\Omega) < + \infty$.

Siano M, μ due masse con $M: \Sigma \to \mathcal{C}_c(X)$, $\mu: \Sigma \to \mathbf{R}$ limitata. Diremo che M è assolutamente continua rispetto a μ (e scriveremo $M \ll \mu$), se e solo se per ogni $\varepsilon > 0$ e per ogni $p \in Q$ esiste un $\delta(\varepsilon, p) > 0$ tale che, per ogni $E \in \Sigma$ con $|\mu|(E) < \delta$, si ha che $|M|_p(E) < \varepsilon$. M è scalarmente dominata da μ , se per ogni $p \in Q$ esiste $K_p > 0$ tale che, per ogni $E \in \Sigma$, $|M|_p(E) \leq K_p |\mu|(E)$. M è subordinata rispetto a μ se per ogni $p \in Q$ esiste $N_p \in N$ tale che, per ogni $E \in \Sigma$, $M(E) \in N_p \subset Q$ $\{\mu(F), F \in E\Sigma\}$ dove CO $\{\mu(F), F \in E\Sigma\}$ C C0 rappresenta la chiu-

sura delle combinazioni convesse $\sum_{i=1}^{n} C_i \mu(A_i)$ con

$$A_i \subset E\Sigma \qquad C_i \in Y \qquad \sum_{i=1}^n \, h_p \left(C_{i,} \left\{ 0 \right\} \right) = 1.$$

In [18] è stato introdotto il concetto di integrabilità per seminorme per una mul-

tifunzione $F: \Omega \to \mathcal{C}_c(X)$. F è integrabile per seminorme o p-integrabile se per ogni $p \in Q$ esiste una successione di multifunzioni semplici $(F_n^p)_n$ tale che:

 p_0 . $h_p(F_n^p,F)$ è misurabile per ogni $n\in N$ e $h_p(F_n^p,F)$ converge a zero in μ -misura

$$p_1$$
. $h_p(F_n^p, F) \in L^1(\Omega, \Sigma, \mu)$ e per ogni $E \in \Sigma$ $\lim_{n \to \infty} \int_E h_p(F_n^p, F) d\mu = 0$

 p_2 . per ogni $E \in \Sigma$ esiste ed è unico $x_E \in C_c(X)$ tale che $\lim_{n \to \infty} h_p(\int_E F_n^p d\mu, x_E) = 0$.

In tal caso si pone $x_E = \int_E F d\mu$.

Sia $\mu\colon \Sigma \to R$ una massa limitata e $|\mu|$ la sua variazione. Consideriamo i sottoinsiemi

$$\Sigma^{+} = \{ E \in \Sigma \colon |\mu|(E) > 0 \} \qquad \Sigma^{2} = \{ E \in \Sigma \colon |\mu|(E) < 2 \mid \mu(E) \mid \} \,.$$

Con il simbolo $E\Sigma$ indicheremo $E\cap\Sigma$; analogamente $E\Sigma^2$ sta per $E\cap\Sigma^2$. Se μ è limitata ed $E\in\Sigma^+$, allora o $E\in\Sigma^2$ oppure esistono $A,B\in\Sigma^2$ tali che $E=A\cup B$.

Introduciamo ora gli insiemi:

$$A(E\Sigma^2) = \left\{ \frac{M(F)}{\mu(F)}, F \in E\Sigma^2, \mu(F) \neq 0 \right\}$$

$$A_p(E,\,\varepsilon) = \left\{C \in Y \colon h_p(M(F),\,C\mu(F)) \le \varepsilon \, \left|\,\mu\,\right|(F) \quad \ \forall F \in E\Sigma\right\}$$

chiamati rispettivamente rango medio, e rango (p, ε) -approssimato di M rispetto a μ .

Fissato $p \in Q$ si dice che una proprietà $\mathbf{P}(p)$ è μ -esaustiva su un insieme $E \in \Sigma$ se esiste una esaustione $(E_i)_i \in \Sigma$ di E tale che per ogni i l'insieme E_i gode della proprietà $\mathbf{P}(p)$. In tal caso $(E_i)_i$ si dice una $\mathbf{P}(p)$ -esaustione. Una proprietà $\mathbf{P}(p)$ è locale se per ogni $E \in \Sigma^+$ esiste $H \in E\Sigma^+$ che soddisfa $\mathbf{P}(p)$. Una proprietà $\mathbf{P}(p)$ è ereditaria se dati $A, B \in \Sigma^+$ con $B \subseteq A$, se A gode della proprietà $\mathbf{P}(p)$ anche B gode della proprietà $\mathbf{P}(p)$. Osserviamo che la proprietà di avere rango (p, ε) -approssimato non vuoto e di avere rango medio piccolo sono ereditarie. Una proprietà $\mathbf{P}(p)$ si dice a differenza nulla se per ogni coppia di insiemi $A, B \in \Sigma^+$ tali che $|\mu|(A\Delta B) = 0$ si verifica uno dei due casi: entrambi godono della proprietà $\mathbf{P}(p)$ oppure nessuno dei due. Se $M \ll \mu$ allora, per ogni $p \in Q$, la proprietà di avere rango (p, ε) -approssimato non vuoto è a differenza nulla.

2 - Un teorema di Radon-Nikodym

Proposizione 1 (Principio di esaustione). Sia $\mu \colon \Sigma \to R$ una misura finitamente additiva limitata. Fissato $p \in Q$ sono equivalenti le due condizioni:

per ogni $E \in \Sigma^+$ la proprietà ereditaria $\mathbf{P}(p)$ è μ -esaustiva su E per ogni $\delta > 0$, esistono $C(\delta, p) \in \Sigma^+$ ed $\alpha(\delta, p) \in]0, 1[$ tali che:

 $|\mu|(\Omega - C) < \delta$, per ogni $E \in C\Sigma^+$ esiste $F \in E\Sigma^+$ tale che $|\mu|(F) > \alpha |\mu|(E)$ e F gode della proprietà $\mathbf{P}(p)$.

Si dirà allora che la proprietà P(p) è localmente esaustiva.

Dimostrazione. È analoga a quella riportata in [11].

Proposizione 2. Date $M: \Sigma \to Y$ e $\mu: \Sigma \to R$ limitate, risultano equivalenti le condizioni:

- (3) la proprietà di avere rango (p, ε) -approssimato non vuoto è localmente esaustiva
- (3') la proprietà di avere rango medio piccolo è localmente esaustiva.

Dimostrazione. È analoga a quella riportata in [11].

Proposizione 3. Siano $M: \Sigma \to Y$ e $\mu: \Sigma \to \mathbb{R}$ masse limitate. Se per ogni $E \in \Sigma^+$, $p \in Q$, $\varepsilon > 0$ la proprietà di avere rango (p, ε) -approssimato non vuoto è μ -esaustiva su E allora esiste una successione generalizzata di partizioni $\mathcal{P}_n^L = \{E_i^{(L,n)}, i \in \mathbb{N}\}$, tali che:

- 3.1 $\lim_{k \to \infty} |\mu| (\Omega \bigcup_{i > k} E_i^{(l,n)}) = 0 \text{ per ogni } (L,n) \in \mathcal{O}$
- 3.2 fissato $L \subset Q$, L finito, \mathcal{P}_{n+1}^L raffina \mathcal{P}_n^L
- 3.3 per ogni $L \subset Q$, L finito, $n, i \in \mathbb{N}$, si ha che $A_{p_L}(E_i^{p_L, n}, \frac{1}{2^n}) \neq \emptyset$.

Dimostrazione. Scelto $\varepsilon=\frac{1}{2^n}$, $p\in Q$, sia $(E_i^{p,\,1})_i$ una esaustione di Ω tale che, per ogni $i,A_p(E^{p,\,1},\,2^{-1})\neq\emptyset$ e $\Omega=\bigcup_i E_i^{p,\,1}$. Il procedimento ora applicato ad Ω si può ripetere per ogni $E_i^{p,\,1}$, e quindi procedendo ricorsivamente è possibile ottenere una successione di esaustioni $(E_a^{p,\,n})_a$ in modo che: $A_p(E_a^{p,\,n},\,2^{-n})\neq\emptyset$ e

$$\begin{split} E_{\alpha}^{p,\,n} &= \, \bigcup_i \, E_{\alpha,\,i}^{p,\,n+1} \,\, \text{e} \,\, \, \Omega = \, \bigcup \, E_{\alpha}^{p,\,n}. \,\, \text{Fissato allora} \,\, L \in Q, \, L \,\, \text{finito, sia} \,\, p_L = \sum p_i, \\ p_i &\in L, \,\, \text{e sia} \,\, \, \mathcal{P}_n^L = \big\{ E_i^{p_L,\,n} \,\big\}. \end{split}$$

Ottenuta la successione generalizzata di μ -esaustioni è possibile associarle una successione generalizzata $(G_n^L)_{(L,\,n)\,\in\,\emptyset}$ di multifunzioni semplici nel seguente modo: poiché per ogni n $(E_\alpha^{p,\,n})_\alpha$ è una esaustione di Ω , in corrispondenza di $\varepsilon=\frac{1}{n}$ esiste un k(n) tale che $|\mu|(\Omega-\bigcup_{i\leq k(n)}E_i^{p,\,n})<\varepsilon$. Definiamo allora

$$G_n^p = \sum_{i \leq k(n)} C_i^{p,n} \cdot 1_{E_i^{p,n}} + \left\{0\right\} \cdot 1_{\Omega - \bigcup\limits_{i \leq k(n)} E_i^{p,n}} \qquad C_i^{p,n} \in A_p(E_i^{p,n}, 2^{-n}).$$

In tal modo è possibile costruire una successione $(G_n^p)_n$ di multifunzione semplici e quindi p-integrabili. Porremo allora $G_n^L = G_n^{p_L}$.

Supporremo d'ora in poi che (Ω, Σ, μ) sia completo e che $M: \Sigma \to Y, \mu: \Sigma \to R$ siano masse limitate.

Teorema 1. Date M e μ sono equivalenti:

 $\mathbf{RN_1}$. esiste $G: \Omega \to Y$ p-integrabile e limitata tale che $\int\limits_E G \,\mathrm{d}\mu = M(E)$ per ogni $E \in \Sigma$

RN₂.

- (1) $M \ll \mu$
- (2) $A(\Omega \Sigma^2)$ è limitato
- (4) esiste una successione generalizzata $(\mathcal{P}_n^L)_{(L,n)\in\mathcal{O}}$ che soddisfa le condizioni 3.1, 3.2, 3.3 e tale che la successione generalizzata associata $(G_n^L)_{(L,n)\in\mathcal{O}}$ converge in μ -misura ad una multifunzione $F: \mathcal{Q} \to Y$.

Dimostrazione

 $\mathbf{RN_1} \Rightarrow \mathbf{RN_2}$. Se G è la derivata di Radon-Nikodym di M rispetto a μ la (1) è ovvia. Inoltre, fissato $p \in Q$, $F \in \Sigma^2$, $r_p = \sup h_p(G, \{0\})$ risulta:

$$h_p(\frac{M(F)}{\mu(F)}, \{0\}) = h_p(\frac{\int\limits_F G \,\mathrm{d}\mu}{\mu(F)}, \{0\})$$

$$= \frac{1}{|\mu(F)|} h_p(\int_F G \, \mathrm{d}\mu, \{0\}) \leqslant \frac{1}{|\mu(F)|} \int_F h_p(G, \{0\}) \, \mathrm{d}|\mu| \leqslant \frac{r_p \, |\mu|(F)}{|\mu(F)|} \leqslant 2r_p$$

e quindi $A(\Omega \Sigma^2)$ è limitato.

Poiché G è p-integrabile, sia $(G_n^p)_n$ una successione di multifunzioni semplici definente. Fissati $\varepsilon>0$ e $p\in Q$ sia $\overline{n}(\varepsilon,p)\in N$ tale che $\int\limits_{\Omega}h_p(G_{\overline{n}}^p,G)\,\mathrm{d}\,|\mu|<\varepsilon$. Poiché $G_{\overline{n}}^p$ è una multifunzione semplice risulta $G_{\overline{n}}^p=\sum\limits_{i=1}^{r(\overline{n})}C_i^p1_{E_i^p}$. La famiglia $\{E_i^p;\,i=1,\ldots,r(\overline{n})\}$ è una μ -esaustione di Ω che soddisfa la (3): infatti, comunque scelto $E\in\Sigma^+$ risulta $A_p(E\cap E_i^p,\varepsilon)\neq\emptyset$ poiché $C_i^p\in A_p(E\cap E_i^p,\varepsilon)$. Si ha infatti

$$h_p(M(H),\,C_i^p\mu(H)) = h_p(\smallint_H G\operatorname{d}\!\mu,\smallint_H G_{\overline{n}}^p\operatorname{d}\!\mu) \leqslant \smallint_H h_p(G,\,G_{\overline{n}}^p)\operatorname{d}\big|\mu\big| \leqslant \varepsilon\,\big|\mu\big|(H)$$

per ogni $H \in E \cap E_i^p$. Risulta così provata la (3), e quindi, fissati $\varepsilon = 2^{-n}$ ed $L \subset Q$, del passo precedente rimangono definite una multifunzione semplice $G_{\overline{n}}^{p_L}$ ed una μ -esaustione $\{E_i^{p_L}; i=1,\ldots,r(\overline{n})\}$, che soddisfa 3.1, 3.2, 3.3.

Resta da provare allora che la successione generalizzata $(G_n^L)_{(L,n)\in \varpi}$ associata alla successione di μ -esaustioni $\mathcal{G}_n^L = \{E_i^{p_L}; i=1,\ldots,r(\overline{n})\}$ converge in μ -misura. Poiché sia $G_n^{p_l}$ che G_n^L prendono valori negli stessi insiemi $A_{p_L}(E\cap E_i^p,2^{-n})$, fissati $\varepsilon>0$, $p\in Q$, esistono $L^*\in Q$ ed $n^*\in N$ tali che $\mu\{x\colon h_p(G_n^{p_L},G)>\varepsilon\}<\varepsilon$ e $h_p(G_n^{p_L},G_n^L)\leqslant \varepsilon$ per ogni $(L,n)\in \varpi$ con $(L^*,n^*)\leqslant (L,n)$. Pertanto $(G_n^L)_{(L,n)\in \varpi}$ converge in μ -misura a G.

 $\mathbf{RN_2}\Rightarrow\mathbf{RN_1}$. Da (4) e dalla Proposizione 3 rimangono definite una successione di μ -easustioni e una successione di multifunzioni che verifica 3.1, 3.2, 3.3. Sia G il suo limite in μ -misura. Proviamo ora che la successione $(G_n^p)_n$ converge in $|\mu|$ -misura a G. Fissati $p\in Q, \ \alpha>0, \ \varepsilon>0$, sia $(\overline{L},\overline{n})\in \mathcal{D}$ in modo che $p\in \overline{L}, \ 2^{2^{-\overline{n}}}<\frac{\alpha}{2}$ e $\mu\{x\in \mathcal{Q}\colon h_p(G_{\overline{n}}^{\overline{L}},G)>\frac{\alpha}{2}\}\leqslant \varepsilon$. Per ogni $n\geqslant \overline{n}$

$$\mu\left\{x\in\Omega\colon h_p(G_n^p,\,G)>\alpha\right\}$$

$$\leq \mu \left\{ x \in \varOmega \colon h_p(G_n^{\,p},\,G_n^{\,\overline{L}}) > \frac{\alpha}{2} \right\} + \mu \left\{ x \in \varOmega \colon h_p(G,\,G_n^{\,\overline{L}}) > \frac{\alpha}{2} \right\}$$

$$\leq \varepsilon + \mu \left\{ x \in \Omega \colon h_p(G_n^{\,p},\,G_n^{\overline{L}}) > \frac{\alpha}{2} \right\}$$

$$G_n^{\,p} = \sum_{i \leq k(n)} C_i^{p,\,n} \cdot 1_{E_i^{\,p,\,n}} + \{\,0\,\} \cdot 1_{\Omega\,-\,\bigcup\limits_{i \leq k(n)} E_i^{\,p,\,n}} \quad G_n^{\,\overline{L}} = \sum_{i \leq l(n)} C_i^{\,p_{\overline{L}},\,n} \cdot 1_{E_i^{\,p_{\overline{L}}},\,n} \,\{\,0\,\} \cdot 1_{\Omega\,-\,\bigcup\limits_{i \leq l(n)} E_i^{\,p_{\overline{L}},\,n}}.$$

Si consideri la decomposizione $(E_i)_i$ di Ω generata dalle partizioni finite individuate dalle due multifunzioni (eliminando gli insiemi vuoti). Indicata poi con B l'unione di quelli a $|\mu|$ -misura nulla, risulta $|\mu|(B)=0$. Nei rimanenti insiemi, preso

 $F \in E_i \Sigma^2$ risulta

$$h_p(G_n^{\,p},\,G_n^{\,\overline{L}}) = h_p(G_n^{\,p},\,\frac{M(F)}{\mu(F)}) + h_p(\frac{M(F)}{\mu(F)},\,G_n^{\,\overline{L}}) \leqslant 2^{2\,-\,n} \leqslant \frac{\alpha}{2}\;.$$

Dunque G_n^p converge a G in μ -misura.

Infine per ogni $x \in E_i^{p,n}$, i = 1, ..., k(n), preso $F \in E_i^{p,n} \Sigma^2$ e posto $L_p = \sup_{E \in A(\Omega \Sigma^2)} h_p(\frac{M(E)}{\mu(E)}, \{0\})$, risulta

$$h_p(C_i^{(p,n)}, \{0\}) \le h_p(C_i^{(p,n)}, \frac{M(F)}{\mu(F)}) + h_p(\frac{M(F)}{\mu(F)}, \{0\})$$

$$\leq \frac{1}{\left|\mu(F)\right|} \, h_p(M(F), \, C_i^{(p, \, n)} \mu(F)) + 2 L_p \leq \frac{1}{\left|\mu(F)\right|} \, 2^{-n} \, \left|\mu\right|(F) + 2 L_p$$

e quindi, per ogni $E \in \Sigma$

$$\begin{split} &\int\limits_{E} h_{p}(G_{n}^{p},\{0\}) \,\mathrm{d}\,|\mu| = \int\limits_{E} \sum_{i \leq k(n)} h_{p}(C_{i}^{(p,n)},\{0\}) \, \mathbf{1}_{E^{p,n}i} \,\mathrm{d}\,|\mu| \\ &\leq \int\limits_{x} 2(2^{-n} + L_{p}) \,\mathrm{d}\,|\mu| \leq (2 + 2L_{p}) |\mu|(E) \,. \end{split}$$

Risultano allora soddisfatte tutte le ipotesi del toerema di Vitali (2.18 di [18]) e quindi G è p-integrabile e c'è passaggio al limite sotto il segno di integrale. Resta da provare che G è derivata di Radon-Nikodym. Fissati $\varepsilon > 0$ e $p \in Q$, sia $\delta(\frac{\varepsilon}{3},p)$ quello della assoluta continuità di M rispetto a μ . Si scelga allora $n \in N$ in modo che risulti $\frac{1}{n} \leq \delta$ e $h_p (\int\limits_E G_n^p \mathrm{d}\mu, \int\limits_E G \mathrm{d}\mu) \leq \frac{\varepsilon}{3}$. In corrispondenza di n rimangono definiti $E_1^{p,n}, E_2^{p,n}, \ldots, E_{k(n)}^{p,n}$ in modo che $|\mu|(\Omega - \bigcup\limits_{i \leq k(n)} E_i^{p,n}) \leq \delta$. Risulta allora

$$\begin{split} h_p(M(E), &\int_E G \,\mathrm{d}\mu) \leqslant h_p(M(E), \, M(\bigcup_{i \, \leqslant \, k(n)} (E \cap E_i^{\, p, \, n}))) \\ + h_p(M(\bigcup_{i \, \leqslant \, k(n)} (E \cap E_i^{\, p, \, n})), \, \sum_{i \, \leqslant \, k(n)} C_i^{\, p, \, n} \mu(E \cap E_i^{\, p, \, n})) + h_p(\int_E G_n^{\, p} \,\mathrm{d}\mu, \int_E G \,\mathrm{d}\mu) \\ \leqslant h_p(M(E - \bigcup_{i \, \leqslant \, k(n)} (E \cap E_i^{\, p, \, n})), \{0\}) + \sum_{i \, \leqslant \, k(n)} h_p(M(E \cap E_i^{\, p, \, n}), \, C_i^{\, p, \, n} \mu(E \cap E_i^{\, p, \, n})) + \frac{\varepsilon}{3} \\ \leqslant \frac{2\varepsilon}{3} + 2^{-n} \, |\mu|(E) \, . \end{split}$$

Osservazione 1. Date M e μ , nelle Proposizioni 2.10, 2.11, 2.12 di [18] sono state ottenute le seguenti implicazioni che saranno utilizzate per fornire condizioni equivalenti alla \mathbf{RN}_1 :

Se è verificata la RN_1 allora M è subordinata rispetto a μ .

Se M è subordinata rispetto a μ , allora M è scalarmente dominata da μ . Se M è scalarmente dominata da μ , risulta $M \ll \mu$ e $A(\Omega \Sigma^2)$ è limitato.

Corollario 1. Date M, μ , sono equivalenti le seguenti condizioni: RN_1 , RN_2 e

 $\mathbf{RN_3}$. M è subordinata rispetto a μ ed è verificata la (4)

 $\mathbf{RN_4}$. M è scalarmente dominata da μ ed è verificata la (4).

Teorema 2 (Radon-Nikodym). Date M e μ come sopra, se esiste una multifunzione G p-integrabile tale che, per ogni $E \in \Sigma$, $M(E) = \int_E G \, d\mu$, allora risulta:

 $\mathbf{RN_2'}$. $M \ll \mu$

per ogni $p \in Q$, $\delta > 0$, $\varepsilon > 0$ esistono $C \in \Sigma^+$ ed $\alpha \in]0, 1[$ tali che: $|\mu|(\Omega - C) < \delta$

 $A(C\Sigma^2)$ è limitato

 $per \quad ogni \quad E \in C\Sigma^+ \quad esiste \quad F \in E\Sigma^+ \quad tale \quad che \quad \left| \mu \right| (F) > \alpha \left| \mu \right| (E) \quad e \\ A_n \left(F, \, \varepsilon \right) \neq \emptyset.$

Dimostrazione. Poiché G è p-integrabile sia $(G_n^p)_n$ una sua successione definente. Fissati $\varepsilon>0$, $p\in Q$, $\delta>0$, sia $\overline{n}(\varepsilon,p,\delta)\in N$ tale che $|\mu|(x\in\Omega\colon h_p(G_{\overline{n}}^p,G)<\varepsilon\}<\delta$. Posto $C=\{x\in\Omega\colon h_p(G_{\overline{n}}^p,G)\leq\varepsilon\}$, risulta $|\mu|(\Omega-C)<\delta$. Se $G_{\overline{n}}^p=\sum\limits_{i\leq k}C_{\overline{n},i}^p 1_{E_{\overline{n},i}^p}$ sia $S_p=\max\{h_p(C_{\overline{n},i}^p,\{0\})\colon i=1,\ldots,k\}$. Per ogni $x\in C$ si ha $h_p(G(x),\{0\})\leq h_p(G,G_{\overline{n}}^p)+h_p(G_{\overline{n}}^p,\{0\})\leq\varepsilon+S_p$. Poiché G è limitata in C risulta, per ogni $E\in C\Sigma^2$, $|M|_p(E)=\int\limits_E h_p(G,\{0\})\,d\,|\mu|\leq(\varepsilon+S_p)|\mu|(E)$. Quindi

$$h_p(\frac{M(E)}{\mu(E)}, \{0\}) = h_p(\frac{\int\limits_E^G \mathrm{d}\mu}{\mu(E)}, \{0\}) \leqslant \frac{1}{|\mu(E)|} h_p(\int\limits_E^G \mathrm{d}\mu, \{0\})$$

$$\leq \frac{1}{|\mu(E)|} \int_{E} h_p(G, \{0\}) \, \mathrm{d} |\mu| \leq \frac{(\varepsilon + S_p) |\mu|(E)}{|\mu(E)|} \leq 2(\varepsilon + S_p).$$

Il resto discende immediatamente dal Principio di esaustione e dal Teorema 1 nel caso in cui $\Omega = C$.

Seguendo le notazioni di Maynard [13] diremo che un sottoinsieme A di Y è ε -limitato, se per ogni $p \in Q$ esistono $C_1^p, \ldots, C_k^p \in Y$ tali che $A \subset \bigcup_{i \leq k} B_p(C_i^p, \varepsilon)$ dove $B_p(C_i, \varepsilon) = \{D \in Y : h_p(C_i^p, D) \leq \varepsilon\}$. Un insieme A di Y è p-precompatto, se per ogni $\varepsilon > 0$ è ε -limitato rispetto alla seminorma $p \in Q$.

Infine, se $A_1, A_2, \ldots, A_n \subset Y$ sia

$$\sigma(A_1, A_2, \ldots, A_n) = \left\{ \sum_{i \leq n} a_i C_i, \ a_i \geq 0, \ C_i \in A_i, \ i = 1, \ldots, n; \sum_{i \leq n} a_i = 1 \right\}.$$

Proposizione 4. Se $A_1,A_2,\ldots,A_n\in Y$ sono ε -limitati allora $\sigma(A_1,A_2,\ldots,A_n)$ è 2ε -limitato.

Dimostrazione. La dimostrazione è analoga a quella riportata in [13].

3 - Casi particolari

1. Caso numerabilmente additivo

 M,μ sono supposte numerabilmente additive, limitate e μ a valori in R_0^+ .

Proposizione 5. Date M e μ tali che $M \ll \mu$, se la proprietà di avere rango medio piccolo è localmente esaustiva allora la proprietà di avere rango medio p-precompatto è locale.

Dimostrazione. Siano $p \in Q$, $E \in \Sigma^+$ fissati. In corrispondenza di $\frac{1}{2}$ sia $(A_i^1)_i$ una μ -esaustione di E tale che $E = \bigcup_i (A_i^1)$ e $\delta_p(A_i^1 \Sigma^2) \leqslant \frac{1}{2}$. Sia $N_1 \in N$ tale che $\mu(E - \bigcup_{i \leqslant N_1} A_i^1) \leqslant \frac{1}{2^2} \mu(E)$. Posto $B_1 = \bigcup_{i \leqslant N_1} A_i^1$, risulta $B_1 \in \Sigma^+$. Infatti $\mu(E - B_1) = \mu(E) - \mu(B_1) \leqslant \frac{1}{2^2} \mu(E)$ da cui $\mu(B_1) \geqslant \mu(E) - \frac{1}{2^2} \mu(E) = \frac{2+1}{2^2} \mu(E)$. In questo modo, procedendo ricorsivamente, a partire da $B_n \in \Sigma^+$ si ottiene una successione $(A_i^{n+1})_i$ tale che $B_n = \bigcup_i A_i^{n+1} \in \delta_p(A(A_i^{n+1} \Sigma^2)) \leqslant \frac{1}{2^{n+1}}$. Sia allora $N_{n+1} \in N$ tale che $\mu(B_n - \bigcup_{i \leqslant N_{n+1}} A^{n+1}) \leqslant \frac{1}{2^{n+2}} \mu(E)$.

Sia $H=\bigcap_m B_m$. Risulta $H\in \Sigma^+$. Infatti $\mu(H)\geqslant \frac{1}{2}\;\mu(E)>0$. Fissato allora $\varepsilon>0$, sia $m\in N$ tale che $\frac{1}{2^{m-1}}\leqslant \varepsilon$; risulta $H\in B_m=\bigcup_{i\leqslant N_m}A_i^m$. Poiché per ogni $i=1,2,\ldots,N_m$, si ha $\delta_p(A(A_i^m\Sigma^2))<\frac{1}{2^m}$, è possibile scegliere $D_i\in A_i^m\Sigma^2$ in modo che, posto $C_i=\frac{M(D_i)}{\mu(D_i)}$, risulti $A(A_i^m\Sigma^2)\in B_p(C_i,2^{-m})$ cioè, per ogni $i=1,2,\ldots,N_m$, $A(A_i^m\Sigma^2)$ è 2^{-m} -limitato. Preso ora $C\in H\Sigma^2$ risulta

$$\frac{M(C)}{\mu(C)} = \sum_{i \leqslant N_m} \frac{M(C \cap A_i^m)}{\mu(C \cap A_i^m)} \frac{\mu(C \cap A_i^m)}{\mu(C)} = \sum_{i \leqslant N_m} X_i a_i$$

$$\text{dove } a_i = \frac{\mu(C \cap A_i^m)}{\mu(C)} \text{ e } \sum_{i \leqslant N_m} a_1 = 1 \text{ e } X_i = \frac{M(C \cap A_i^m)}{\mu(C \cap A_i^m)} \in A(A_i^m \Sigma^2).$$

Risulta allora $A(H\Sigma^2) \subset A(B_m\Sigma^2) = \sigma(A(A_1^m\Sigma^2), A(A_2^m\Sigma^2), \dots, A(A_{N_m}^m\Sigma^2))$ e quindi, per ogni $\varepsilon > 0$, esso è ε -limitato e dunque p-precompatto.

Corollario 2. Date M e μ b.v. se esiste una multifunzione G p-integrabile tale che, per ogni $E \in \Sigma$, $M(E) = \int_{\Gamma} G d\mu$ allora

 $\mathbf{RN''}_2$. $M \ll \mu$ per ogni $E \in \Sigma^+$, $p \in Q$ esiste $F \in E\Sigma^+$ tale che $A(F\Sigma^2)$ è p-precompatto in Y.

Dimostrazione. Per il Teorema 2 l'esistenza della derivata di Radon-Ni-kodym implica il verificarsi della condizione \mathbf{RN}_2' . Quindi fissati $p \in Q$ ed una successione di numeri positivi $(\delta_n)_n$ decrescente a zero, esiste un insieme $C_n^p \in \Sigma^+$ tale che G è limitata su C_n^p , $|\mu|(\Omega - C_n^p) < \delta_n$ e $A(C_n^p \Sigma^2)$ è limitato.

Costruiamo a partire da $(C_n^p)_n$ una nuova successione $(C_n'^p)_n$ così fatta: $C_n'^p = C_n^p - \bigcup_{i=1}^{n-1} C_i^p$ eliminando eventualmente quegli insiemi che hanno μ -misura nulla. Questa successione di insiemi è una μ -esaustione di Ω ed inoltre $A(C_j'^p \Sigma^2)$ è limitato per ogni j. Risulta poi $M(C_n'^p \cap H) = \int\limits_{\Gamma} G \,\mathrm{d}\mu$.

Per la condizione necessaria del Teorema 1, applicata a $C_n'^p$ e, per la Proposizione 2, la proprietà di avere rango medio piccolo è esaustiva su ogni elemento di $C_n'^p \Sigma^+$, cioè esiste una esaustione $(E_{n,\,i}^p)_i$ di $C_n'^p$ i cui elementi hanno diametro piccolo, perciò la famiglia $\{(E_{n,\,i}^p)_i,\,n\in N\}$ è una μ -esaustione di Ω e quindi la proprietà di avere rango medio piccolo è esaustiva su tutto Σ^+ . L'asserto segue allora immediatamente dalla Proposizione 5.

2. X è uno spazio di Fréchèt

In questo caso sia d una distanza che induce la topologia di X. Sia h la distanza di Hausdorff associata a d. In tal caso l'integrabilità per seminorme è equivalente alla μ -integrabilità e quindi il Teorema 2 si può invertire e la \mathbf{RN}_2' diviene condizione necessaria e sufficiente per ottenere una derivata di Radon-Nikodym.

Teorema 3. Date $M: \Sigma \to Y$ e $\mu: \Sigma \to R$ masse limitate, sono equivalenti le condizioni:

RN'₁. esiste una multifunzione $F: \Omega \to Y$ μ -integrabile tale che, per ogni $E \in \Sigma$, $\int\limits_E F \, \mathrm{d}\mu = M(E)$

 RN_2' . $M \ll \mu$

per ogni $\varepsilon > 0$ e $\delta > 0$, esistono $C \in \Sigma^+$ ed $\alpha \in]0$, 1[tali che: $|\mu|(\Omega - C) < \delta$ e $A(C\Sigma^2)$ è limitato

 $per \ ogni \ E \in C\Sigma^+ \ esiste \ F \in E\Sigma^+ \ tale \ che \ \big|\mu\big|(F) > \alpha \, \big|\mu\big|(E) \ e \\ \delta(A(F\Sigma^2)) < \varepsilon.$

Dimostrazione. L'implicazione $RN'_1 \Rightarrow RN'_2$ è contenuta nel Teorema 2. L'implicazione $RN'_2 \Rightarrow RN'_1$ è analoga a quella riportata in [11].

Bibliografia

- [1] R. J. Aumann, Integrals of set valued functions, J. Math. Anal. App. 12 (1965), 1-12.
- [2] Z. Artstein, Set valued measures, Trans. Amer. Math. Soc. 165 (1972), 35-46.
- [3] J. Ban, Radon-Nikodym theorem and conditional expectation of fuzzy-valued measures and variables, Fuzzy Sets and Systems 34 (1990), 383-392.
- [4] C. Blondia, A Radon-Nikodym theorem for vector valued measures, Bull. Soc. Math. Belg. 33 (1981), 231-249.
- [5] C. BLONDIA, On the Radon-Nikodym property in locally convex spaces and the completeness of L_E^1 , Rev. R. Acad. Cienc. Madrid 81 (1987), 635-647.
- [6] D. CANDELORO and A. MARTELLOTTI, A Radon-Nikodym theorem for finitely additive measures, Adv. in Math. 93 (1992), 9-24.

- [7] D. CANDELORO and A. MARTELLOTTI, A Radon-Nikodym theorem for vectorvalued finitely additive measures with closed range, Rend. Mat. Appl. 12 (1992), 1071-1086.
- [8] G. CASTAING and M. VALADIER, Convex analysis and measurable multifunctions, Lecture Notes in Math. 580, Springer, Berlin 1977.
- [9] C. Castaing, A. Touzani et M. Valadier, Théorème de Hoffmann-Jorgensen et application aux amarts multivoques, Ann. Mat. Pura Appl. 146 (1987), 383-397.
- [10] D. GILLIAM, On integration and Radon-Nikodym theorem in quasi-complete locally convex topological vector spaces, J. Reine Angew. Math. 292 (1977), 125-137.
- [11] J. W. HAGOOD, A Radon-Nikodym theorem and L_p completeness for finitely additive vector measure, J. Math. Anal. Appl. 113 (1986), 266-279.
- [12] F. Hiai, Radon-Nikodym theorems for set-valued measures, J. Multivariate Anal. 8 (1978), 96-118.
- [13] H. B. MAYNARD, Radon-Nikodym theorem for operator valued measures, Trans. Amer. Math. Soc. 173 (1972), 449-463.
- [14] H. B. MAYNARD, Radon-Nikodym theorem for finitely additive bounded measures, Pacific J. Math. 33 (1979), 401-413.
- [15] A. Martellotti and A. R. Sambucini, Radon-Nikodym theorem for a pair of Banach-valued finitely additive measures, Rend. Ist. Mat. Univ. Trieste 20 (1988), 331-343.
- [16] A. MARTELLOTTI and A. R. SAMBUCINI, Radon-Nikodym theorem for multimeasures, Atti Sem. Mat. Fis. Univ. Modena, 42 (1994), 579-599.
- [17] A. Martellotti, K. Musiał and A. R. Sambucini, Radon-Nikodym theorem for the Bartle-Dunford-Schartz integral with respect to finitely additive measures, Atti Sem. Mat. Fis. Univ. Modena, 42 (1994), 625-633.
- [18] A. R. Sambucini, Integrazione per seminorme in spazi localmente convessi, Riv. Mat. Univ. Parma 3 (1994), 371-381.

Summary

We give a Radon-Nikodym theorem for a pair (M, μ) when M is a finitely additive multimeasure and μ is a scalar finitely additive measure. We compare the existence of the Radon-Nikodym density with some properties of the average and (p, ε) -approximated range.
