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ARMANDO MAJORANA (%)

Reduced kinetic equations for 1D carrier flow

in semiconductor devices (*%)

1 - Introduction

The movement of electrons in erystal is governed by complex physical laws,
so that fine models are required to achieve correct results. The drift-diffusion
model has been widely used in the past, when it provided a good deseription of
relevant physical mechanisms. In the modern device, whose size is in the submi-
cron range, thermal and intertial effects play an important role and are not ade-
quately modeled by the previous approach.

A fully kinetic treatment of carrier dynamics guarantees accurate results but
requires very expensive numerical procedures in order to solve realistic prob-
lems. To reduce the complexity of the use of the full Boltzmann equation, many
authors [1], [4] (see also [6] and references therein) have introduced more simple
models, assuming particular forms of the distribution function. For example
Legendre or harmonic expansions with respect to the molecular velocity were
often applied.

In this paper we consider the Boltzmann equation, which describes the evo-
lution of an electron gas in a semiconductor [7], [11]. The collision operator takes
into account the interactions between electrons and molecules of the lattice.
This is assumed to be in thermal equilibrium. Qur approach is restricted to one-
dimensional flow, so the distribution function f depends only on one spatial
coordinate.

(*) Dip. di Matem., Cittadella Universitaria, Viale A. Doria 6, 95125 Catania,
Ttalia.

(**) Received May 24, 1994. AMS classification 82 C 40. We acknowledge partial sup-
port from MURST 40% and CNR (GNFM).
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The paper is organized as follows. In Section 2 we introduce the Boltzmann
equation and deduce some integrals arising from the collision operator. In Sec-
tion 3 we present the main results concerning the two methods, which allow us
to derive sets of new equations, where the unknowns depend on the molecular
velocity only through the molecular energy. For this reason they are still kinetic
equations. In the last section we show, in a simple case, these equations and
draw some conclusions.

Throughout the paper, boldface and lightface symbols denote vectors and
scalar quantities respectively.

2 - Basic equations and preliminary results

We consider an electron gas, which moves in a lattice, subjects to an external
electric field E. This can be applied or related, by Poisson equation, to the densi-
ty of the gas. We assume that the motion of the gas can be described by a distri-
bution function f, satisfying the Boltzmann equation

@ T oV~ S BV, f=Qf)

at m*

where v, —e and m* are the velocity, the charge and the effective mass respect-
ively of an electron. The velocity v is related to the wave vector k of the particle

by the relation v = %-Vk g, where # is the Planck constant divided by 27 and ¢ is

the energy of the particle. The symbol V; means gradient with respect to k and
V, the gradient with respect to v. The integral operator Q( f) deseribes the colli-
sions between electrons and molecules of the lattice. The principal characteris-
ties of this operator have been established by the author in [8]-[10], both in the
linear and non-linear case. Here we assume that the low-density approximation
holds, so that @ is linear in f.

If S(v, v,,) is the sum of the scattering kernels, which describe the nature of
the collisions (for example, electron-acoustic phonons, electron-polar optical
phonons, electron-impurities and so on), then the collision operator is

QUf) = [ 8, vy)0(ey — & — hw)l(ng + 1) o — g f1dv,
R3

-

+ [ Sy, v)0(ey — & + how)n, fr — (ny + 1) f]dv,.
R3
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The constant quantity n, represents the thermal-equilibrium numbers of
phonons and is given by

where kg is the Boltzmann constant, 7}, is the lattice temperature and w is the
constant phonon frequency.

The single-particle energy ¢ of the electron is in general a function of the
wave vector or of the velocity v. We consider the parabolic case, so that

£= —1—m*1)2, where v denotes the magnitude of v. Since the interactions cause

p—;iv to another mT*
by absorbing or emitting a phonon, so that the particle energy satisfies the rela-
tion e, = & *+ fw, only one delta-function appears in the collision operator.

As usually, due to the isotropy of the phase-space, the kernel S(v, v, ) is
symmetric with respect to the two velocities v and v,. Moreover, since the ker-
nel is a scalar, it depends on v and v, only through the scalar quantities v, v,
and v-v,.

It is useful to introduce the unit vectors ¢ and gq. defined by the equa-
tions v =vq and v, =v,.q.. Taking into account the definition of ¢, then S
can be considered as function of ¢, ¢, and ¢-q., so that, we can write
S, vy)=0(e, €4, 9°q4).

We are interested to study the case when f depends only on one spatial coor-
dinate, say z. Let us denote with u the unit vector of z-axis. Since any rotation
around this axis does not change the value of f, then it depends on v by means of
the scalar quantities ¢ (ie. v?) and v-u or y = q-u. Therefore

an electron to scatter from one Bloch state v, inelastically

(2) fi,z,v)=FQ,z,¢,7y).

We use the above four variables as independent, so that v becomes a function
of &. Often in the following, we shall continue to use the symbol v, as function of
¢, to avoid the cumbersome expression \/2¢/m*. It is also evident that solutions
of the Boltzmann equation of this type, require that E = Eu. Under these hy-
potheses, we can transform equation (1) into

- £ wyy OF 4 Lq 2y 0F
r b m*yy -+ 51—y )8y] QUF).

or .  oF

®  FT
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We note only that, of course, the new coordinates introduce a singularity at
v = 0, which in this step can be eliminated, assuming v # 0. The collision opera-
tor @ does not simplify significantly, replacing F instead of f.

Now, we derive some formulas, which will be used in the following, Let’s
consider

(4) An(87 V) = IS(U, U*)(S({;‘* — &+ flw)(v*-u)”dv*
R3

®) B,(e,y)= [S(v,v,)(e ~ € = hw) (v, -u)dvy .
R3

We show that it is possible to reduce the order of the above integrals. The func-
tions A4, (¢, y) and B, (&, y) depend only on y and ¢, because they are scalar. We
assume that S(v, v, ) is a continuous function in the open set @ defined by
a={veR? v,eR®: v#v,} This is always verified for the physical ker-
nels.

Proposition 1. If S(v, v,) = o(e, €4, q-q4 ) is a continuous function in
d, then for any positive integer n we have

©® Ay (e, y)=0 if e < ho

@ Aule, ) =(ESL IR (¢~ ho, y) i e>ho.

Proof. Equation (6) is simply a consequence of the delta function appear-
ing inside the integral and of the non-negativity of ¢. Moreover, for every
¢ > hw, since g, = (sin @, cos P, sin @, sin F,,cos @, ), (@, 0, spherical co-
ordinates), we obtain

+ o
A, (e, )= J ds*gf dw, 0(¢, £4,q-q4)0(e4 — € + hw)(q, u)"
0 *

2 22 e 1
(m*e*) m* o ,..__8* S @,

1 e — ho 25
= G )

Jdo, o(e, &6 — ho, q-q. )(g,u)*sin @,

*
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27 Fid
where Jdw,= a0, [dp,.
Q.4 0 0

Analogously, for every ¢ positive,

ntl

B, (e, y) = #(z%) 2 Qf dw . 0(e, & + ho, ¢ ¢, )(g,-u)'sin @,.

A comparison between the two formulas and the use of the identity
o(e, e4,q°q4) = 0(ey, & q-q,), allows us to deduce the relation (7). Therefore
it is sufficient to know B, (¢, y), to evaluate A, (e, y).

Proposition 2. If S(v, vy) = (e, €4, q-¢.) is a continuous function in
a and Sy(ey) =80, v,), then for every positive integer n we have

( 1)n+ 1 n+l
®) Ba(0, ) = 22 i (2 12y g ()
and for € >0
1 th e [%]
gt ho "2
. 0 i >0 is odd

where sy =2m, s, = [sin*P,dd,.= (- 1)

0 = e 2n-(h—”)-— if >0 is even

[m] means the greatest integer less or equal to m and

51
ﬁ]n(&‘) 1(210)( )( l)k JSZka(E £+ha) s)(l—sz)" n— 2kds

NI

Proof. When we consider B, (¢, y), € can be zero. This case must be trea-
ted separately.
By the definition of B, (¢, y), we obtain

J8(0,v,)0(e — hw)(wy-u)*dv, *So(hw) fé(e — o), u)'do,.

R3
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Since the integral is a scalar, it can be evaluated in a convenient reference
frame, where u — (0, 0, 1). Then we obtain

1 o ﬁ_@_)n;lso(hw)fdw-(cos @ )"sin @,
m* " m* o ' )

il

B, (0, y)

B 2 (_1)n+l he n;l
T om* on+1 (2 m*) So(hiw)

that is equation (8).

As ¢ is positive, we again choose a particular reference frame, in order to
simplify the integral. Since q-u =y, if ¢— (0,0, 1) and u — (0, \/1 — % y),
we have

[ dw.o(e, e+ hw, ¢ . )q, u)sin g,
2.

= [ dw,o(e, € + hw,cos @, )[sin @, sin #, V1 —y%+ y cos @, ]"sin @,

*

n _Il 4
= 120(2)(1 —y2)2ynhg [G(e, &£ + hw,co8 @4 )(sin @, ) T (cos @, )" "dg,
= 0

n lL_ 1
=hz (7}:)(1 _,},2)2 ,yn-hsh f o(e, £+hw, S)'\/(l _82)h8n~hds.
=0 1

We note that the integrals

1
[ ole, e + hw, )\ (1 — s2)is™~"ds
-1

are scalar depending only the variable e. Moreover, since s, = 0 if 2 is odd, we
have

[ dw,o(e, e+ hw, q-q.)g. u)"sin ¢,
2,

o3

1
(2’”}’6)(1 — yz)k,yn—zkszk f 0(8, £+ hw’ S)(]_ — Sz)ksn‘deS
-1

=
il

I
i Moz
<

(=]

—
—

n\ % [k ki m—2 ! 2k o — 2k
( )2 (.)(—1) Ty~ gy [ o, e+ ho, s)(1 —s)s ds
2k/i=0 Vi -1

&

—

]
.
it N |3
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—
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As a consequence of the above formula, it is clear that B, (¢, y) is a polyno-
mial in the variable y of degree less or equal to # and can be written as

51 (51
Bue, )= L2 3102 13 By
Analogously we can prove that
1 fza) ve1 (]
(10) A, (e, y) = oy [(2&£=22y 2 4 Z ajy,(e)y™ ¥4 &> hw

-1

(3] .
with - a;, (¢) = 2 (Zk)( )( 1Y~ Isy, [ o(e, &€ — hw, s)(1 — s2)rs™ 2 ds.

. Therefore, for every ¢ > fiw, we have

(11) ajn((‘:):ﬂjn({:' - ha))

3 - Derived kinetic equations

We have performed some integrals, which show as the variable ¢ plays a par-
ticular role. This derives by the physical laws of the collisions, where only the
energy is involved. The other variable y appears as a power, independently on
the type of the scattering. Therefore many authors have proposed simple forms
for the distribution function F, based on the assumption that it can be approxi-
mated by a polynomial in y (usually of low degree). We prove that, in general,
one can obtain a set of kinetic equations for any arbitrary order.

Let us assume that

P
12) F(t,z,e,y) = go(yv)"fn (t,2,e) + R,(t, 2,6, 9)

where p is a non-negative integer and R, (t, z, ¢, y) indicates the remainder. We

have introduced the factor yv instead of y to avoid the singularity at v = 0 into

the free streaming operator. In fact, neglecting the remainder, we obtain
oF oF o9F | 1

e * of ES .2
E3 s E3 m*E[myvae+7)(1 )

oF

8)/]
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Y4
. % 8 n+1 8
= ngo[(yv) FACEIORE D i fult,z, €)

—eE (yvy* ! %fn(t, %, €) — -;n-e—; n(yv)* "1 Ef, (4, 2, €)]

and therefore

S r it )+ 2 fo (h 2 o) = eEDf (2 )
(13) WSo BT g T ggtn-1t ®

- -?% (n + 1 Ef, . (&, 2, &)1 (yv)" = Q(F)

defining f_, (¢, 2, €) = 0 and putting f, .1 (%, 2, €) = 0. To calculate the collision
operator, we note that

TS, v,)0(eq — &~ hw)F do,

R3

r
= Zofn(t, 2, £+ Hw) [ S0, 0,) (e — & — h) (v u)dv, .
n = RS

Then
p
QU = §=‘,0[(nq + 1)B, (e, v) [, (&, 2, € + Aw)
+ng A, (e, ) (¢, 2, 6 — Aw) — v(e) (yu)*f, (&, 2, €)]
where v(e) =ng By(e, y) + (g + 1) A (e, ).

Since, for n = 0, 1, ..., p, the functions 4, (¢, ¥) and B, (¢, y) are polynomials
in y of degree less or equal to p, then the Boltzmann equation, in this ap-
proximation, is equivalent to p + 1 equations in the unknowns f, (i, 2, &)
(n=0,1,...,p). The set of equations is closed, because we have eliminated
the remainder R,(t, 2, €, ). The case p =1 is explicitly shown in the next
section.

We think useful at this point, to make some considerations. This technique
allows us to derive a finite closed set of kinetic equations, where the dimension
of the domain of the velocity quantities is reduced. Unfortunately the assump-
tion given by (12) is valid only as F' is approximately near to a polynomial in y;
otherwise R, (t, 2, &, y) becomes large. Moreover it is hard to estimate the re-
mainder also in simple norm of the uniform convergence.

Another difficulty arises, when one is interested in evaluating hydrodynami-



(91 REDUCED KINETIC EQUATIONS FOR 1D CARRIER FLOW... 23

cal quantities. If we have solved the equations and, therefore, we know

St z,8) (n=0,1,..., p), then, for example, we may obtain only an approxi-
mate value of the density of the gas, because we do not know the remainder
R,(t, 2z, ¢ 7).

To overcome these difficulties, we introduce a new method, to derive kinetic
equations. The new unknowns are defined as follows

O, (t, 2, €)= [doF(t, z, &, y)(v-u)v sin @
2

(14)
=v"* [dwF(t, z, € p)y" sin ¢
2

where 7 is a non-negative integer. The form of ¢, (¢, 2, &) recalls the definition
of moment of the distribution function. In fact a further integration with respect
to ¢ gives, apart a constant multiplicative factor, a classical moment; hence we
call ¢,,(t, 2, &) a quasi-moment. The factor v appearing in (14) serves to avoid
the singularity at v = 0 in the differential operator.

Since u = (0, 0, 1), we have y =cos ¢ and

1
(15) Dn(t, 2, 8) =2mv"*" 1 [ F(t, 2, ¢, y)y" dy.
4

From the Boltzmann equation (1), by multiplying for (v, -u)"v sin ¢ and inte-
grating with respect to ¢ and @, we obtain (for any ») a new kinetic equation. To
calculate the term arising from the free streaming operator, we first show
that

fda)[m v gF + ,U( —y?) y](v u)'v sin ¢
"“fdw[m v ?9[: + v( - %) y](COS @)sin @
! oF oF
= n+1 * L = vt n
27V _fl[m Yot (1 )ay]V dy

oF

1
o dy + 270" [[(n+ 2)y% —n]ly" 'Fdy.
-1

1
= Qm*yn+2 fl ,yn+1

Since

1
gg¢n(t7 2, e)=2yw"‘1[n7:1 fF(t 2, g, 7)ytdy + v? f —F(t z, & y)y™dy]
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we obtain

oF oF _QF_ o
fdw{ 8t + yv 3 P ay v -u)"vsin @

a—tm(t, z, €) + ~a—z—¢~n+1(t, 2,€) — eE ‘a? Grni1lty 2, €) —-n#thn_l(t, 2, €).
The collision operator gives
JdwQF) (v -u)'vsin ¢
o
=, +1)[dov"* y"sin @ [ S, v,)0(ey — & — hw) Fy do,
Q R3

+n,[dov"ty" sin @ [ S, v,)0(e, — € + hw)F, dv,,
2 R?

—v(e) [dov" Ty "F(t, 2, ¢, ) sin .
o
Now

+
fdwvn“ "sing [ de*gf dwy o(e, €4, 4 q4)
0 .

2¢€ 4

O(ey —e— ) F(t, 2, €4, ¥V4) — sin @,

(m*)?

= [dov**ly"sin ¢ [ dw, o(e, e + hw, ¢ q)F(t, 2, e + ho, v4)
2 Qx

V2 Ve + fiw sin @,
3
(m*)*?

n+1

= [dw, [Jdwo(e, & + hw, q-q. ) (g u)" sin plv
Qs 2

B, 2y 6+ i ) —Y2 Ve o sin g,

T3
(m*)2
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(2]

2 : V(e + tw) o
= [do, [ 2 Bu(e)yi ¥1o" T 1F(t, Z,8+hw,y*)————-———(8 3‘”) sin @
[e i=0

(ma«-)E

V2 (51
3 VS'*.-ha)’vn+1Zﬁjn(e)fdw*yn_Zj
2 j=0 (2

LIF(@, 2, e+ ho, yy) sin @y
(m*)

]
Oﬁjn (8)7)2J¢n_2j(t, z, €+ ha))

V2 [
3 Ve+ho
2

I Moz

J
Then
Jdw Q(F)v -u)'v sin ¢
Q

(51

M|z

=(nq+1) VZ— \/8+ha)

(m*)

; Oﬁjn(s)IUZjﬁbnwzj(ta 2, & + hw)

o jco

(%1
V2 g Ve — ho _Eﬂajn(s)'uzjd)n»«zj(t: 2, & — ho) —v(e)p,(t, 2, &).
i=

(m*)?

+n,

Therefore from the Boltzmann equation, we obtain the equation

3 3 A _ e
G‘t ¢n(t7 Z, 8)+ 82 ¢n+1(t1 z, 8) el 88 ¢n+1(t, 2y 8) n m* E¢n—1(t) 2, 8)

(5
= (n,+1) _\/—i Ve + hw .Zoﬁjn(e)vzf'(/)n_zj(t, z, £ + hw)
3 i=
(m*)Z
(5]
—\'/é 3 VE— haw jgoajn(s)v2j¢n-—2j(t) z, € hw) - v(8)¢n(t’ z, 8)-

(m*)?

+nq

These equations derive rigorously by the Boltzmann equation under reaso-
nable simple assumptions. As in the moment methods, the equations, in general,

contain more unknowns then the number of the involved equations. However,
the right-hand side contains ¢, (¢, 2, &) only for k < n.
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For example, if we consider the set of N+ 1 equations, obtained for
n=0,1,..., N, then we have N + 2 variables ¢, (¢, 2, &) (n=0,1,..., N, N+1).
Therefore, in order to obtain a closed set of equations, it is necessary to assume
another further relation, which contains ¢y (¢, 2, €).

This can be suggested by the physical characteristic of the studied phenome-
na, or by the expression given in (15). For example, a pure mathematical rela-
tion can be derived, replacing the quantity y" *! appearing in ¢ 5 , 1 (£, 2, £) by a
polynomial of N-degree in y. In this way ¢ . 1(t, 2, €) is approximated by a lin-
ear combination of ¢,(f,2,¢) for (k=0,1,...,N). Since ye[—1,1], the
Chebyshev polynomials arise naturally in order to apply the well known theo-
rem of best approximation.

There is a particular, but not trivial, case, when this set of equations is
closed. It happens when F' does not depend on z and E = 0. If, for example, we
consider only the first equations, then there follows

Vale +1w) g (e)po(t, & + fio)
3
(m*)?
V(e — 1) g0(2) polt, e — h) — v(e) po (2, &).
3

(m*)?

2 pott, &) =g+ 1)

(16)
Ry
A gimilar equation was founds also in [9]. A solution of this equation allows to
obtain a tiny information on F'(%, &, y), but sufficient to determine, for example,
the density and the temperature of the gas. If we want to known the hydrody-
namical velocity, then it is sufficient to consider also the equation given by

n=1.
Analytical and numerical studies on equation (16) are in progress.

4 - Examples and conclusions

We examine a simple set of equations, obtained applying the two different
methods. Let

1 1
Boo(e) =2x [ o(e, ¢ + hw, s)ds Bo(e) =2z [ o(e, ¢ + hw, s)sds
-1 -1
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then

By(e, y) = 1 w/‘;‘}; Ve + hw Bog(e) = by(e)

m*
Aole, y) = ﬂ; N Wf‘f Ve = hw Bo (e — fiv) = aq (&) &> ho
Bile,y) = (mzw 5 (e +h0) B ()7 = yubi(e) v 0
Ai(e,y) = R (e = hw) Bo; (& — hw)y = yva, (&) &> ho.

Using the first method, we obtain the following system of equations

d e
ggﬁ)(t: z, 8) m* Efl(ty z, 8)

=(n,+ by (e)fo(t, 2, & + hw) + ngao(e)fo(t, 2, e — hw) —v(e)f (4, 2, €)
2ht s+ it s - L0

=(ng+ Db (e)fi(}, 2, e + hw) + nga,(e)fi(t, 2, e — hw) — v(e) /1 (1, 2, &)
where now v(e) =n,by(e) + (n, + 1) ae(e).
In the other case, we have the set

3 3 o8
at ¢0(t’ 2, 8) + 82 ¢1(t) 2, 8) 6E a&‘ ¢1(t’ 2, 8)

=, + 1)by(e) 9o (%, 2, € + hw) + nyag(e) P (i, 2, e — hw) ~ v(e) oo (¢, 2, €)
201t O+ L 9ot 2 0) = 6B L 9t 7, 6) — — Bgolt, 2, )

=(n,+1) Ve Ve + ho By (e) 91 (¢, 2, € + ho)
3
(m*)?

+n, ___l/__i__ Ve —twag(e)p,(t, 2, e —hw) —v(e) (L, 2, €).
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The two systems of equations are very similar, but apart the differences con-
cerning the number of involved unknowns, they present peculiar different cha-
racteristics. The choice of these variables avoids the singularity (v = 0) in the
differential operator, but, as it is evident, for example in the definitions of b, (¢),
the coefficients at the right side of the first system are not defined for ¢ = 0 and
in general ecould not be bounded as ¢— 0",

In the more common physical kernels the singularity can be eliminated in
b (&) (due to the presence of the factor v2 in the Jacobian of the spherical trans-
formation), but not in general in 8;(e) for j > 1. The second set of equations
does not present this trouble for any x.

The main difficulty of the above equations is the presence of shifted argu-
ments in the collision terms. Unfortunately forward and backward terms appear
simultaneously. Then analytical treatment of initial or boundary value problems
is not immediate. From a numerical point of view, a difference scheme seems to
arise naturally [5], because it models in a simple way the shifted arguments. Re-
searches concerning both aspects are in project.

It is clear that both techniques ecan be used also in the case, when an elastic
scattering, which contains the 6(s, — ¢€) instead of the 6(g, — ¢ = Aw), is inclu-
ded in the collision operator. The corresponding equations can be easily de-
rived.
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Sommario

In questo lavoro si considera Uequazione di Boltemann che descrive Uevoluzione di
un gas di elettroni in un semiconduttore. St suppone che la funzione di distribuzione de-
gli elettroni dipenda dal tempo t, dalla velocita molecolare tridimensionale, ma dipenda
da una sola coordinata spaziale. Per questo flusso planare sono proposti e analizzati
due diversi metodi di approssimazione della funzione incognita. In entrambi i casi
Vequazione di Boltzmann viene sostituita con un sistema di equazioni, nelle quali le in-
cognite dipendono dall’energia delle particelle invece che dalle tre componenti della velo-
cita molecolare. Si ritiene che questo approccio possa essere utile in ricerche di tipo ana-
litico 0 mumerico.






