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M. FALCITELLI and A. FARINOLA (*)

Curvature properties of almost Hermitian manifolds (**)

Introduction and preliminaries

Let (M, g, J) be a 2n-dimensional almost Hermitian manifold (n = 2), with
fundamental 2-form o such that w(X, ¥) = ¢(JX, Y) and Riemannian connection
V. The covariant derivative Vw is a section of the vector bundle W(M) on M,
whose fibre, at any x e M, is the linear space

W, = {ae(TEMP|aX, Y, 2) = —a(X, Z,Y) = —a(X, JY, J2)} = @l(wi)x

where, for any 1, ("¥;), is the linear space considered in [9].
The conditions

aX,Y,2) = ~a(JX,JY,Z) oaX,Y,Z)=a(JX,JY,Z)
characterize the sections of W, (M) S (M), W (M)D W, (M), respec-
tively.

The metric connection V, defined by

(1.1) VY =VxY + (X, V) where

(1.2) “(X, ) = = 2J(Vx DY)

preserves J but, in general, is not symmetric. Let X be the torsion form of V
(*) Dip. di Matem., Univ. Bari, via E. Orabona 4, 70125 Bari, Italia.

(**) Received December 14, 1993. AMS classification 53 C 55. The paper has been
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and N the Nijenhuis tensor of J. Then, one can easily prove the formulas:

(1.3) XX, V)=+X,Y)-<(Y,X)
4
(14) 29(v(X, 1), Z2) = Vyw(¥Y, JZ) = '21 (X, Y, JZ)

gIN(X, Y), 2) =49X(X, Y) - 2(JX, JY), Z)

1.5) =420,(JZ, X, Y) - 0,(JZ, X, V).

2n

(16) I(X, V) + 2UX, JV) = 2 {(z3 + 7)X, ¥, Jg) = (5 + 7)Y, X, e} ¢;
i

where <;, i€ {1, 2, 8, 4} is the projection of Ve on W;(M) and {¢;}; <j<z, is a
local orthonormal frame.
In the following we also use the relation

wn ©(X, Y, Z)= —g(X, Y)BUJZ) - g(X, JY)B(Z)
' +9(X, Z)BIY) + g(X, JZ) B(Y)

1
2(n—1)

As a consequence of (1.1), (1.3), (1.4), since V is metric and unitary, the cur-
vature B of V and the Riemamnian curvature R are related by

where = — dwod is the Lee form.

— 4 P —
®-B)X, Y, 2,W) = 5 3 {Vxwi(¥, 2,IW) - Vyry(X, Z, W)
+71(2(X7 Y)’ Z) JW) - Ti(X, T(Y’ Z)7 JW) + Ti(Yy T(Xy Z); JW)} .

(1.8)

SoR—~Ris regarded as a section of the bundle A (M) ® W(M), since one
can prove that, for any vector field X, Vy<; is a section of %, (M).
Moreover, since R(X, Y, Z, W) =R(X, Y, JZ, JW), (1.8) implies

MX, Y, Z,W)=R(X,Y,Z,W)-R(X,Y,JZ, JW)

1.9 4 -
@9 _ _.Zl{vxfi(y, Z, JW) = Vyv, (X, Z, IW) + 7;,(E(X, Y), Z, JW)}.
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The vanishing of 2 is equivalent to the condition that R satisfies the Kéhler
identity, that is (M, g, J) is a Ry-manifold.

Now, let R (M) be the bundle of the algebraic curvature tensor fields on M,
equipped with the metric considered in [19].

If S is a section of R(M), putting S(X,Y)=S(X, Y, X, Y), we get

685X, Y, ZW)=8SX,Y+2)-SX, Y+ W)+ ST, X+W)-S¥,X+2)
(1.10) +S8(Z, X+W)-SZ, Y+W)+SW,Y+2)-S(W, X+ 2)
+SX+Z,Y+W)-SE+W,Y+2)+SX,W)-SX,2)+S(Y,Z)—- S, W).

Thus, S is uniquely determined by the values S(X, Y), for any pair (X, Y) of
vector fields on M.

Moreover, one can consider the splitting R(M) = X @ K*, as an orthogonal
direct sum, where the sections of &% are the algebraic curvature tensor fields
which satisfy the Kihler identity.

The Riemannian curvature R is a sections of K+, iff the holomorphic section-
al curvature of (M, g, J) vanishes ([5]).

This equivalence gives a motivation for a detailed investigation of the projec-
tions of B on each of the subbundles of %+ considered in [19].

On the other hand, until now, the problem of the classification of the R;-
manifolds (or, according to [17], para-Kédhler manifods) is still open. In fact, as
far as the authors know, the 6-dimensional quasi-Kéhler manifolds considered in
[21] are the only example of R;-manifolds other than the flat or the Kdhler ones.
The authors hope that a detailed study of the projections of B in X* can be
fruitful to produce other example of R;-manifolds.

The general properties of the ®;-manifolds are stated in [17]. According to
[5], the projections of R in %X+ are denoted by X_;, X_s, G4, G5, Cs, G5, C;. They
coincide with the projections py (R), p5(R), ps(R), p:(R), ps(R), py(R), p1p(R),
of [19], respectively.

When n =2, %_,, G and @; vanish. ¢, vanishes also if » = 3.

In Section 2 the projections of R in %' are explicitly expressed by means of
the covariant derivatives Vrz; and suitable contractions of the symmetric pro-
ducts ;O 75, %, j € {1, 2, 8, 4}. These results agree with the Tables 1, 2, 3 in
[5], although in [5] there are few explicit formulas.

In the last part of this paper the results of Section 2 assist in the study of the
curvature of some Lie groups.

The authors wish to thank A. M. Pastore and S. M. Salamon for useful dis-
cussions on the subject of this paper.
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2 - On the X*-projections of R.
Lemma 1. For any paitr (X, Y) of vector fields, we have

Ol + g+ CHX, T = —g— (V(rs+ 70T, ¥, JX) + Vy(es+7 ), X,JT)
@1 B
"va(73 + 74)(Y, Y,X) - VJy(Tg + 74)(X,X, Y) - ?41“(71 + 72)(N(X, Y)7Xs JY)} .

Applying Theorem 8.1 and Definition 3.3 in [19], we have
8K 1+ K 2+ C)X, Y, X, Y)=U—-L)I + L)+ L) RX, Y, X, Y)

= ~2-{)&()(, YV,X,Y)-2(JX,JY, X, V) + 2(JX, Y, X, JY) + A(X, JY, X, JY)}.

Then, using (1.9), we have
AX,Y,X,Y)-2JX,JY,X, V) +A(JX, Y, X,JY) + \(X,JY,X,JY)
= —Vy(r, + )V, X, IV + V(71 + eV, X, IV + V (5, + 7)Y, X, Y)
+Vy(r1+ )Y, X, V) + Vyp(r1 + )X, X, JY) ~ Vyp(ty + 1) (I X, X, JY)
—Vylr1 + )X X, V) =V p(r, + )X X, Y)
22) —(t1+t)EX,Y)—ZJX,JY),X,JY)+(z; + 1) EUTX, V) + 2 (X,JY),X,Y)
~ Vs + 7)Y, X, IV + V(w3 + )Y, X, JY) + Vx5 + )Y, X, Y)
+ V(g + T )Y, X, )+ Vy(rs + 7 )X, X, JY) =V jy(r5+ 7 )JIX, X, J V)
Vst XX Y) — V(e )X, X, Y)
—(13+ 7 )EX,Y) = EJX, IV, X,JY) + (3 + ) EUX, V) + 2 (X, V), X, Y} .
Since V(=1 + 75) is a section of A'(M) ® (W, @ W,)(M), the term in (22) de-
pending on V (=, + 75) vanishes. The summands in V(73 + 7,) sum up pair by pair,

since V(73 + 74) is a section of A' ® (W3 @ W,)(M). For the remaining terms in
(2.2), using relation N(X, JY) = —J(N(X, Y)), and (1.5), we obtain

(11 + ) 2X, Y)-2(JX,JY), X, JY)= —(r; + ) EJX, V) + 2(X, JY), X, Y)
(z3+ X, Y)~2(JX,JY), X, JY) = (r3 + 7 JX, V) + 2(X, JY), X, V).

Finally, these relations imply (2.1).

Lemma 1 represents the first step for the formulation of an expression of the
components X_;, RX_z, C. To this aim, it is useful to recall that X _, depends on
(t— v*)R)

n )
where o(R), o*(R), =(R), 7% (R) stand for the Ricci-curvature, the *Rieei cur-

the symmetric and J-invariant tensor field (o — p* )R + L3 R) —
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vature, the scalar and the =-scalar curvatures. Moreover, (v — 7* )} R) deter-
mines the component X_; ([19]).

Lemma 2. Let {e;, Je;}1<i<n be a local orthonormal frame on M. Then
we have

2n

= ICY)(R + L3R)(X7 Y) = % .21{VY74 (ei) ei; JX) + VX74(61', eiJY)

“VJYT4(9¢, e;, X) — VJXTAI(ei’ e, Y)

23) _ -
+2V, (z5+ 1 )Y, X, Je;) + 2V, (v + 70X, Y, Je;)
— 3G+ NV, ), Y, Je) = % (71 + (Y, 0, X, Jeo)}
2n
CH) B =2 Y TVurile g, Je) ~ lnl + 2 lmlf
i,j=

In fact, a direct computation, together with Lemma 1, gives

2n
(6 = ¢*)R + Ly R)(X, X) = —;— 2 =L + L) + Ly R(X, &, X, €)

2n — —
@8) = Y {Vyry(es, e, IX) — Vixrales, 6,X) + 2V, (5 + 7)(X, X, Je;)
i=1

Bl _élf (71 + w)(N(X, &), X, Je))}.

Then (2.3) is a consequence of (2.5) and of the symmetry of (¢ —p*)
(R + L3 R).
Moreover, contracting and using (2.5), we get

2n _
(v —7*)B) = Z l{zveih(ej; &, Je) — ‘é‘(ﬁ + 72)(N (e, €)), €;, Jej)}-

L=

The formula (1.5) implies

2n
i E 1(71 + 72)(N(87;, ej)) €, Je])

LJ=

2n
= Eh? 1{87?(Jeh, e, ¢;) — 475 (Jey, e;6;) + 471 (Jey, €;, €) 72 (Jey, €, €,)} .
7 =

A direct computation, using the skew-symmetry of v; and the condition
2n

03,2 & Y, 2) =0, yields > ©1(Jey, &, ) 72(Jen, €565) = 0.

L, hh=1
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Thus, one obtaing (2.4) and the proof of Lemma 2 is complete.

Remark 1. The formula (2.4) reduces to:

(r — =*WR) = —||VJ|? in the nearly-Kihler case,

(c — =*)(R) = é—]{w”? in the almost-Kihler case,

(r—7*)R)=4(n — 1)(divB — (n — I)Hﬁﬂz), when Vw is a section of W, (M),

where B denotes the vector field associated to the Lee form 8 with respect to g.

These relations are well-known ([13], [8], [4]). More generally, V=, |z,
and ||z,|]? determine _,.

Proposition 1. Ifn =4, the projection K., depends on Vo, V74,110 71,
110 tg, 20 Ts. If n=3, then H_, depends only on Vzs, Vrs, 710 7,

Tg@ T2,

The statement is a consequence of the Lemma 2 after one has proved that, if
n =23, X_, does not contain the v; © r;-summand.

In fact, (1.5), (2.3), (2.4) imply that this summand is determined by the sym-
metric and J-invariant tensor field I' defined by

2n
TX, V)= -2 3 mile, X, )il ¥, 0) + Lleirocx, 1.

Suppose that {e;, Je;}; <; <3 is defined in the open set U. A direct computa-
tion yields:

“71”%(] = 24{7%(61, €s, 63) + 7%(61, €y, J€3)}

6
Tyyler, e) = —2 kE_ 7% (ex, €1, €) + %”ﬁ”z

1, 1

= ”‘8{7%(81, ez, €3) + 75 (€1, €2, Jes)} + 3)1)—“71”2= 0.

Analogously, we can prove that Ty (e;, ¢;) =0 4,7 e {1, 2, 3}. Therefore T
vanishes.

Proposition 2. If n =5, the projection C; depends on Vrs, 710 1,
710 7s, 720 75. If n =4, then ©; depends only on Vzs, 7,0 73, 750 7.
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As a consequence of Lemmas 1 and 2, ¢, turns out to depend on Vrj, Vzy,
710 71, 710 73, 72O 7. Using the definitions of H_,, X_, in [19] and Lem-
mas 1 and 2, one obtains the explicit expression for the values S(X, Y), where S
represents the Vrg-summand in G;. A direct computation, together with the
formula :

Vit (Y, Z, W) = —g(Y, Z) Vx (W) + g(JY, Z) Vxp(W)

(2.6) = _
+9(Y, W)Vxp(J2) - g(JY, W) VxB(2)

implies S(X, Y) =0, that is S=0.
Finally, if n = 4, a long computation yields the vanishing of the v; ® ={-sum-
mand.

Proposition 8. The projection Cs; depends on Vs, 7.0 73, 720 73,
’Z‘g@ T4

The proof is carried on using the same method as in Lemma 1. In fact, ta-
king account of the definition of @; (see [19]), we have

G, Y)= % A XY, X, V)-AJX,JY,X,Y)-2(JX,Y,JX,Y) - A(X,JY,JX,Y)}.

Then, we use (1.9). In the resulting formula, the contribution coming from
V-, vanishes, since Vy7, is skew-symmetric for any vector field X.

Also the terms in V(z3+ z,) vanish, since V(rs+ 74) is a section of
A (M) ® (W5 D W)(M). Therefore we obtain

65(X:Y) = _]:_ {VXTZ(YyX,JY) _VYT2(X>XyJY) +vJX72(Y’X,Y) _VJYT2(X9X, Y)}
4

o (e + DN, V), X, JY) = (o1 + 2)(NUX, ¥), JX, JT)

+(rs + TN, V), X, JY) — (13 + = )(N(JX, Y), JX, JY}.
Since N(JX, Y) = —J(N(X, Y)), applying also (1.5) and (1.7), we get
(z1 + t)(NWJX, Y), JX, JY) = (z; + w)(N(X, V), X, JY)
(e + TN X, V), X, JY) ~ (z3+ )N (X, V),JX,J V) =2 (v5 + ) (N (X, 1), X,J V)
= —8{r:(JX,X,Y) (V) + 72X, X, Y) B(JY) — 7(Y, X, Y) BUX) — 72 (JY, X, Y) ()}
+273(N(X, V), X, JY).
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Therefore
GX,Y)= — 1 {Vsz(Y, X, JY) — Vm(X, X, JY) + V7o (Y, X, Y)

@.7) Vs (X, X, V) + 3 (VX V), X, JY)
—rg(JX,X,Y)ﬁ(Y)+72(JY,X,YM(X)— (XX, V) BUY)+7,(Y, X, V) B(UX)} .
Remark 2. The vanishing of @; in the hermitian or in the nearly-Kihler
case can now be obtained using Proposition 3. A characterization of the condi-

tion G5 = 0 in terms of properties of Vw is not known up to now. In Section 3 an
example of almost K#hler manifold such that & =0 is given.

Lemma 8. For any pair (X,Y) of vector fields on M, we have
(Cs+ & + C)X, Y)
= %{VX(TZ + 15+ 7)Y, Y, JX) + Vy(zy + 73 + 70X, X, JY)

2.8)
+Vix(ro+ 75+ 1)JY, JY, X) + Vyy(ze + 13 + 7 )WJX, JX, Y)

—(t1+ ) E XN +ZJX,JIV),X,JY)— (13 + 7 ) C X, )+ 2 (JX,JY),X,JY)} .
In fact, using Theorem 8.1 and Definition 8.3 of [19], we have

2(Cs+Cr+Ce)X, Y, X, Y)
=R-I4R)X, Y, X, Y)=2X,Y,X,Y)-2(JX, JY,JX, JY).

Thus (1.9) and the skew-symmetry of Vyz; imply the statement.
Lemma 4. For any pair (X, Y) of vector fields on M, we have
o™ (R — Ly R)(X, Y)

2n _ —
2 { 72(:]61', X, Y) -+ 4Vei73(J6i,X, Y) + 4Vei74(Jei>X7 Y)

f ml:—a

_VX "4(61,61, Y) VJX ‘4(91’617Y)+VY "4(37.:euJX)}+VJY74(61)629X)

@9 _1 {4(n +1) 1 (IBX, ) +2@n—1)75(JB,X,Y)+4(n—1)73(JB,X,Y}

2n

% E {(71""72)(6]', Y, Je)rs3(e;, X, Jej)'"73(X’ €, Jej))

“‘(Tl + Tg)(@j, X, J@i)(fg (ei, Y, Je]) - Tg(Y, €, Je]))} .

In faet, by means of (2.8) and (1.10), one obtains the values of
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(R — LyR)(X, Y, Z, W). Then, since Vr;e A'(M)® W, (M), ie{1,2,3,4}

2n

(B~ LRYX, V)= ¢ 3 {6V,m0e, X, 1) + 4V, 5306, X, V)
"VXT4(61',@1',JY)_-V—fo4(ei,6i,Y)+VYT4(ei,6i,JX) +VJ)fT4(ei,ei,X)+4—V—ei74(Jei,X,Y)}
2n
+ 1 2{tCX, e) + Z(JX, Je;), Y, Je;)) — t(Z(Y, ¢;) + Z(JY, Je;), X, Je;)
i=1
+t(2(ei$ Jel) —E(Jei’ ei)) X; Y)}
where { stands for =; + 75+ 75 + 74.
Moreover, (1.7) and (1.6) imply

2n

.zl{(71+72)(2(X)ei) +2(JX,J@1'),Y,J€7:) - (71 + 72)(2(Yy ei) + E(JY, Jei)> X, Jei)}

2n
= 2 1{ —(r1+ w2)e;, Y, Je)(w3(e;, X, Jey) — 73(X, ¢;, Je))} — 87,(JB, X, Y)

4L,j=
2n

+ 2 1{(71 + )¢5, X, Je;)w3(e;, ¥, Je;) — w5(Y, e, Je;)} —27,(JB, X, Y).
i,j=

2n

2 A+ )E X, e)+ 2 X, Je), Y, Je) — (v3+ 1 )(E (Y, e) + 2(JY, Je), X, Je)} =0

i=1

where {e;, Je;} is a local orthonormal frame. Finally, using the formulas

2n

> e, Je) — E(Je;, e) = —4(n—1)JB  1,JB,X,Y)=0  we get
i=1

2n
21(71 +’L‘2+73+74)(2(6i,e]€i) _E(Jei, ei),X, Y) = “4(’)%— 1)(71+72+73)(JB,X, Y) .
i=

These relations yield (2.9).

Proposition 4. The projection Gy depends on Vza, Vr3, V4, 7,0 73,
To O T3, T1O Ty, T2 O T4, 73O 4. In particular, if n = 3, the v O T5-component
vanishes.

Since the tensor field ¢ * (R — L3 R) determines @, ([19]), the first part of the
statement is a consequence of Lemma 4.
Moreover, the v, © t3-component of G is determined by the J-antiinvariant
2-form
2n

T(X; Y) = Z 1{71 (ej’ Y) Jei)(73 (ei, X’ Je]) — T3 (X, €;, Je]))
ij=
- ‘l(ej’ X, Jei)(’tg(ei, Y, Jej) - Tg(Y, €, Je]))}
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When n = 3, since 7, is skew-symmetric, for a given x € M, there exists an
orthonormal frame {e;, Je; }; <; <3 defined in a neighbourhood U of x such that

Tl(el, €s, Je3) = 0.
With respect to this frame, using the condition

3 3
2 21 v3(e;, €, X) = 21(73(61', e, X) + v3(Je;, Je;, X) =0

we obtain  Ty(e;, ¢) = Ty(e;, Je)) = 0 i<j 1,je{1,2,8}.
Therefore, T|y =0, and the proof is complete.

Proposition 5. The projection Cs depends on Ve, Vra, 710 73, 72O 73,

T2 O 14, T30 73, 740 74.

In faet, the symmetric tensor field (R — L3 R) determines & ([19]). By
means of Theorem 8.1 in [19] and of (2.8), (1.7) one obtains

) 2n _ - .
lO(R"LgR)(X,X)= 2 {2Vei’?2(X,X,Jei)+ VxT4 (ei, €, JX) + VJXT4 (Gi, €, X)}
i=1

2n

2n
@10 _ 3 {1+ )Xy, X, e 75 (X, e, Jo)= 3 wlep X, Jedws(e X, Te)}

Ll= W=

+275 (X, X, JB) — 2(n — 1)(BUJX)? - B(X)*)
where {e;, Je;} is a local orthonormal frame.

Proposition 6. The projection C; depends on Vs, V1, 710 73, 72 O 73,
9O 1y, 13O 73, T30 74. If =3, the v{ O vy-component vanishes.

In fact, Theorem 8.1 in [19] yields to

= 1p_ ___3 * (R —
GX,Y)= 2 (B-L3R)X,Y) 5tn T 1) g(X, JY)o* (R — Ly RY(X, JY)

- mlt'ﬁ {9(X, X)p(R — LyR)(Y, Y) + g(Y, Y)o(R — L3 R)(X, X)
-29(X, V)o(R — Ly;R)(X, Y)}.

Then, applying (2.8), (2.9), (2.10) we express C; as a function of Vz,, V3,
vT‘; and of suitable contractions of 71® T3y Tg@ Tz, T1 © T4y T2® T4 T3® T3,

Tg@ T4y T4® T4-
Now, the v, © v,-component in & is determined by the algebraic curvature
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tensor field T’ defined by

2n

T(X; Y)= - -1- 21 {T4(Xy Y,Jei) - T"4(177)(: Jei)} Tl(eiiX’ JY) “‘g(X,JY) TI(X; Y;B) .

Then, applying (1.7), we get T(X,Y) =0, that is T =0.

The vanishing of the =, © r4-component is proved in the same way. Relation
(2.6) is applied to prove that the term in & (X, Y), expressed by means of Vr,,
vanishes.

Finally, let T denote the v; ® 7s-component of @;. Then 7 is a section of
R(M) and the values T(X,Y) can be easily evaluated using (2.8), (2.9) and
(2.10). By means of (1.10), we obtain T'(X, Y, Z, W), for any quadruplet of vec-
tor fields. When # =3, there exists a local orthonormal frame {e;, Je;} such
that 7, (e, €5, Jeg) = 0. It is easy to prove now that T vanishes for any quadru-
plets of vector fields choosen in this frame. Thus the proof of Proposition 6 is
complete.

3 - Some applications to the Lie groups

Let (G, g, J) be the almost Hermitian manifold consisting of a connected Lie
group G equipped with a metric and an almost complex structure which are
both left-invariant. Then, the Riemannian connection V is detemined by

3.1) 29(VxY, 2) = g(X, Y], 2) + 9((Z, X), ) + 9(1Z, Y], X)

for any X, Y, Z in the Lie algebra g of G.

The aim of this section is to compute the X*-projections of R, for suitable
manifolds (G, g, J). These projections are determined by the values on the
quadruplets (X, Y, X, Y) with X, Ye g.

Table 1, 2, 3 present an outline of the results which will be stated. They give
the real dimension, the Gray-Hervella class and the non-vanishing % *-projec-
tion of the curvature of the examined manifolds.

Table 1 Table 2
4 WD W, | %o+ G+ G 6 Wy K_g
4 W, O W, Cs + Gy 6 W, B W, Koy + Koy
4 W, K_y + C
4 Wy K1+ G
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Table 3
6 W, Ry
8 W Hoy+ Koo
2n,n =5 Wy by SR O
21, n =5 W, Ko+ Koo+ G

For any (2, ) e (R)*, let Gy, ,y be the 4-dimensional Lie group consisting of
matrices considered in [1], Sec. 6, Example ¢, equipped with the left invariant
metric g, ,) such that

9 w 9 et 9y

:—a— :At = =
{e; 2 e 2 B¢ % e, =e %

is an orthonormal frame on g ([1], [14]).
Let J be the left-invariant almost complex structure such that

J(e) =ces J(ex) = deg c,deR, ci=d%=1.

Then, using (8.1), we obtain the possibly non-vanishing components of V,
ie.
Voer=—%ey Vyea=2e, Voer=—peg Vye3=ype

3.2) *
Vier=(+pwes Vye=—-Q+pe.

Proposition 7. For any pair (A, p) e RD*, (G, s 9o,m,J) s not a
Kihler manifold. Indeed, it is a global conformal Kdhler manifold iff A = u, an
almost Kihler manifold iff A = —u. For the X*-projections of R we have C; =0
and Cg# 0. Moreover, C; vanishes iff 2 = tu and X_; vanishes iff =0 or
w= 0.

In this case, t» and 74 determine Vw. It is easy to prove that the possibly
non-vanishing components of 7, are obtained by means of

To(es, €1, €3) = Tg(es, 1, €) = %d(l - )
75 (2, €2, 84) = —7(e3, €3, €4) = —%C(A—,U-)-

The Lee form is exact, since one has 8= —%(A +w)dt. Thus, the first
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part of the statement is proved. By means of (2.4) and (2.6) we obtain
(z — v*)(R) = —4Au. Therefore X _; vanishes iff 2 =0 or u =0.

Moreover, using (2.7) and (1.10), one can prove that the possibly non-vani-
shing values of C; are determined by

1
Cs(ey, 62, €1, €3) = —Cs(ey, €3, €1, €3) = 2(7\2 )

1
@5(611 €9, €3, 34) = _@5(61, €3, €3, 64) - Z()\z —(.LZ)Cd.

So, G5 vanishes iff A=p or A= —pu.
Moreover, @; vanishes, since one has

o* (B — LyR)ey, e2) = o* (R — LyR)(e1, €3) = 0.

Note also that the values o* (B — Ly R)(eq, €2), ¢* (R — LyR)(e;, ¢3) determine
¢*(R — LyR). Finally, G3 never vanishes, since using (2.10) we have o(R
- LgR)(el, 61) = 2(}2 -+ ‘U.z + )\‘U.).

Remark 3. Table 1 represents a scheme of the statement of Proposi-
tion 7. In fact, the first row correponds to the choice of (A, z) such that
Mgy At u, A—u=201If A =0 or =0, then the situation corresponding to the
second row occurs. In the case A = —pu the manifold (G, -;), 9o, -5, J) turns
out to be an almost-Kihler manifold such that G = 0. Finally, the last row of
Table 1 corresponds to the case A =g,

Now, let G be the group consisting of the real matrices

rl .'X/'l mz 0 "?/1 ___wa
0 1 =22 0 0 —y3
0 0 1 0 0 0
0 ?/1 yz 1 xl xz
0 0 y: 0 1 z®
0 0 0 0 0 1 )

equipped with the left-invariant metric ¢ such that:

o 2] 1 0 2] 1 @
6= ——, 0= ——, =01 — + 2 +y! L,
ta axt’ P oa? ° dx?  3x® dy?
2 o 1 @ 1 0 2
€ = —=,6= ——,6= ~Y — +t¥ —5 + —
Eoaylt P gy’ Tt Y o oy? ay3}
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is an orthonormal frame of Lie algebra g of G. The only non-vanishing brackets
are [e;, es] = —ley, 5] = ez, [e1, 5] = —[e3, e = 5.
According to [2], let J be the almost complex structure on G, defined
by
J(ey) =e, J(e) =e5, J(es) =eg.
Then (G, J) is a complex Lie group and we have
3.3) [X,JY]1=[JX,Y]=J(X, Y] X, Yeq.

In the present case, the covariant derivative Vw is a section of W (G).
Moreover, by means of (8.1), (3.3) and (1.1) we get

B4 X Y,2D=-gXIY,JZ) g(VxY,2)= %(g([X,Y],Z) +9(Z, X}, ).
for any X, Y, Z, of g.

Proposition 8. The projection X _, is the only non-vanishing X*-compo-
nent of the curvature of (G, g, J).

As an immediate consequence of (2.4) and (2.7) we obtain the vanishing of
H., and @;. In the present case (2.8) reduces to

(Co+ G+ GX,Y) = %—{fog(y, Y, JX) + Vyr3(X, X, JY)
+V,es (Y, Y, X) + Vs (X, X, V) — 273 (2(X, 1), X, JY)} X, Yeqg.

Moreover, (3.3) and (3.4) imply also Vx(JY) + V,x Y =[X, JY] and this rela-
tions gives

(3.5) Vs (Y, Y, JX) + V33 (Y, Y, X) = 0.
Using (1.3) and (3.4), we get

B6) (X, Y) X, JY)= %{Q(X, (Y, X], YD +g(¥,[[X, Y], X]} =0

since, for any X, Y e g, [X, Y] is a linear combination of e,, e; and, for any Z,
les, Z] = [es, Z] = 0. Thus, (8.5) and (8.6) imply the vanishing of G, G, Gs.
Finally, since v(R) = v*(R), the projection X_, is determined by the tensor
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field (¢ — ¢*)(R + Ly R) and using (2.5) and (3.4) we have

[=23

— 3
(6 — ¢*"NR + LyR)(es, ) = 2 .21 Veifa*(@z, s, Je;) =4 '21 Veifg(ezy ez, Je;)
i= i

3 6
= -2 E Elg(QZa[elw ei])2= —4.

is1 b=
Now, let J' be the almost complex structure such that
JI(61)=€4, J,(ez): — €5, J’(e3)=66.

Then, (G, g,J’) is a quasi-Kéhler manifold, ie. Vo' is a section of
W (@)D W(G).
Moreover, since

3.7 Ve(J'Y) +J' (Vg ¥) =0

one has VyY =0 X, Yeq. This means that V coincides with the Cartan-
Schouten connection on (G, g). Therefore, any left-invariant tensor field is

V-parallel.

Proposition 9. The only non-vanishing RX*+-projections of the curvature
of (G,g,J') are X_{ and K_,.

Since Vo' is a section of W, (G) @ W, (G), (2.7) and (2.8) imply that @ and
Gs + G; + @3 depend on the covariant derivative Vz,. But V=, = 0, since 7, is
left-invariant. So, one has: G =G =C; =G =0.
Moreover, (3.7) implies X(X,Y)= -VyY+VyX=—[X,Y] X Yegq.
Therefore, applying (2.4) and (1.5), we have
(=B = =i+ 5 Il = 8

that iS 3{,_1 # O.
Analogously, using (2.5) we obtain

6
(6 —e*)R+ LyR)X,Y) =2 gl(rl + )X, ], X, I " e;).

In particular, (o ~ p*)(R + L3y R)(es, €, ) vanishes and so H_, # 0.
The results stated in Propositions 8 and 9 are summarized in Table 2.

Table 3 refers to the following class of examples.
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Let G be a connected n-dimensional Lie group, equipped with a biinvariant
metric g. For sake of simplicity, G is assumed to be simply connected.

We recall that, if » =3, g is an Einstein metric with constant sectional cur-
vature and the Lie algebra g, up to isomorphisms, is R® or su(2) ([(16)).

As in [2], we consider the nearly-K#hler manifold (G X G, ¢g', J), where ¢’
and J are both left-invariant and are defined by:

g'XN, Y=g (X", YN =9(X,Y) ¢'X,¥Y)=9'X"¥Y)=0
JX)=X" J(&XY=-X

where, for any X of g, X*= (0, X) and Xt = LS(ZX, X).

As a consequence of the relations \/—

(X, V%) = —e(XP, Y1) =~ L[X, YT
3.8) .
(X, Y = <, YY) = X, YT

(G X @G, g',J) is Kihler manifold, iff g is abelian.

In the non-abelian case, which can occur if n = 8, for the & *-projections of
the curvature R’ of G X G, one has: X_; # 0, and, possibly, only X _, and &
don’t vanish. The following lemmas are useful to obtain conditions for the
vanishing of X_,.

Lemma 5. For any X, Y e g, we have

P(RNX®, Y") =p(RNX", YM) = ~1929(R)(X, Y)

(3.9)
p(RYX?, Y?) = o(R)X", ¥") =0.

A direct computation gives
R'X"Y'Z)=RX)Y,2’ R'X"Y"Z"=R(X,Y,2)"

(3.10) P | 2 ;
R'X"Y"Z )=§{R(X,Y,Z)+ —?;R(Z,X,Y)}‘ XY, Zeg.

With respect to an orthonormal frame {e?,el};<i<n of g g, where
{e;i}1<i<n is an orthonormal frame of g, using (3.10), we obtain

p(R)X", X*) = Jggp(R)(X, X) e(R)X", YM=0.

These relations and the J-invariance of g(R') imply (3.9).
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Lemma 6. The =-Ricci tensor of (G X @G, g',J) is given by
3.11) SH(R') = —é—p(R').

Indeed, choosing the same orthonormal frame as in Lemma 5 and applying
formulas (2.3), (1.5), (1.3), (1.4), (8.8), (8.9), we have

n
20— p"IRNX", Y = =8 3 1(=(Y*, &), X°, ef)

—4 S 4@y, e, X1, 6) = L omx, 1 = SR, ¥

i=1

n
206 —p*NRNX", YY) = -8 3 7, (z(Y", e}), X", el
i=1

w|oo

1
2 9" (=Y, T, X", eD) = 0.

These relations, together with the J-invariance of p(R’') and p*(R') imply
(8.11).

An immediate consequence of Lemmas 5,6 is

Proposition 10. The following statements are equivalent

i. (G, g) is an FEinstein manifold

ii. (GXG,g') is an Einstein manifold
iii. (GXG,g¢g',J) is a =Einstein manifold
iv. The projection HX_, of R' vanishes.

As far as regards the projection G, of R’, it vanishes if » = 3. Moreover,
when n =3, SU(2) is, up to isomorphisms, the only simply connected, con-
nected and not abelian Lie group which admits biinvariant metrics. So,
SU(2) x SU(2) is the model corresponding to the first row of Table 3. The pro-
jection @4 vanishes also when n =4 (see Proposition 2).

The group R X SU(2), equipped with the product metric of biinvariant met-
rics on each of the factors, is an example of a non-Einstein 4-dimensional mani-
fold. Therefore, the product manifold (G X G, g', J), with G =R X SU(2), is a
model of the nearly-Kihler manifolds considered in the second row of Table 3.
As a consequence of the following proposition, we realize that this manifold is
the only model.
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First of all, using Lemmas 1,2,5 and 6 we get

V VU e ___];__ 2 1 2
XY=~ 5 X Y11 - g (XIPe BT, 1)+ |71 (RY X2
(3.12) “(B)
- A 2 vz — 2
290X, Ve (BYX, ) + go—pyo—gy (X IYIP — g (X, 7).

Proposition 11. Let G be a connected, simply connected non-abelian Lie
group, equipped with a biinvariant metric g. If the projection G, of R’ vanishes,
then G is 3 or 4-dimensional and the manifold (G, g) is isometric to (SU(2), go)
or to (B X SUK2), g, X go), where g,, go are bitnvariant metrics on R, SU(2),
respectively.

First of all, G is assumed to be a simple Lie group. Then, (G, g) is an Ein-
stein manifold, since we have g(X, Y) = AB(X, Y) X, Ye g, where X € R* and
B is the Killing form of g. ‘

Applying (8.12), the vanishing of G implies that (G, ¢g) has constant sectional

(R)
n(n — 1)

curvature given by K = , Where n = dim G. Therefore, we get

- 19X, Y112, WD) = R(X, Y, 2, W)

8.13) =(R)

= T 9K D, W)~ g(¥, Dg(X, W}

Since G is not abelian, the sealar curvature t(R) does not vanish,
Let {€;}1<i<n» be an orthonormal frame on g. Then (3.18) implies that the
nn —1)
2
has » =8 and (G, g) is isometric to (SU(2), g»).

If G is not simple, we consider the orthogonal direct sum decomposition
g=3®I[g, gl, where 3 is the center of g, with m = dimgz = 1.

Then G, g) is isometric to the manifold (R" X H, g; X g,), where H is a com-
pact Lie group equipped with a biinvariant metrie g,.

Now, we prove that m = 1. In fact, if m = 2, for a choice of an orthonormal
w(R)
3(n—~1n—-2)
Gy =0 implies 7(R)=10. Moreover, the hypothesis ¢, =0 and (3.12) yield

IXIF o (RXY, Y) =0, Xe3, Yelg, gl

vectors {[e;, e,]}1<i<p<n are linearly independent. Therefore, one

pair (X,Y) in 3, we have G (X", Y") = So, the hypothesis
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Thus, ¢(R) vanishes, and, using again (38.12), one has: [X, ¥Y]=0,
X, Yelg, gl. This proves that g is an abelian Lie algebra, contradicting the
hypothesis. “®)

Moreover, (3.12) yields I[X]lz{——-l— IY|E—c(®) (Y, )} =0, Xe3, Yelg,qgl

n—
This proves that g, is an Einstein metric.

Applying the condition G;(X”, Y") =0 to the pairs (X,Y) of vectors in
[g, gl, we find that (H, g,) has constant sectional curvature. Then, using the
same argument as in the previous case, we have » — 1= dim[g, g] <3. If
7 =3, G should be an abelian or a simple Lie group. So, # = 4 and H is isomor-
phic to SU(2).
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Sommario

Si studiano le proiezioni della curvatura riemanniana su opportuni sottofibrati del
fibrato dei campi tensoriali di curvatura algebrici di una varietd quasi hermitiana. St
ottengono quindi proprietd di curvatura per alcune classt di varietd quasi hermitiane e
per opportuni gruppi di Lie.
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