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Product simple sets of polynomials in Clifford analysis (**)

1 — Notations and preliminaries

The theory of basic sets of polynomials in complex case has been already
generalised to the Clifford setting (see [1], [2]). Clifford analysis is one of the
possible generalizations of the theory of holomorphic functions in one complex
variable to the Euclidean space of dimension larger than two. For details con-
cerning this theory we refer the reader to [4].

The regular functions considered in the present work have values in a Clif-
ford algebra and are null-solutions of a linear differential operator which k-
nearizes the laplacian (see e.g. [9]).

Let © be an n-dimensional real (resp. complex) vector space with a bilinear
form (v|w), v, we © and an associated orthonormal basis (e;, e, ..., e,) such
that

(e;le) =0 if i=j (e;ley=—1 ,7=1,..,n.

Consider the 2"-dimensional real (resp. complex) vector space @ (resp. Af)
with the following basis {es = ey, . |A={hy, ..., .} eP{1, ..., n};
1< hy <...<h,<mn} e being written as ¢, or 1. Then arbitrary element @ of @
(resp. A®) can be written as a = %eAaA, as e R (resp. ay e C).

One defines a product on @ as follows e,ep = (—1)*ANB (P4 B, o
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where P(A, B) = 2, P(A, ), P(A,7) =#{icA,i1>j},thesets A, BandA A B
jeB
being ordered in the prescribed way. It is easy to see that:

i ¢ is the identity element

a

il ee +ee=—2dy
ili If by <hy < ...<h, then ¢, €,,...e;, =€y 4,

One proves also that under the above notations @ (resp. @°) is a linear asso-
ciative but non-commutative algebra, called the real (resp. complex) universal
Clifford algebra over .

As @ (resp. @) is 1somorphlc to R¥ (resp. C*") we may provide 1t with the

Euclidean norm |a| = |aA|2)2 and it is easy to show that |a-b| < 22 |a]-|b]
a,bed (resp. ac).

Clifford analysis is developed within the following frame-work. On the one
hand we have the Euclidean space R™ *?, the points of which are denoted alterna-
tively by @ = (g, %1, ..., L) = (%o, £); ¢ laying in the hyperplane x, = 0 which is
identified with B™. On the other hand we have the Clifford algebra @, its space of

1-vector @;=sp{e;:i=1,...,n} having dimension %; it is assumed that
m < n.
For xeR™ ! xeR™ we put ¢ = Z 6T =y + ¢, %= 2 ¢ x;, and
i=1

z= Zelxz—%’o—x

By Q we denote an open set in R™* 1. The functions under consideration are of
the form f: Q —» @, x — fle) = zeAfA(’U), fa: @ —>R.

Int1 oducmg the generalised Cauchy—Rlemann operator D= Z 0; 0y, =690y, + Dy,
Dy = Z ¢;3,, one has

j=1
Definition 1. Let Q cR™*! be open, then an @-valued function fis called
(left)y monogenic in Q, iff fe C,(2; @) and Df =0 in Q.

Definition 2. A polynomial P(z) is special monogenic, iff DP(x) =0 (so
finite

P(x) is monogenic) and there exists a; e @ for which P(z) = 2, T'a’ay.
LI

Definition 3. Let  be a connected open subset of R™*! containing 0 and
let f be monogenic in 0, then fis called special monogenic in Q, iff its Taylor series

near zero (which is known to exist) has the form f(x) = >, P, () for certain spe-
cial monogenic polynomials P, (x). =0
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The fundamental references for special monogenic functions are [4],[9].

Remark. A homogeneous special monogenic polynomial P, (x) of degree n
is necessarily of the form P, (x) = p, (x) ¢,,. Hereby ¢, € @ and p, (x) is given by

the generating function —ﬁ-l-—_—l%;ﬁ (see [1]).
-

2 — Product sets of special monogenic polynomials

From the begining we recall the notion of basic set of special monogenic poly-
nomials, ¢f. [1]. Let {P,(x)}, n e N be a set of special monogenic polynomials
ie.

(1) P.@ = 3 5@ Py Pyea.
2

I
We shall say that {P, (x)} is A-linearly independent if 2, P,(x)a; = 0 implies
j=0

a,=0,k=1,..,1, for every finite sequence (ay)}_; in @.

The set {P, (x)} will be called basic iff it is a basis for the set of special mono-
genic polynomials; ie. if every p,(x) can be expressed as a right d-linear
combination

(2) pn(X) = zéopk @X)7mpy, Tped

we shall call {P, (x)} a simple set if deg P, (x) = n for every n e N. If for a simple
set {P,(x)} one has P,, =1 for all n e N, then it will be called a simple monic
set.

Generalising a result of Whittaker ([10], T. 34, p. 40) to the Clifford setting,
we can see that a set of special monogenic polynomials {P,(x)} is basic, iff its
Clifford matrixz of coefficients P = (P,;) has a wunigue row-finite inverse
II = (7,;), which we call the matrix of operators; the proof is completely similar to
the complex case. The inverse set {P, (x)} was defined in [3] as the basic set whose
Clifford matrix of coefficients is 7, and consequently its Clifford matrix of opera-
tors is P. 5

If fis a special monogenic function such that f(x) = 20 P (@) ¢, (near 0),
then "=

3) f@)= 3 Pu@) (3 mucy).
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A basic set {P, ()} is said to be effective if for every special monogenic function f,
defined in a closed neighbourhood of zero B(R) of the radius R > 0, the series (3)
converges normally to f in B(R).

Set
1
(4) MR) =1lim sup (X, (B)" where
(5) )\n(R) = i sup ]Pk(m) nnkl = (E ”Pk(fc) Tk ”R)
K=0 |z] =R %

The last sum is called the Cannon sum cf. [1]. We showed in [1], Theorem 1, that
a simple set {P,(x)} is effective in B(R), iff \R) = R.

Now we are ready to give the definition of the product set {P, (x)} of special
monogenic polynomials; a similar definition for the complex case was given by
Nassif [7]. ’

Let {Pl(x)} and {P2(x)} be two basic sets of special monogenic polynomials
whose respective matrices of Clifford coefficients are P; and P,; the product
P = P, P, is the matrix of the Clifford coefficients of a set {P,(x)} of special
monogenic polynomials.

In faet, if I7, and II, are the respective matrices of operators of the above sets,
then by a similar way of Whittaker [10], T. 34, p. 40, we deduce that {P, (x)} is
basic. This basic set {P, (x)} is defined as the product set of the sets {PZ(x)} and
{P} ()} in this order. We shall write

(6) {P,(®)} = {PE(x)}{Ps ()} .

According to this definition we can define any positive or negative power of a
given basic set and also the product of more than two sets.

It is noteworthy that each of the product sets {P,(x)}{p,(x)} and
{pn (@)}{ P, (x)} is the set {P, (x)}. Also the inverse and in fact any positive or
" negative power of the set {p, (@)} is the same set {p, ()}. In this theory the set
{p.(x)} plays the part of unity and may be accordingly called the wunit set.

From (6) one deduces

(7 P,(x) =2 P} (x) Py .
J

In [10] Whittaker asked, when the product set of complex polynomials is effec-
tive? In this note we answer this question for the product set of special monogenic
polynomials but only for the case of simple sets.
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The following example shows that in general the product of two effective basic
sets need not be effective.

Example. Set

Do (m)
,nn

Pl(x) = p,(x) + n odd Pl(x)=p,(x) 7 even

and PZ(x) = p, (&) + n"p, 41 () n odd
Pi(@)=(n-1%""Vp, (@) +p,(®) n>0even, Pi)=1.

It is easy to see that

n—1(T 2 (2
Po(@) = pu(@) + 0P, 4 1 () + (20 — D2 2 “nif L XSO,

P ()= (n—1""Vp, (@) +p, (@) n>0even, Py(x)=1.

This shows that the set {P,(x)} cannot be effective in the closed ball B(R).

Suppose further that the factor sets {P2(x)} and {P. (x)} are not effective in
B(R); is the product set {P,(x)} not effective there either?

The answer is negative since we can take {P.(x)} as the inverse set of
{PZ(x)} to yield, for the product set, the unit set {p,(x)} which is everywhere
effective.

We conclude this section with some examples.

Examples.
i. Let the basic sets {P}(x)} and {PZ(2)} be given by
Plx)=1+p, (@) forn=1 Pix)=1
PZ(x)=p,(x) foralln=0.

The product set {P,(x)} which coincides with {P} (x)}, is effective in B(R),
for R = 1, where both the sets {Pj(x)} and {PZ(x)} are effective.
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ii. Now let {PZ(x)} be given by

Pi(x) = :9,177 p,(x) for n=0

while { P} ()} is the same as before. It is easy to see that the product set {P, (%)}
in this case is not effective in B(R) for 1 < R < 3, where both the sets {P}(x)}
and {PZ(x)} are effective.

We showed that to obtain the effectiveness of the product of two sets it is
necessary to impose some additional conditions on { P (x)} and {PZ(x)}. We start
with the following special case.

3 — Effectiveness of simple monic sets
In this section we give the key lemmas to obtain the main results of Section 4.

Lemma 1. Let {Pl(x)} and {PZ(x)} be simple mowic sets of special
monogenic polynomials both effective in B(R). Then the product set
{P,(x)} = {P2(x)}{P} ()} is effective in B(R).

Proof. Since {Pz(x)} (« =1, 2) is effective in B(R), then by Cannon’s theo-
rem (see [1]), if p is any finite number greater than R, then A*(R) <p.
Hence

(8) 2(R) <Ko" m=0.

Since 12 (R) = || P¢(x) =% ||z and {P7(x)} is effective, then for every p > R,
there exists K such that

9 |1Pg(x)n%|lp < Ko™ O<ksmn.

Since the set {Pz(x)} is monic, then for all » we get Py, =1 and =5, = 1.
Using Cauchy’s inequality one obtains

. IP: @)l L M)

(m), R” R m),=m(m+1)...(m+n—1).

(10) 1=

Applying again Cauchy’s inequality (to the polynomial P} (x)) together with
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(7) we have

P} (03)
(an Pl < 2% 3 1P @l i T 1L @l

Now, since {Pf(x)} is monie, then

PE(@) mnp = Dp®) 7o + Pie -1 (R PE -1 7o + - + Do () P g e -

Consequently,

(12)

B Pi@) e
b4 S = .
| nkl (m)k Rk 21 11 2

From the definiton of the Cannon sum (5) and by (8), (9), (10), (11) and (12) we

get

m n

dn(R) <22 OHPk(mHRIwnkI

P
<3 B2 Ipwl, 12 @le “"“”R PAERIEY

n k 2 R 2 .
<om Z ( ))\ (R)E / ”Pk(x)'fzk”R ). ”P ('E)"m”R

k=05=0 R?

<om 3 iK(P)’KP EA(R)

k=07=0

1Pf @) =3l
S ‘o Pk LN £ i p2
<2" 2 K(p) % K(p Y K(G)|PH@) wle

< K2™(n + 1)3(-1%)37in(12).

Making use of (4) we obtain A(R) < R(£)3. As p can be chosen arbitrarily
close to B, we get A(R) = R. By Cannon’s theorem of [1] the product set { P, (x)}
is effective in B(R) as required.

Corollary 1. If {Pi(®)} and {PZ(x)} are such that {Pl(x)} is

simple and {PZ(x)} is simple monic and both are effective in B(R) then
{P, (@)} = {P2(x)}{PL(x)} is effective in B(R).
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Proof. Take Pl(x) = M} (x)PL, then M} (x) = Pl(a)(PL,) ! is still special
monogenic in the sense that {M,% (%)} and {P.(x)} have the same region of effec-
tiveness in B(R). Now, due to (6) we have

P, (x) = M, (%) Py,

where {M,, (x)} = {PZ(x)}{M,} (x)}. Since {PZ(x)} and {M}(x)} are monic sets
and effective in B(R), then applying Lemma 1, {M,, (x)} is effective in B(R). This
means that {P,(x)} is effective in B(R).

The following result of [3], Theorem 1, will be used in the sequel.

Lemma 2. If {P,(x)} is a simple mownic set of special monogenic polyno-
mials, effective in B(R), then the inverse set {Rz ()} is effective in B(R).

4 - Effectiveness of non-monic simple sets

In this section we prove two theorems.

Theorem 1. If{P}(x)} is a simple set effective in B(R;) and {PZ(x)} is ef-
fective in B(Ry) and such that
1

(A) Jim |P2,|" =H O0<H< o

then the product set {P,(x)} = {P2(x)H{Pi(x)} is effective in B(R),
R
R= max(—ﬁl-, Ry).
Theorem 2. If {P,(x)} is a simple set effective in B(R) and such that
1
(B) Jim, |Ppl™ =H 0<H< w
then the inverse set {P,(x)} is effective in B(HR).
In order to prove these theorems we shall need also the following
Lemma 8. If {P.(x)} is a simple set of special monogenic polynomials ef-
fective in B(R), and {PZ(x)} is the diagonal set {p,(x) PZ,}, where PZ, satisfies

(A), then the product set {P,(x)} = {PE(x)}{ P} (x)} is effective in B(RH ).

It is clear that this Lemma 3, is a particular case of Theorem 1, where the set
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{P2(x)} of Theorem 1, is now everywhere effective. But we shall deduce Theo-
rem 1 from Corollary 1 and Lemma 3.

Proof of Lemma 3. Keeping the same notation we used in the proof of
Lemma 1, we have

I (RH™) <272 >kJ 1Py (@H "Hg | 7|
k
< 2’”; | ,ZOPf(mH NP |7 7]
2

7 1 l’f}zkl

~2m ” Ep](wH Y PEPi e P2,

From (A), given any H' > H, there exists a constant K such that P2, < KH'™,
n = 0. Hence

7 ®H) <2 KH™ 3 [PYH -———l';"k’ .
nn

Using Cauchy—Kowalewski extension theorem (see e.g. [4], [9]) it is easy to prove
that p, (xH 1) =

at p,(xH ™) H”

Then, by (8), (9), (10), (11) and (12) we get

-1 m ' —-1\n < 1 k! ”‘Pk1 (x)ﬂvlzk”R 1
Ag(RH = 2"Kn+1)H'H™) kgollpk(m)”}h’(m)k I 3

—— Dy ().

<2"K(n+1WH' H™ l)"Z( £ )k”Pk (@) gl ——

| mzI

AL (R)

<2"K(n+ 1P H H Yy
IPnTL

Since the set {P}(x)} is effective in B(R), then A'(R) =R
As H' is arbitrarily chosen greater than H, then A(RH ') < RH'. Since
MRH™ Y2z R, for all R, A(RH ') =RH . This proves Lemma 3.

We now deduce Theorem 1. Let {P2(x)} be the set obtained from {PZ(x)} by
dividing each polynomial P2 (x) by PZ,. The sets {PZ(x)} and {PZ(x)} are effec-
tively the same. Thus {PZ2(x)} is effective in B(Rj).
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Writing {P, (@)} = {P2@)}H{p, (x) P5,H Py ()} = {P @) H{V, (@)}, by Lem-
ma 3 and (4), the set {V, ()} is effective in B(R, H ~1). Then, by Corollary 1 the
product set {P2(x)}{V, ()} is effective in B(R), R = max (R, H !, R,). This is
the result of Theorem 1.

We proceed to deduce Theorem 2. Since the set {?,L(:c)} is monic,
its inverse set {P,(®)} is (by Lemma 2) effective in B(R). From
{P.@)} = {P, (@)} {p. () P,,} we have {P, (@)} = {p, (@) P,;'} { P, (2)}. Apply-
ing Lemma 3 and (B), we get Theorem 2.

Theorem 1 and Theorem 2 can be combined together to yield

Corollary 2. Let {Pl(x)} and {PZ(x)} be simple sets of special monogenic
polynomials and suppose that the set {PZ(x)} is effective in B(R) and satisfying
condition (A). Then the product set {P,(x)} is effective in B(R), iff the set
{PL(x)} is effective in B(HR).

Proof. . To prove the only i we first observe from (A4) that
Jim |P2,|™ = %, and by Theorem 2, the inverse set {PZ(x)} is effective in

B(HR). Suppose now that the product set {P, ()} is effective in B(R). As we can
put

{PL()} = {P2(x)}{P, ()}

the conditions of Theorem 1 are satisfied for the sets {P,(x)} and {PZ(x)} in

B(HR) with L jnstead of H. Hence the product set {P}(x)} is effective in
B(HR).
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Sommario

Un teorema di Whittaker sull’effettivita degli insiemi prodotto e degli insiemi inversi

di polinomi nel caso complesso viene qui considerato nelle algebre di Clifford.






