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On the semi-Riemannian structure of the tangent bundle

of a two-point homogeneous space (**)

1 — Introduction

The tangent bundle TM of a manifold M is an object used to study the mani-
fold M. Moreover, as its own construction is closely related to the structure of
the manifold M, it seems reasonable to wonder what type of geometric informa-
tion goes through them each other.

The diagonal lift g?, associated with a Riemannian metric g on M, is a Rie-
mannian metric on TM called the Sasaki metric of TM. Such a metric on TM
makes the projection =: TM — M a Riemannian submersion. This fact seems
particularly interesting for the study of the geometric properties of both spaces.
In[6] the curvature of the metric g” was studied.

The complete lift g€, associated with the Riemannian metric g, is a semi-Rie-
mannian metric on TM of signature (n, n), (n = dim M). This metric was initial-
ly investigated by Yano and Kobayashi, showing that (TM, g°) has vanishing
scalar curvature, and moreover, that (TM, g©) is an Einstein space if and only if
M is Rieci-flat [16].

The aim of this paper is to investigate the curvature of the metric g€. Since
(TM, g©) is a locally symmetric space, if and only if the base manifold (M, g) is
s0, we will concentrate on the study of TM, when M is a two-point homogeneous
space (except the Cayley plane), showing how certain conditions on the curva-
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ture of (TM, g©) turn out to be characteristic of the tangent bundle of a two-
point homogeneous space.

The paper is organized as follows. In Section 2 we summarize some known
results about the curvature tensor of g¢. We refer to[16] for a general treat-
ment of TM and some basic facts concerning g¢. For the purpose of this paper,
we will express the curvature tensor B of g€ in terms of vertical and horizontal
lifts of vector fields on M. The expression of the Rieci tensor, Rie, will allow us
to show that it is not diagonalizable with respect to a g -orthonormal basis un-
less it vanishes.

Using the results of Section 2, in Section 3 we prove that (TM, g©) is locally
conformally flat, if and only if (M, g) is a space of constant curvature.

Section 4 is devoted to the study of the tangent bundle of a Kéhler manifold
(M, g, J). We show that (TM, g€, JC) is an indefinite Kiihler manifold, if and
only if (M, g,J) is Kéhler, and moreover the tangent bundle has vanishing
Bochner tensor, if and only if the base manifold is a complex space form. As an
application of the results of Section 2, in Section 4 we exhibit examples of locally
symmetric indefinite Kihler manifolds with vanishing Bochner tensor, but nei-
ther of constant holomorphic sectional curvature nor locally isometric to a prod-
uct of Kédhler manifolds of constant holomorphic sectional curvature.

Finally, Section 5 is devoted to the study of the tangent bundle of a quater-
nionic space form.

2 ~ Preliminaries

Let (M, g) be a connected n-dimensional Riemannion manifold, TM, its
tangent bundle and g€ the complete lift of the metric g to TM. Then g€ is a semi-
Riemannian metric of signature (%, »), which coincides with the horizontal lift
g of g when this is considered with respect to the Levi Civita connection V
associated to g[16].

Taking into account the decomposition of the tangent space to TM given by
V at every point £ e TM, for each vector field X on M we denote XV (resp. X¥)
the vertical (resp. horizontal) lift to 7M. In terms of these lifts, the complete lift
of the metric is characterized by

@1  gCXH, YH) =XV, Y =0 g°XH Y")=g"X", YH)=gX, V)V

where g(X, Y)V denotes the vertical lift of the secalar g(X, Y).
Note that the horizontal and vertical lifts of the vector fields on M are null
vectors for g¢. Moreover, if {X;,..., X, } is a local orthonormal basis for the
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vector fields on M, then

1 1
2.2) {_\/5 &7+ XD, Vi C.GED 5] PR
is a local orthonormal basis for the vector fields on 7'M, being
1

V2

Let V denote the metric connection associated to g°, then[16]:

iz xF + xV)

.\/_

spacelike unit vectors, and (XH - XY) timelike unit vectors.
@23) Vyp¥Y"=0 Vg V=0 VuY'=(VxY)W VnY¥=(V,7)"+yR(X,Y)

for any X, Y vector fields on M, where yR(X, Y) is the vector field on TM
given by

YR(X, Y) = [Xy )-;]H - [XH, YH]

and R is the curvature tensor, R(X, Y) = [Vy, Vy] — Vix y;, of the Levi Civita
connection V on M.

Lemma 1. At any point £ TM, the curvature tensor R“g of V is given by
R.XV,Y"Z"=R.X", YW Z" =R.X",Y"Z"=0
R.(XH, Yz =R.(XH, YH)ZV = {R (X, VN Z}V
R.(XH, yhyzH = {Rin X, N ZY +{(V.RXX, ) Z}V
for arbitrary vector fields X, Y, Z on M.
Proof. Direct computation. (See[16]).

An well-known result of Ambrose-Singer asserts that a Riemannian space
(M, g) is locally homogeneous, if and only if there exists an homogeneous strue-
ture on it, that is, there exists a tensor field T on M of type (1,2) such that the
connection D =V — T satisfies [15]

©24) Dg=DR=DT=0.

This result has been generalized to semi-Riemannian spaces in [4], proving
that the existence of an homogeneous structure 7' satisfying (2.4) is characteri-
stic for reductive semi-Riemannian homogenous spaces [4].
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Theorem 1. Let T be an homogeneous structure on o Riemannian space
(M, g). Then the complete lift TC determines an homogeneous semi-Riemanni-
an structure on (TM, g©). Moreover TC is naturally reductive or locally sym-
metric if and only if T is so.

Proof. The Levi Civita connection V of g€ and its curvature tensor R coin-
cide with the complete lifts V¢ and R of the metric connection V and of the cur-
vature tensor R of g [16]. Moreover, since D = V — T¢ = V¢ — TC=(V - T)C, it
follows that D = D€ and therefore

Dg®=(Dg)° DR=DCR¢=(DR) Dr¢=D°T®=(DT)Y

which shows that 7'C is an homogeneous structure on (TM, g©), if an only if T is
an homogeneous structure on M.

An homogeneous structure T is naturally reductive (resp. locally symmet-
ric) if and only if TxX = 0 (resp. 7' = 0) for all vector fields X. Hence the second
assertion follows directly from the definition of the complete lift of a tensor
fields of type (1,2)[16].

One of the interesting facts in the previous theorem is that (M, g) is a locally
symmetric space if and only if (TM, g°) is so, which suggests to study the rela-
tion between these two kinds of Riemannian and semi-Riemannian locally sym-
metric spaces. Recall that a Riemannian locally symmetric space is either irre-
ducible or locally isometric to a product of locally symmetric Einstein spaces.
This fact lies on the diagonalizability of the Rieei tensor, which is a specific fea-
ture of Riemannain metric. Since the Ricei tensor of a semi-Riemannian metric
is not necessarily diagonalizable, an analogous decomposition should not be ex-
pected in semi-Riemannian geometry.

As a first stage to the study of the locally symmetric structure on (TM, g©),
we establish

Theorem 2. The Ricci tensor, Rie, of (TM, g°) is given by
@25 Rie(X",Y")=Ric(X",YH =0 Rie (X¥, YH) = 20o(X, Y)V

where o denotes the Ricci tensor of (M, g). Moreover, the Ricci tensor Ric
is never diagonalizable with respect to any gC-orthomormal basis, unless it
vanishes.
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Proof. Let us consider the local orthonormal basis (2.2) of the veetor fields
on TM. Then

Rie(X, T) = D ¢C(B(X, ~1—2— &XF + X7 iz &7+ x0), )
j=1

V2 V2

& 5.5 1 ! &
-2 ¢°REX =& -X") =X -X), V)
i=1g \/é- \/é i i
for all X’, YeX(TM ), and (2.5) follows easily from the expressions of R in
Lemma 1.
In order to prove the non-diagonalizability of Rie, we proceed as follows. At
an arbitrary point £e TM, let us consider a symmetric bilinear form

: T.(TM) X T(TM) — R

and the associated linear map ¢: & e T:(TM)+> ¢(x) e T# (TM) defined by ¢(x)y
= ¢(x, ), for every y e T.(TM).

For any basis {«;} of T;(TM), the matrix B associated to ¢ coincides with the
matrix associated to ¢ with respect to the basis {x;} of T:(TM) and {zj} of
T#(TM). If the bilinear form ¢ is non-degenerated (B is invertible), then there
exists a linear map ¢~! with associated matrix B~!.

Let ¢ denote another symmetric bilinear form on T, (TM), and consider the
composite F =& %y, For all X e T«(TM), F(X)= (3" %X) =31 (¢(X,-))
and hence

(2.6) $(F(X), —) = ¢(F(X)) =YX, —-).

Now, if there exists a basis {E;} simultaneously diagonalizing both bilinear
forms ¢ and ¢, it follows that

2n
FE;) = kzlaikEk
2n
where $(B;, B)) = $(P(ED, ) = $ ( 2 By, Ey) = a8y, B) = 0, for i = j.

Consequently, if ¢ is non-degenerated, then ¢(E;, E;) # Oforanyj =1, ..., 2n,
and hence a; =0, Vi = j. This shows that F(E;) = a;E;, and therefore {E;}
diagonalizes F.

The non-diagonalization of the Ricei tensor on (TM, g©) follows from the pre-
vious argument, taking ¢ = ¢, and ¥ = Ric. Let us show that F = ( g% 1oRic
is never diagonalizable, and hence the non-existence of a g°-othonormal basis
diagonalizing Ric.
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For that, let {X;, ..., X,,} be an orthonormal basis on M diagonalizing the
Ricei tensor o (e o(X;, X)) = 2;85). Considering on T:(TM) the basis
(xf,...,XH,X¥,..., XV} of null vectors, it follows that the metric g has asso-

ciated matrix
0 L
C - n
g (1 o)

and the Ricei tensor is a diagonal matrix Ric = diag[24, ..., 2,, 0, ..., 0]. Hence
the endonorphism F' defined in (2.6) has associated matrix

0 0
FZ(Q 0)’

where @ is the diagonal matrix @ = diag{A,, ..., 2,].

Since the characteristic polynomial of F is given by det (F — ) = x** and
its minimal polynomial is 2?2, it follows that Ric is not diagonalizable with re-
spect to a gC-orthonormal basis, unless Ric vanishes.

2n

As a direct consequence of the expression of the Ricei tensor (2.5), we get
the known result [16]

Corollary 1. The tangent bundle TM of a Riemannian space (M, g), en-
dowed with the semi-Riemannian metric g, has vanishing scalar curvature.
Moveover, (TM, g©) is an Einstein space, if and only if (M, g) is Ricci flat.

Using the results of the previous theorem and corollary, for the locally sym-
metric semi-Riemannian structure of (TM, g©), we obtain:

Corollary 2. Let (M, g) be an Einstein locally symmetric space. Then
(TM, ¢©) is locally symmetric, but neither Einstein nor locally isometric to a
product of Einstein spaces, unless it is locally flat.

Proof. It is clear from the previous theorem that (TM, g©) is Einstein, if
and only if (M, g) is Rieci flat. Since a Riemannian Ricci flat locally symmetric
space is locally flat [2], we obtain the result. Moreover, if (TM, g©) is locally iso-
metric to a product of Einstein spaces, then the Ricei tensor Ric of TM diago-
nalizes, and hence it must vanish, which shows that (M, g) is locally flat.

The simplest locally symmetric Riemannian spaces (M, g), are the two-point
homogeneous spaces. The results of this section show that their tangent bundles
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(TM, g°) are locally symmetric spaces, and one may expect that their geometry
generalizes that of the two-point homogeneous spaces.

In what follows we will study the tangent bundle of a space of constant sec-
tional curvature, of a Kéhler manifold of constant holomorphie sectional eurva-
ture, and of a quaternionic K#hler manifold of constant quaternionic sectional
curvature. In all the cases we will show that the study of the Jacobi operator
along null geodesics on (TM, g°) allows a characterization of the two-point ho-
mogeneous spaces. In particular we will show that (M, g) is a space of constant
curvature, if and only if (TM, ¢g©) is locally conformally flat, and (M, g, J) is a
Kéhler manifold of constant holomorphic sectional curvature, if and only if
(TM, g€, J#) is an indefinite Kéhler manifold with vanishing Bochner tensor.

3 -~ The tangent bundle of a space of constant curvature

Let (M,(,)) be a (semi)-Riemannian manifold. The sectional curvature is
the function

BRX, Y, X

3.1) K(a) = (BX, ¥) )

~ (X, XY, Y) — (X, Y =% 7}

For a Riemannian manifold, K is a function defined on the whole Grassman-
nian G¢(T,, M) at each m e M, but for semi-Riemannian metrics (3.1) only
makes sense for non degenerated planes (i.e. when (X, X)(Y,Y)—(X,Y)*=0).

It is well-known that a semi-Riemannian manifold has constant sectional cur-
vature ¢ if and only if the curvature tensor takes the form

3.2) R(X,Y)Z = c{{Y, Z)X — (X, Z) Y}

and hence, for any unit-speed geodesic y, the Jacobi operator R, is a multiple of
the identity (R(—, vy ' =cl).

A particular feature of semi-Riemannian metrics is the existence of null
geodesics v, that is geodesics y such that (y’, v') = 0. The study of the Jacobi oper-
ator along these geodesics presents some significant differences coming from the
fact that B, X = R(X, y') vy’ may have a non null component, tangential to y.

In order to unify the study of the Jacobi operator for semi-Riemannian me-
tries, in[7] it is considered the nondegenerate normal bundle

vr=r Ky
where (y') is the space spanned by y’, and the Jacobi operator R—,,

R.(X)=n(R(X, y")y"), being =:(y')* —F* the projection. (Note that 7* coin-
cides with (y')* if the geodesic y is non null).
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A geodesic y is called isotropic[7), if B, =7(y')I along y, for some real
valued function 7 defined along y. Moreover, (M, g) is a space of constant curva-
ture if and only if any non null geodesic is isotropic, or equivalently, every null
geodesic y is isotropic with 7(y') = 0.

Hence, an interesting condition on a semi-Riemannian manifold generalizing
the spaces of constant curvature is to assume all null geodesics to be isotropic.
Such condition for every null geodesic y is shown fo be equivalent to the vani-
shing of the Weyl tensor[7], and hence to locally conformally flatness for
dim M = 4.

The following theorem shows that locally conformally flatness of the semi-
Riemannian metric g¢ on the tangent bundle TM of a Riemannian manifold
(M, g) characterizes the spaces of constant curvature.

Theorem 3. Let (M, g) be a Riemannian manifold. Then (TM, g°) is lo-
cally conformally flat if and anly if (M, g) is a space of constant curvature.

Proof. First of all, note that a semi-Riemannian manifold (M, (,)) of met-
rie signature v, 2 <v < dimM — 2, is null isotropic if and only if

3.3) Rlu,v,v,u)=0 VYu, v orthogonal null vectors .

In fact, it is clear that any null isotropic semi-Riemannian space satisfies (3.3).
Conversely, for any null vector % in (M, {, )), consider the nondegenerate normal
%', and define the symmetric bilinear form f(X, Y) = R(u, X, u, Y) for each
X,Yeut. Since dimu* = dimM — 2, and the projected metric tensor has sig-
nature v — 1, we obtain from [10] that (3.3) implies null isotropy.

Hence (TM, g°) is locally conformally flat if and only if, at each point
te TM, R(u, v, v, u) =0 for all u,ve T:(TM) orthogonal null vectors.

Now, let £e TM and cosider u, v orthogonal null vectors tangent to TM
at £ Since the tangent space to T'M splits into vertical and horizontal parts
due to the metric connection V on M, there exist X, Y, A, B e T, M such that
u=XF+YY, v=AH + BY, and moreover, since %, v are orthogonal null vec-
tors, it follows that:

(34) 9X,Y)=0=g(4, B) 9X,B)= —g(Y, A).

From Lemmal, it follows that

Re(u, v, v, u) = g¢(R:(u, v)v, u)

(3.5)
=9((V:R)(X,A) A, X)"+29(R(4,X) Y, A)" +29(R(X,A) B, X)".
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Now, if (M, g) is a space of constant curvature ¢, then its curvature tensor
takes the form (3.2) and hence, (3.5) together with (8.4) shows that (TM, ¢g©) is
null isotropic. Since dim M > 2, and because of the signature of g¢, it follows
that TM is locally conformally flat.

Conversely, let (TM, g°) be a null isotropic manifold, and consider orthogonal
null vectors u = X, v = Y¥; then, from the expressions above, it follows that

Ro(u, v, v, u) = g (R(XH, Y YH, X¥) = g(V:RXX, V)Y, X)" =0

and hence (M, g) is locally symmetric.

In the case of dimM =2, the local symmetry implies the econstancy
of the sectional curvature of M. Now if dmM =3, let us take X Y, Z
arbitrary orthogonal vectors at m e M, and consider the orthogonal null vectors
w=XF+YV, v=2+XYat £e TM, (=(£) = m). From (3.5), and using the fact
that (M, g) is locally symmetric, we get R(Z, X, Y, Z) = 0. Therefore the sec-
tional curvature of M is constant provided that dim M = 3.

Remark 1. Locally symmetric Riemannian spaces with vanishing Weyl
tensor are spaces of constant curvature, or locally isometric to a product of two
spaces of constant curvature ¢ and —c, or locally isometric to a product of a
space of constant curvature and the real line. The tangent bundle (TM, g©) of a
non flat Riemannian space of constant sectional curvature is a semi-Riemannian
locally symmetric space with vanishing Weyl tensor, but never belongs to the
classes listed before.

Corollary 8. (TM, g%) has constant sectional curvature if and only if
(M, g) is flat.

Proof. If (TM, g©) has constant sectional curvature, then it is null isotro-
pic with 7(y') = 0. Since the function 7 is completely determined by Ricci ten-
sor, from [7], we have

= A 1 : ' !
r(y') = 2m-1 Rie(y", v")
and hence equation (2.5) shows that 7#(y’) = 0 if and only if (M, g) has zero sec-
tional curvature.

At each point m of a Riemmannian manifold, the values of the sectional cur-
vature K at m are bounded, since K is defined on the Grassmannian G, (7T, M),
which is compact. However, for semi-Riemannian metrics this assertion is no
longer valid. In fact, Kulkarni showed that the sectional curvature function is
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bounded from above or from below if and only if it is constant. Moreover,
in [101, [11] it is shown that bounds from above and from below on planes of sig-
nature (+, +) or (—, —) is equivalent to constant sectional curvature.

We close this section with examples of semi-Riemannian manifolds with sec-
tional curvature bounded from below (or from above) on planes of signature
(+, +) (or (=, —)) but not constant.

Theorem 4. Let (M™, g) be a Riemannion space of constant curvature
¢ > 0 (resp. ¢ < 0). Then the sectional curvature K of (TM, g©) is non negative
(resp. mon positive) on planes of signature (+, +), and non positive (resp. non
negative) on planes of signature (—, —).

Proof. According to Theorem 8, (TM, ¢°) is locally conformally flat. Since
the sealar curvature of (TM, ¢©) vanishes, the sectional curvature is completely
determined by the Ricci tensor through

1 Ric (X, X) N Ric(Y, 1)

2(n —1) gc(g, e 9 (¥, 7)

Ka)=KXAY) =

where {X, ¥} is an orthogonal basis of the non degenerate plane o.
For each vector field Z € ¥(T'M), we decompose Z; = Af + BY. Using (2.5)
we have

Ric(Z, Z) = 20(4, A)Y = 2¢(n — 1)(JAIPYY

where |A|? = g(4, A).
Hence the sectional curvature K is non negative (resp. non positive) on
planes of signature (4, +) (resp. (=, —)) for ¢ > 0.

4 -~ An indefinite Kihler structure on the tangent bundle of a Kihler manifold

Since the constancy of the sectional curvature for Kihler manifolds leads to
locally flat spaces, we consider the holomorphic sectional curvature, which is de-
fined as the restriction of the sectional curvature function to holomorphic
planes, (J-invariant planes). Explicitly

R(X, JX, JX, X)

X, X7 a=1{X,JX}.

4.1) H(a) =

Nomizu [9] gives an equivalent condition on a Kéhler manifold to have constant
holomorphic sectional curvature in terms of the Jacobi operator, condition which
has been extended by Barros and Romero [1] to indefinite K&hler manifolds.
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Due to the existence of null geodesics, it seems interesting to study further
these conditions, and in[8], it is shown the following

Theorem 5. Let (M, g,J) be an indefinite Kihler manifold. Then the
holomorphic sectional curvature H of M is constant if and only if one of the fol-
lowing equivalent conditions holds

RX,JX)JX~X, Sor all unit X
B, Ju)Ju =20, for all null u .

where ~ means «is proportional to».
In view of this theorem, we will say that an indefinite Kdhler manifold is
null holomorphically flat [3],[8] if

4.2) R(u, Ju)Ju = ), u for all null «

where A, is a certain real valued function.
Condition (4.2) is equivalent to being zero the restriction of the curvature
tensor to holomorphic degenerate planes:

RBu, Ju, Ju, w) =0

and moreover, it defines a class of indefinite Kihler manifolds which contains
the complex space forms (cf.[3]).

The main purpose of this section is to study this property on the tangent
bundle of a Kéhler manifold (M, g, J), giving a characterization of complex
space forms. Also, some bounds for the holomorphic sectional curvature of TM
are investigated.

Let (M, g, J) be a Kihler manifold, V the Levi-Civita connection associated
to g, and consider on TM the complete lifts g€ and J of the Riemannian metric
and the complex structure, respectively. Since (M, g, J) is Kéhler, it is easy to
prove that the action of the complete lift J© of the complex structure J over the
horizontal and vertical lifts is as follows

43) JO(XH) = {JX)M JOXY) = [T}
where X, XV e T:.(TM).

Theorem 6. (M, g,J) is a Kdhler manifold of constant holomorphic sec-
tional curvature if and only if (TM, g©, J©) is a null holomorphically flat in-
definite Kdhler manifold.

Proof. Firstly note that the tangent bundle (TM, g€, J©) is an indefinite
K&hler manifold if and only if (M, g, J) is Kihler.
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Now, let & be a point of TM and  a tangent null vector at & As in the proof
of Theorem 3, we write u = X + Y for some orthogonal X, Y € T,y M. Using
the expressions obtained in Section 2 for the curvature tensor R, together with
the identities of the curvature tensor of a Kéhler manifold, we get

@44) R, JCu, JCu, u) = {g((V. R)X, JX)JX, X) + 29(R(X, JX)JX, V)}".

Let us suppose that (TM, g€, J€) is null holomorphically flat. Since X¥ is a
null vector for any X e X(M), we get R(XH, JCXH, JCXH XH)=0. Hence,
from (4.4), g((V: R)X, JX)JX, X) = 0.

Moreover, if X and Y are orthogonal tangent vectors on M, then
w=X"+Y" is a null tangent vector to TM and again by (4.4) we get
gRX, JX)JX, Y)=0.

Now, the constanecy of the holomorphic sectional curvature of M follows from
the criteria of [9].

Conversely, since any complex space form is locally symmetric, it follows im-
mediately from (4.4) that the tangent bundle is null holomorphically flat.

Note that previous theorem allows us to exhibit a family of null holomorphi-
cally flat indefinite Kéhler manifolds, but not of constant holomorphie sectional
curvature, in addition to the examples constructed in[3].

Moreover, the tangent bundle of a complex space form satisfies

Theorem 7. Let (M, g, J) be a Kihler manifold. Then (TM, g°, J°) has
vanishing Bochner tensor if and only if M has constant holomorphic sectional
curvature.

Proof. Since the scalar curvature of the tangent bundle (TM, ¢©) is identical-
ly zero, the expression of the Bochner curvature tensor B [14],[17], reduces to

_4(_7@1?17 {9°F, Z)Ric (X, W) — ¢°(&, Z)Rie(F, W)
w5 H9CUCY, DRic(JCX, W) - ¢ (JCK, D)Rie(TY, W)
~29C(JCX, V) Ric(JCZ, W) — 2Ric(J°X, V)gC(JCZ, W)
+Ric (¥, 2)g% (X, W) — Ric(X, 2) g (¥, W)
+Ric(JCY, Z)gC(JCX, W)~ Ric(J° X, Z)g®(JCY, W)}
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If the Bochner tensor of TM vanishes, for each X, JX, Y orthogonal tangent
vectors to M, B(X?,(JX)¥, X%, Y") = 0. Considering the expression (2.6) of the
Ricei tensor we have R(X, JX, X, Y) = 0. Hence the holomorphic sectional cur-
vature of M is constant[9].

Reciproeally, if (M, g, J) has constant holomorphic sectional curvature ¢, the

Ricei tensor is Einstein with o(X, Y) = " -2*- 1 cg(X, V), VX, Y e X(M). More-

over, since the curvature tensor of a Kéhler manifold of constant holomorphic
sectional curvature c¢ satisfies

RX, VZ= % {9(Y, 2)X—g(X, 2)Y+g(JY, Z)JX—g(JX, ZJY-29(JX, Y)JZ}
we obtain the vanishing of the Bochner tensor of (TM, G€, J°).

Remark 2. As a direct application of the results in Section 2, the tangent
bundle of a Kéhler manifold of constant holomorphic sectional curvature ¢ is lo-
cally symmetric, and further has vanishing Bochner tensor, However
(TM, g€, JC) is neither of constant holomorphic sectional curvature nor locally
isometric to a product of Kihler manifolds of constant holomorphic sectional cur-
vature unless it is flat. (Compare with the results in [14] for the positive definite
case).

The holomorphic sectional curvature of a positive definite almost Hermitian
manifold is bounded at each point, because it is a function defined on the spheri-
cal tangent bundle. This does not happen for indefinite almost Hermitian mani-
folds, and it has been shown in[3] that if the holomorphic sectional curvature is
bounded from above and from below, then it is constant. Necessity of both
bounds is proved in[1], where the authors exhibite an example of an indefinite
Kéhler manifold with holomorphic sectional eurvature bounded from below but
not constant.

In what follows, we study the holomorphic sectional curvature of
(TM, ¢°, J©), obtainig some bounds for the holomorphic sectional curvature on
spacelike and timelike holomorphie planes.

Theorem 8. Let (M, g, J) be a Kihler manifold of constant holomorphic
sectional curvature c. If ¢ < 0 (resp. ¢ > 0), then the holomorphic sectional cur-
vature of TM is mon positive (resp. non megative) on spacelike holomorphic
planes, and mnon megative (resp. nmon positive) on timelike holomorphic
planes.
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Proof. Since the tangent bundle of a complex space form has vanishing
Bochner tensor, the holomorphic sectional curvature is completely determined
by the Ricei tensor, and we get

1

S S s e 2 V2 s T T . cT CT
2D ¥ & ORie(X, X) + 4Rie (77X, J°X)

RZX JCX, JCX, X) =

— 2 (¥ \Rie(F T
= a1 g° (X, X)Rie (X, X)
for each vector field X on TM.
Now, if X is a tangent vector to TM at the point £, we write X = X# + ¥/,
and hence, from (2.5), it follows that
RX,JCX, JCX X)=c(X|P)V9¢ (X, D).
Consequently, the holomorphic sectional curvature H of (TM, g€, J°) is
given by
} x|By
HX) = C—*“(“ ~“ )~
9°&X, X

from where we get the desired result.
Moreover, as a direct application of the previous expression, we get

Theorem 9. (TM, g%, JO) has constant holomorphic sectional curvature
if and only if (M, g,J) is locally flat.

Proof. Itis clear that if (TM, g€, J®) has constant holomorphic sectional
curvature, then it is null holomorphically- flat. Hence the curvature tensor at
each point £e TM is given by the expression above. Now, if it is constant, it
must be ¢ = 0, which shows that (M, g, J) has constant zero holomorphic sec-
tional curvature.

5 — The tangent bundle of a quaternionic space form

For a quaternionic Kihler manifold, the analogous of the holomorphic sec-
tional curvature of Kihler manifolds is the quaternionic sectional curvature,
which is defined as follows. Let {I, J, K} be a local basis of the bundle of almost
complex structures over M, for each vector X consider the 4-plane
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QX) = {X, IX, JX, KX}. If the sectional curvature K is constant for every 2-
plane in Q(X), this common value is called the quaternionic sectional curvature
of X. We refer to[13],[12],{17], for some basic facts concerning quaternionic
Kéhler manifolds with positive definite or indefinite metrics. (See also [2]). It is
well-known that a quaternionic Kihler manifold has constant quaternionic sec-
tional curvature c¢ if and only if its curvature tensor is given by

RX,VZ= ;19 {9Y, )X - g(X, )Y
+gIY, 2)IX —gUX,Z2)IY 29X, Y)IZ
+g(JY, 2)JX —g(JX, Z)JY ~29(JX, Y)JZ
+g(KY, Z) KX —g(KX, Z) KY —2¢g(KX, Y)KZ}.

(6.1)

This formula is still valid in the indefinite case, and moreover, any quater-
nionic space form is well known to be locally symmetric.

As in the previous sections, we can impose on an almost quaternionic mani-
fold a weaker condition than to be of constant quaternionic-sectional curvature,
namely

(5.2) E(u, ¢u, ¢u, w) =0 Vunull vector, ¢=1,J,K.

Note that this condition is automatically satisfied by any almost quaternionic
manifold of constant quaternionic-sectional curvature, and moreover, that it de-
fines a conformal invariant class of indefinite almost quaternionic manifolds.

In this section, we will construct an indefinite almost quaternionic structure
on the tangent bundle of an almost quaternionic manifold, and study the effect
of (5.2) on its curvature tensor.

For that, if £e TM and m = =(£), consider an open subset U containing m
and let {I, .J, K} be a local basis of the bundle of almost complex structures V
over M. Cosider on =~ *(U) the almost complex structures {I¥, J¥, Kf}. They
define a bundle V¥ of almost complex structures over TM, and moreover,
(TM, g, V) is an indefinite almost quaternionic manifold.

Theorem 10. Let (M, g, V) be a quaternionic Kihler manifold of real di-
mension n = 8. Then M has constant quaternionic sectional curvatwre if and
only if the indefinite almost quaternionic structure (g, V) on TM satisfies

(5.3) Ru, 3% u, 3" u, u) =0 V. null vector on TM .
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Proof. If we T:(TM) is a null vector, write u = XH + YV for orthogonal
X, Ye Ty, (M); then

Ru, ¢%u, 3% u, u) = {g((V: R)XX, ¢X) ¢X, X)}"

+{g(R(X, $X)$X)¢X, V) - g(R(X, 60X, ¢V)})Y  ¢=1,J,K.

Since dim M > 4, M is an Einstein space. Using the expressions in[17], it is
easy to check that

R(X7 ¢X7 @'X) Y) = _R(Xs ;SX’ X; ¢Y)
and hence, for ¢ =1, J, K, we have
G4 R, % u, o7 u, u) = {g(V; R)X, ¢X) ¢X, X) + 29(R(X, $X) ¢X, Y)}V.

Now, if the quaternionic sectional curvature is a constant ¢, then it follows
from (5.1) that

RX,sX)eX =cg(X, X)X VXeXWM) ¢=1,J,K

and hence g(R(X, ¢X)¢X, Y) =0 for all orthognal X, Y. Moreover, since any
quaternionic space form is locally symmetrie, it follows that

Ru, ¢%u, ¢"u,u)=0 Vo null vector on TM .

In[12] it is shown that the quaternionie-sectional curvature of a quaternionic
Kéhler manifold of dim M = 8 is constant if and only if

55) g(R(X, $X)¢X, V) = 0 6=I,1,K

for all X, Y spanning totally real planes (Q(X) L Q(Y)).

Now, if condition (5.3) holds for (TM, g, V¥), considering the null vector
w=XH", it follows from (5.4) that g((V:R)X, ¢X)¢X, X) =0. Therefore
g(R(X, ¢X)¢X, Y) =0, for any pair X, Y of orthogonal vectors, which shows
that (5.5) holds, and hence, the constancy of the quaternionic sectional curva-
ture on M.

Proposition 1. (TM, g%, V¥) is an indefinite quaternionic Kihler mani-
fold if and only if (M, g, V) is a Ricci-flat quaternionic Kdihler manifold,
(dimM = 4). Moreover, in such a case, both spaces are hyperkihler.
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Proof. Considering the covariant derivative of the local section ¢ of the
bundle of almost complex structures on TM, it follows that

VergHYV=0 gT(Vzu¢MY", ZV)=0
g (Vyn ™YY, ZH) = (V) Y, Z)"
gF (Vg ¢ YH, ZH). = R($Y, Z, X, &) + R(Y, ¢Z, X, &)V .

Since dim TM = 8, if it is quaternionic Kihler, it must be Einstein, and that
is possible only for a Ricei flat M, according to Corollary 2. Moreover, if TM is
quaternionic Kéhler, then M is so also as a consequence of the previous
expressions.

Conversely, if (M,g,V) is a Ricei flat quaternionic Kéhler manifold,
then [17]

RX,54Y,Z)+R(X,8,Y,¢Z)=0

and the Kéhler condition for TM follows from previous expressions. Finally,
note that a quaternionic Kéhler manifold is hyperkihler if and only if it is Ricci
flat.

Remark 8. Note that the tangent bundle of a quaternionic space has con-
stant quaternionic sectional curvature if and only if it is locally flat, which also
provides examples of indefinite almost quaternionic manifolds satisfying

R(u, % u, % u,u) =0 Vu null vector on TM

but which are of non-constant quaternionic-sectional eurvature.
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Sommario

11 fibrato tangente TM di una varietd riemanniana (M, g), dotato del sollevamento
completo g€ di g, & una varietd semi-riemanniona. Lo studio dell'operatore di Jacobi
lungo le geodetiche nulle su TM da luogo ad alcune caratterizzaziont degli spazi omoge-
net due-punti (ad eccezione del piano di Cayley). Sono anche indicati alcuni nuovi
esempil di spazi semi-riemanniani e di varieta di Kdhler indefinite con tensore di Bo-
chner ovunque nullo.
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