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GI0VANNI CIMATTI (%)

Bifurcation and non-uniqueness in electrohydrodynamics (%)

1 — Introduction

Bulk motions can be induced in a slightly conducting fluid by application of an
electric field. We refer to Turnbull [14] for the description of a related experi-
ment.

There are basically two mechanisms responsible for the fluid’s motion. The
first one is the existence of a free surface corresponding to sharp diseontinuities
in electric conductivity and permittivity. For an experiment illustrating this
situation we refer to Melcher and Taylor [7]. The second is of intrinsic nature:
significant electric body forces are generated in the fluid if the conductivity
varies with the temperature (Roberts [9] and Bradley [3]). This case requires
the presence of a temperature gradient, in a situation which is reminiscent of
the classical Benard’s instability. The electric body forces to add in the equa-
tions of motion are of the form qF, where q is the charge density and E the elec-
tric field; these quantities depend on the temperature in a rather involved way.
One relevant experimental finding is that the onset of the electric instability
does not depend on the polarity of the applied voltage.

Goal of this paper is to prove that the solution of the equations governing the
problem is in certain cases non unique. This shall be done by showing that the
linearized probem has a positive simple eigenvalue which corresponds physically
to a special value of a non-dimensional electric parameter. As a consequence it
becomes possible to apply a theorem of M. A. Krasnosel'skii [6] on bifurcation
from odd eigenvalues, thus proving non-uniqueness.

Our approach is similar to the treatment given by W. Velte [15], [16] to the
classical Benard and Taylor’s problems.

(*) Dip. di Matem., Univ. Pisa, via Buonarroti 3, 50126, Italia.
(**) Received October 14, 1998 AMS classification 35 K 60.
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2 - Governing equations and boundary conditions

As constitutive relation for the current density J we assume, using the S/
units system

2.1) J=a(TYE ~ kVq

where k> 0 is a diffusion coefficient and o(7T) the electric conductivity, a
given function of the temperature 7', which we assume to be of the form
o(T) = g¢[1 + a7(T)] with « a positive parameter and «(T") a regular function
such that

(2.2) (>0 < (M>0 (T)>0.

Convection of charge is neglected in (2.1). Moreover k or, better to say, the
non-dimensional group 87! defined later, is in practice very small. As usual in
electrohydrodynamics [11] magnetic effects are neglected and, since we assume
steady eonditions, we can write

©2.3) —eAV=g¢ E=-VV

where V is the electric potential and  the permittivity. By the law of conserva-
tion of charge we have

(2.4) V-J=0.
Substituting (2.1) into (2.4), we obtain, taking into account (2.3)
ke V + o(TYAV + ¢ (TH)VT - VV =0.

The fluid is supposed to be incompressible and gravitational body forces are
neglected. Hence we have

(2.5) Vv=0 oV, V= —Vp + plv + gl .

The last term in (2.5) represents, when ¢ is a constant, the electric force [11], ¢
and u are respectively the mass density and the viscosity, in this scheme both
given constants.

Ignoring Joule heating, the energy equation becomes

— kAT + 0, VT -0 =0

with x thermal conduetivity and c, specific heat. The motion is assumed to be
plane with U(X, Y) and W(X, Y) denoting the non-vanishing components .of the
velocity in the X and Y directions. We introduce the stream function ¢(X, Y)
which satisfies ¢y = ~W, @y =U.
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We require @, V and T to be periodic in X with period L. Therefore we arrive
to the following Problem 1, which is stated in the set

{X, )] -o<X<w, 0<Y<D}

2.6) w20 = o(ADx Dy — ADyBy) + e(AVy Vy — AVy Vy)
@.7) ~ked®V + o(T)AV + o' (T)VT - VV = 0

2.8) KAT = pe,(Tx @y — Ty Dy)

2.9) 9(X, 0) = DX, D) = By(X, 0) = Dy (X, D) = 0

@100 VX, 0=V, VIX,D)=V, —eVw(X,00=¢q —eVip(X,D)=¢q,
(2.11) I'X,0=7T, TX,D)=T,.

From the mathematical point of view a second condition on V is needed since
(2.7) is of the fourth order by the presence of the diffusion term. With the last
two equations of (2.10) the volume charge density is prescribed on the two con-
ducting planes, which bound the region filled with the fluid and to which the dif-
ference of potential is applied. Physically, this is what is called an injection law
and, although with difficulties, a corresponding set-up can be realized in prac-
tice.

Remark 1. The solutions of Problem 1 have an elementary, but basic
property of symmetry. In fact if (#(X, Y), V(X, Y), T(X, Y)) is any solution of
Problem 1 and if in (2.10), we change V; and ¢; in —V; and —g;, then the solution
of the corresponding problem is given by (#(X, Y), —-V(X, Y), T(X, Y)).

There is of course no loss of generality in assuming that V; = 0 and that the
scale of temperature is such that T, = 0. Moreover, to consider a specific case,
we assume that the upper plane is hot ie. T; > 0.

Problem 1 has always the motionless solution (9*, T, V*), where &%= 0,
T*=T,D"'Y, and V*(Y) is the unique solution of the problem:

o dtvE L d o AVE L
ke e + i (a(T )——~—dY )=20
2 3 2
Ve =0 V) =v; IL0)=-¢q LD)=—g.

dy? dy?
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We would like to prove that in certain cases (9%, T*, V*) is not the unique
solution.

The basic approximation used in this paper consists in assuming VT =~ VI'*
and VV = VV* in the last term of (2.7). There is no obvious physical justification
of this hypothesis. However in this way it becomes relatively easy to prove non-
uniqueness. Thus we shall consider Problem 2:

(212) .U.Az@ = P(A@X@Y e A(py@x) + S(L\VXVY - AVYVX)
T, gv*
—JeAZ "y =L =
(2.13) keA°V + c(THAV + o' (T) D ay 0
(214) kAT = PC'U(TX@Y - TY@X) .

The boundary conditions are still given by (2.9)-(2.11). To rewrite Problem 2
in non-dimensional form, we introduce the following non-dimensional parame-
ters

_wD? D ot
= ke L eV, 14 q_pvg

1=0,1

X
c

where v = pp ~! is the kinematic viscosity and ¢ = x(ec,) ™! the diffusivity. As ba-
sic units for length, stream function, temperature, potential and electrie condue-
tivity we take respectively D, v, Ty, V; and o, and define v(x, ), ¢(, ¥), t(x, ¥),
s(t), v*(y) and t*(y) as follows

Viv(x, y) = V*(Dx, Dy) vé(x, y) = ®(Dx, Dy)
T, t(z, y) = T(Dx, Dy) sy =1+an(t) with o) = =(T,t)
Viv*(y) = V(Dy) t*(y)=vy.

Let ¢ = o(x, ) — v*(y) and 6(z, y) = t(x, y) — t*(y). The non-dimensional
form of Problem 2 with homogeneous boundary conditions is given by Pro-
blem 3:

2.15) A*¢=A¢,8, — Ady¢e + (Adady = Myda) + n(Aduvy — vy ¢a)
2.16)  AP¢—Bs(0+ ) AY = Bls(0 + y) vy + 8" (0 + Y v ]~ vy,

@.17 A= y(0,4y — 0y b — $2)
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(2.18) ¢z, 0) =¢(x, 1) =¢,(x,0) =¢,(x,1)=0

(2.19) P, 0) = Y, 1) = gy, (x, 0) = ¢y, (x, 1) = 0
(2.20) 6(x, 0) = 6(x, 1) =0

(2.21) ¢, ¢ and 9 periodic with period £ = LD"!.

As a further restriction to the class of admissible functions we require
(2.22) ¢(ﬁ7, ?/) = _¢(~x: y) l/l(ib', ?/) = 3’!("3’), ?/) 6(“’7 ?/) = 6(—_93’ ?/) .

The reason for agsuming (2.22) is the simplification introduced in this way in
the study of the linearized equation. The problem defining v*(y) is now

d*v* d do*
2.23 - +8——(s(y)=—)=0
(2.23) iy By W) 4y,
@20  wr0=0 =1 LL@)=5 L=,
' : dy? ° oyt '
Conditions (2.2) translate into
dn d&n
(2.25) n(t) >0 a >0 YE (t)>0.

The bifurcation parameter in Problem 3 shall be ». Let

ds

dz’l)*
dy ) — (

d?s do*
(2.26) ry)=-——(y) — () + —(
) e Vg W Yy
where v*(y) is the solution of problem (2.23), (2.24). To prove non-uniqueness
we make the key assumption that the parameters «, 8 and §; are such that the
following Condition I holds

* 3 %
R 0 dd;’3 =0 ry>0 foralyelo,1].

In the next lemma we prove an elementary regular perturbation result, which
shall permit to prove the existence of a non-empty region # of R* such that Con-
dition I holds if («, 8, 81, 2) & P.

Lemma 1. Let v*(y) be the solution of problem (2.23), (2.24), where
s(y) =1+ a n(y) and n(y) satisfies (2.25). Put « = 0 in (2.23), (2.24) and as-
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sume vy (y) to be the solutions of the corresponding problem

4 2
2.27) —d”°+ﬁd”2°=o
dy? dy

d%v d?v
> (0) =& > (1) =4,.

(2.28) 7(0)=0 12(1)=1

Then there exists a constant C >0, not depending on « and B such
that

dvo

|<Ca,3, maxl - ——| <Caf,

d
max | ; dyz

Proof. Let us multiply (2.27) by v* — v,. Integrating by parts over [0, 1],
one easily obtains

1 32
dev* 2
2.29 —|*dy = C,

where the constant C) does not depend on « and 8. Define = v* — v,. By dif-
ference from (2.23) and (2.27) we have

a a2
(2.30) —@%+ﬁ#——ﬂ -——(n() )
(2.31) u(0) = u(l) = (0) (1) =

Multiplying (2.830) by u, integrating by parts and recalling (2.29) we have

1 1 2
S |%;i|2dy <Cop | I%;;—[Zdy < Cpaf.

In the same way, after multiplication of (2.30) by d’ ?4/” we get, again by
2.29) dy
133
Oflg—;cglzdy<03aﬁ Id 7|2 dy < Csaf.

Hence the conclusion of Lemma 1, follows.

We exhibit in the following example a case, in which the solution v*(y) of
problem (2.23), (2.24) satisfies Condition I
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Example. Let =0 and é; = ¢ > 0. The solution of problem (2.27), (2.28)
can easily be computed in closed form and is given by

ssinh (yV/3) P
= ——=2 b y(1-2).
2o (%) Ssinh V5 y( ﬁ)
We have in [0, 1] min L) (y) = — 0 41-¢

dy \/Bsinh /3 g

Therefore we obtain

%%)—(y)>0 if < (@), where Hp)=(L - —L1 )1,

B \/Bsinh /B

It is easily seen that F(B8) — 6 as 8— 0 + and F'(B) > 0 when 8 > 0. On the

2 3
4% ) >0 in (0, 1] and %—7’-39 () > 0 in [0, 1] for all
y

other hand we have (
B>0 and 8> 0.
Define ry(y) =

2

d?s dv | ds %
dy? dy  dy dy?
exists a constant C* such that if «8 < C* and § < F(8), Condition I holds by
Lemma 1.

. We have 7y(y) > m = 0. Hence there

3 — Functional form of Problem 3

Let Cgp (Q2), Cg3(2) denote the sets of functions of class C*, defined in the
set

Q={, 9] —o<z<o,0sysi}

periodic in  with period /, which vanish near ¥y = 0 and ¥ = 1 and are respec-
tively even and odd in z. Define in Cy, () and Cg3(Q) the norm

3.1) lull = ([ |Vu|?dwdy)z
QL)

where Q(£) = {&, ¥)|0 <2 < £, 0 <y <1} and call H},(Q2), Hj;(2) the comple-
tion of Cgy, (), Cog (2) with respect to (3.1). The Sobolev spaces Hé‘p (Q), H Q)
of functions which are periodic in x and respectively even and odd in x can be
defined in a similar way. Let 8 = HE(Q) N H3(Q). Fix ¢ € $ and consider the
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uncoupled boundary value problem

B2)  Nw=28,8, — Ay ¢, + n(Adaty — Ay L) + (A, v — vy )

(3.3) A%y — Bs(0 + y) Ap = Bls(0 + y) vy +8'(0 + y)vf ] — vy,

(3.4) Ag = Y(em ¢y - 0y¢y - ¢:c)

with w e H§;(Q), ¢ e Hi, (@) NH?*(Q), ¢, =0 on y =0 and y =1, 6 e Hg,(Q).

By the results of the theory of linear elliptic equations, (3.2)-(3.4) has, for
every given ¢ e $, a unique solution. Together with (3.2)-(3.4) we need the lin-
ear problem stated below, where ¢ again is a given function in &

3.5) Ao = Ay v) — Vg by  wE HE (D)

36 ARy — Bs(y) Ay = Br{y) o

e YeHLQNH2(Q) ¢, =0 ony=0 andy=1
(8.7 A= —yd, OeH},(Q)

where 7(y) is given by (2.26). Problems (3.2)-(3.4) and (3.5)-(3.7) are related in
the following way

Lemma 2. Let 8 and y be given positive constants. Then we have

1) Equations (3.2)-(3.4) define an operator o = A(y, ¢) from R X B into B.
iy Problem 3 is equivalent to the functional equation ¢ = A(xn, ¢).
i) The operator A is compact.
iv) Equations (3.5)-(3.7) define o linear operator « = B(¢).
v) The Frechet derivative of A(x, ¢) in ¢ =0 is of the form nB.

Proof.

i) Equation (8.4) is linear in 6. Thus the existence of a weak solution is guar-
anteed by standard results. The right hand side of equation (3.3) belongs to
L%(Q). This permits to solve (8.3) and to obtain in particular ¢ € H*. Finally re-
calling that ¢ e B, we deduce that the right hand side of equation (8.2) is in LZ(Q).
We conclude that (3.2) is solvable and define A(y, ).
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ii) A fixed point of the operator A gives a solution {¢, ¢, 6} to Problem 8 if ¢
and 6 are computed using equations (2.16), (2.19) and (2.17), (2.20).

iii) If {¢,} is a sequence bounded in B, we infer, by results of regularity for el-
liptic equations, that {w,} is bounded in H*(Q). Therefore A is compact by Rel-
lich’s theorem.

iv) The operator w = B(¢) is well-defined again by the linear theory.

v) Equations (3.2), (3.7) are obtained from (3.2) and (3.4) neglecting the
quadratic part.

Thus the result follows.

We quote below a theorem of M. A, Krasnosel'skii [6] on which our proof of
" non-uniqueness rests.

Theorem 1. Let the continuous and compact operator A(2, ¢) be defined in
R X X, where X is a Banach space and A(x, 0) = 0. Assume the Frechet deriva-
tive of Ain ¢ = 0 to be of the form AB, where the linear operator B does not depend
on A. Let X be an eigenvalue of B with odd (algebraic) multiplicity. Then Xy is a
bifurcation point for the equation ¢ = A(A, ¢).

To apply this result we need to study the following linear eigenvalue Problem
4 corresponding to (8.5)~(8.7). We put in these equations 2 =1 and y = 1, since
these constants are inessential in our considerations.

B.8) Ao =n(Auuf —vh 0. AU —s(AY=r(y)0 A= —¢,
¢z, 0) = ¢(w, 1) = ¢, (x, 0) = ¢,(x,1) =0
U, 0) =d(x, 1) =, (2, 0) =g, (x, 1) =0 0(x,0)=0(x,1) =0
¢, and 0 are periodic in & with period £ = LD}, ¢is odd in x, ¢ and 6 are even in x.

We claim that Problem 4 has a positive eigenvalue of algebraic multiplicity
equal to one. Since all solutions of Problem 4 are of class C” we can write, with
a=2zL !

B9 )= 3 s sintkar) 9w, 1) =do() + 3 4u(y) cos kao)

0(x, y) = 0o (y) + 121 65 (y) cos (kax).
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Substituting (3.9) into (3.8), the following hierarchy of eigenvalue problems for
%1, Yy and 6, is easily obtained

(3.10) %”f— ~s(p) % = r(y) 0, g—;—% ~0

311) Mgy = ok S+, d;;’: ]

(8.12) Midy + s(y) Mydp =7(y) 0, M6, = akg,

1) £1(0) = ¢,(1) = dq”“ 0 = d¢’“ (1) =

G149 () =¢u(D = = s % (0) = d *”“ (1)=0 0,(0)=0,(1)=0

2
where M, = —_dg-z_ +a?k?and k=1,2,38,....
We find immediately ¢y = 0, 6, = 0. Moreover, as a preliminary step to the
study of Problem 4, we prove that each problem (3.11)-(3.14) has a positive and
simple eigenvalue. To this end we invoke a theorem of M. G. Krein and M. A.

Rutman[1], which, to make the paper self-contained, we quote below.

Theorem 2. Let X be a Banach space and C o convex cone with vertex 0.
Suppose C closed, int C = 0 and CN(=C) = {0}. Let T e £(X, X) be compact
and such that T(C\{0}) be contained in int C. Then there exists ¢ € intC and
0y > 0 such that 1, T¢ = ¢. The algebraic and geometric multiplicity of o, is 1
and we have 0, < |n| for any other characteristic value of T.

Let us consider the operator w = T¢, defined by the following problem in
which the index k is omitted

(8.15) M?

—w(l) = 3 (gy= do 4y
w(0) = (1) day (0) dy (1)=0

2
(3.16) Mg +s(mMp=7()0 ¢(0)=¢(1) = dV(O) 3yﬁ<1>=o

3.17) Mo=aks¢ 6(0)=16(1)=
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Hereafter we suppose that Condition I holds. Let C be the cone of the fune-
tions of H§ ([0, 1]) which are non-negative. Assume ¢ € C\{0}. We have 6 > 0 in
(0, 1) from (8.17) by the one dimensional maximum principle. Let My = w. By
(8.16) we have Mw + s(y)w = r(y) 6, w(0) = w(1) = 0. Since r(y) > 0 by Con-
dition I and s(y) > 0 by (2.1), we obtain My > 0 in (0, 1). But My = w, ¢(0)

; 3,
= (1) = 0 and therefore also ¢ > 0. Recalling that ‘%’;— >0 and %—23— >0, it
Y
is possible to apply to problem (3.15) a theorem of K. Kirchgéssner (see [13]
page 236) which implies w > 0 in (0, 1). Thus T satisfies the hypotheses of Theo-

rem 2 and we have

Lemma 8. Problem (3.11)-(3.14) has, for every k, a positive and simple
eigenvalue p} such that n} < 9| for any other eigenvalue vy.

Now every simple eigenvalue of (3.11)-(3.14) is also eigenvalue of (3.8), but
not necessarily a simple one. It may happen »} = 7}, with n < m. We want to
prove that it is possible to choose the period £ in such a way to avoid this si-
tuation. To this goal, we need the following

Lemma 4. Let n, be any positive eigenvalue of (8.11)-(8.14). Assume
a < min (by, 1) where by = min {b(y)| y € [0, 11} and b(y) = (v(y))" 1. Then one
has klim N = O,

Proof. After the substitution ¢,=V%&, and the change of notation
A = ak\/n, the eigenvalue problem (3.11)-(8.14) becomes, omitting the index k,

" 8%
(3.18) Mze,r:x(%l’yiwwdd”:) M2y +s(y)Mp=r(z)0  Mo=1
y

where: £20)=£.(1)=0 ” (0) m (1H)=0
d2¢ d2y
=¢(1) = —Z ()= —= (1
$(0)=¢(1)=0 dy2( ) dyz( )
0(0) =6(1) =0

2

with 7(y) given by (2.26) and M = — % + a2k?. We have M¢(0) = M¢(1) =0 and
Y

by the second equation (8.18) and the condition for 6 also M2¢(0) = M2¢(1) = 0.
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Define
@19) x=My+¢ C:’MS!"*',Z}):IW thus C=x+5be—:)’j—:”—1)_
We have
#20 2(0)=x(1)=0  My(0) =My(1) =0.

By adding and substracting My in the left hand side of the second equation
of (3.18) and recalling that s — 1 = an(y), equations (8.18) can be rewritten as
follows

(8.21) M2& = 0% ¢ b(My + anMy) = 0 Mo = Xz,

We would like to eliminate 6 in the last two equations. From the first one we
have

M6 = M(b(y) My) + «M[b(y) n(y) M1

Hence we get M2& =) w*' ¢ and M(bMy) = A& — aM(nbMy).
Multiplying the first equation by & and the second by y, integrating by parts
and summing, we have, recalling (3.20),

1 1 i 1
J = [(MePdy + [b(My)Pdy = 2 f(v* & + x8) dy — « [(My + ¢) M(bnMy) dy
0 0 0 0
1 1 1
=Af(* &+ x®) dy — «a?k? [on(MYYP dy — aa®k? [ bngyMy dy
0 0 0
1 1
+o [ My (bnMy)dy + o [¢"brM¢dy .
0 0

Recalling (3.19) and the Cauchy-Schwartz inequality we get

1 1 1 1
J<CLAG2 + &+ D) dy + o (MY dy + aa®k? [(¢")? dy + o [(¢")? dy]
0 0 0 0

1 1
+C [aa?k? [(My)? dy + a?k%a [($)2dy + a4k4ocfl(gb)2 dy]
0 0 0

where the constant C; does not depend on «.
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On the other hand we have

1 1
J?f(f"z‘i'2&21625'2‘*‘0/4]6452)(1’!/ + bo f(zf/2+2a2k2x/2+ a4k4x2)dy
0 0
1 bo 1 . by s
=aktfe2dy + ~2-a4k4fz dy + Ef(;<"2+2cc2/lf:2;<'2+ atk*?) dy
0 0 0
1 by 1
=a'kif2dy + — o'k [ 4P dy
0 2 0
by 1 1 1
+E[f(Mv”+¢”)2dz/+2a2k2f(Ms'/’+s’z')2dy+a4k4f(M¢+sb)2dy]
0 0 0
47.4 12 bo ! 2 1 ; 2
za'kt(JEdy + o [x*dy + < [¢Pdy)
0 2 29
by ! 1 1 1
+ 5 LI dy +2 [("2 + a®k* ") dy + [4"dy + 20%k° [(Mg ) dy
0 0 0 0
1 1 1
+2a2k2f(<,b"2 + G,zkng'z) dy + 26112152_[3!1’2(1?/ + G/4k4f(Mgb)2dy
0 0 0

1 a,4lc4 1
+2a%kA (42 + a?k2¢P)dy + - [e2dy].
0 0
Using the Poincaré inequality

J = a4k4(f€2dy + f/zdy + 5 fsb2dy) + 5 [f(MsJ”)zdy +2a2k2f(slf”2)dy]

1 1 1
+ L[y + 407k JOMYP dy + 46”2 () dy
0 0 0
Collecting the above estimates we get

1 1 1 1 1
atk(fE2dy + —@fx?dy +1 [fe2dy) + L} [J(My"2dy + 2a%k2 [ " dy]
0 2, 29 2 7 0
[fs’/’zdy + 4a2k2f(M¢/)2dy + 4aziczf(w)2 dy + —5— fsbzdy}
1 1 1 1
S CLIA[GE+ 2+ 9B dy + o [(MY")2dy + aa?k? [(¢"Pdy + « [(¢")2dy]
0 0 0 0

1 1 1
+C [aa?k? [(MP)Pdy + a?k%a [($)2dy + a*k* o [(L)?dy].
0 0 0
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Thus we have

1 1 1
muatkd f(% 4+ 22+ ¢B)dy + (—%0— - a)of(Mgb")zdy + (2 - a)a?k? f(W")Pdy
0 0

1 1 1
+(1 = 2a) [(W"Pdy + (4 — a)a?k® (M2 dy + (4 — 2a) a2k2 ()2 dy
0 0 0

1 1
+(% — )k @R dy < CoA S + £ + 0D dy
0 0

where m; = min(b,, 1). Hence if o < min(—1~, by) we obtain % = (ﬁ ¥ abk8 and
2 C,
the result follows.

Lemma 5. Let nj denote the eigenvalue of problem (8.11)-(3.14) given by
Lemma 3. The period £=2x a~! can be chosen so that ni<ni, for all
k> 1.

Proof. By Lemma 4 inf{yn}i, k= 1} is positive. Moreover his value is
taken only for a finite number of values of k, in general greater than 1, Let
m=max{neN, n, =inf {5}, k = 1}}. Choose £ arbitrarily and define a new
period £* =£m ™!, with a*=ma. With this choice we have »} < 5} for all
k> 1, as required.

Hereafter £ shall be the period found in Lemma 5. The Fourier expansion of
the unique eigenvector corresponding to ni is given by

(e, y) = ¢, (y) sin(ax) (x, y) =¢1(y) cos(ax) 6(x, y) = 0,(Y) cos(ax).

What remains to prove to apply Krasnoselkii’s theorem is that the algebraic
multiplicity of »} is 1. To this end it suffices to show that the dimension of
Ker (I — n1B)’ is one for all p = 1.

Lemma 6. We have Ker(I — niB)?=Ker(I — yiB).

Proof. First of all it is obvious that Ker(I — »1B)*> Ker (I — 5iB). The
other inclusion shall be proved by contradiction. Suppose there exists ¢° such
that

(3.22) (I-9i1B)?¢°=0 and (I-19iB)¢’=g!

with ¢ = 0. It follows that ¢! is an eigenfunction of Problem 4 corresponding to
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ni. By Lemma 5 we have ¢'(x, y) = ¢, (y) sin(ax), ¢'(x, ) = ¢; (y) cos (az),
6% (x, ) = 0, (y) cos (ax). On the other hand ¢°, ¢° and 6° admit the Fourier’s
expansions

¢z, y) = i o2 (y) sin(ake) ¢ (x, y) = i o2 (y) cos (axwk) + $3(y)
(3.23) k=1 . k=1
8%(x, y) = kz_ll 0% () cos (akz) + 03(y).

Now the second equation (3.22) is equivalent to the problem

AZ 0 __ 21y — .1 Ang ‘bO E
3.24) (¢ $7) =11 (A 'U Vyyy
A~ s(y) Mg = () 6°  AB° = —g?

with the boundary conditions of Problem 4. Substituting (3.23) in (3.24) we ob-
tain, if k=1

ME (g — ¢} = ﬂla(MﬂbO dv + ¢ —— d v —5)
(3.25)

M19’11+3(?/)M1¢(1)=7'(?/)0(1) Mlﬁlzaﬁf’(lJ
and, when k=2

dv

¢k_7’)1ll(Mk¢'O dv + ) )

(3.26)
Mig? + s(y) Myyd = "'(?/) 07 Mkek = ak¢}

in both cases with the boundary conditions (3.18), (8.14). By the choice of the
period £ we have, if k> 1, ¢)=¢} =0 =0 since »}! is not an eigenvalue for
equations (3.26).

Problem (3.25) can be transformed into the non-homogeneous integral
equation

. 1
8.27) $1(y) =ni [H(y, )¢ (s)ds + ¢1 ().
0
dv* ot
dy ° dy®
also positive. Let us consider the adjoint equation

Because and 7(y) are positive in [0, 1], the kernel H(y, s) is

1
(3.28) g(y) = n%ofH (s, 9)g(s)ds.
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By Theorem 2 equation (3.28) has certainly a positive eigenfunction g'(y). On
the other hand ¢i(y)>0 and this contradicts the orthogonality condition

1
T31(y)g* (y)dy = 0 needed for the solvability of equation (3.27). Therefore
0

(I-7iB)$3=0.
By induction on p we conclude that the dimension of Ker (I — 51 B)? is one.
Thus Krasnosels’kii theorem is applicable and we conclude with

Theorem 2. Let Condition 1 holds and « < min(by, 1). Then, correspon-
ding to a critical value of the parameler v, there is loss of unigueness for
Problem 2.

The experimental fact quoted in the introduction about the possibility of in-
verting the polarity of the applied voltage without altering the onset of instabili-
ty is accounted for by the present theory, if together with the voltage we
change sign to the injection law. This is immediately seen, recalling Remark 1,
if we note that » depends on VZ.

4 — The case of constant electrical conductivity

Is bifurcation of electrical origin possible, when the electric conductivity
does not depend on the temperature? If we assume s(f) = g3 > 0 and neglect the
inertia term, the equations of Problem 3 become

4.1) A% = (Ady iy = Ay de) + (APe vy — vy da)
(4.2) APy — BAY = gy, — vy,

4.3) A0 =y(6y¢y — Oyde — ¢u)

(44) 0, 0) = g, 1) = ¢, (2, 0) = g (2, 1) =0
4.5) G, 0) = Y@, 1) = ¢y (2, 0) = ¢y (2, 1) = 0
4.6) 6(x, 0)=0(x, 1) =0

4.0 » é, ¢ and 6 periodic with period £=LD!. |

This problem is uncoupled. It is in fact possible to obtain ¢ from (4.2), (4.5).
Then we can solve the boundary value problems (4.1), (4.4) and (4.3), (4.6) using
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the result of the linear theory. Since ¢ is uniquely determined, we conclude that
the solution of (4.1)-(4.7) is also unique and, as a consequence of the constancy of
o, bifurcation is not possible. On the other hand various heuristic approxima-
tions have been involved in deriving the scheme studied in the previous see-
tions. In particular the contribution to the current density J due to the convee-
tion of charges is neglected in equation (2.1). A more realistic equation is
therefore

4.8) J=coE ~ kEVqg+ qu

where o, is a positive constant. We want to investigate in this section if the
equations, which follow from (4.8), allow bifurcation from the ground-state so-
lution under reasonable physical conditions. In addition to 8 = D2 (ke)™! we
need the group « = vk ™! to write the equation for the non-dimensional poten-
tial. We obtain

4.9) APy~ BAv = —a(d, Ay, — ¢, Av,).
The fluid motion is supposed to be slow. Thus we have
(4.10) A% = (A, v, — Avyw,)

where 7 = eVE(ev?)™!. Moreover we define ¢; = D2q;(Vy)™!, i =0, 1 where g,
and g; are the prescribed charge densities on ¥ = 0 and Y = 1 respectively. The
electric potential of the ground solution is now defined by the problem

d4,U>:= _ dz,v* _
4 d 2
(4.11) W a2 >-<y Eo*
v¥(0)=0 o¥()=1 L (0)=¢ Y (1)=¢
(0) (1) dyg() i dyz()OI

the solution v*(y) is of course computed immediately by elementary means.
dv* dv*

What is needed in the sequel is the value of the constant C = 0 dy
Y

given by

4.12) C=¢8—3 —f.
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Problem 5 formed by (4.9), (4.10) and the boundary conditions

v, 0)0=0 v, 1)=1 2,(~& 0=8 v, 1) =3

(4.13) gS(ﬂG, 0) = ¢(T, 1) = ¢y(:l,‘, 0) = ¢y($; D=0

with the usual periodicity conditions on x, has always the solution
v(x, y) =v*(y), ¢(x,y) =0. Let ¢ =v—v*. We can rewrite and collect the
equations in Problem 6:

A2¢ = U(A‘r’/x‘/’y - Aﬁbyﬁbx) + W(A‘!’xvg;k - ‘l’xv;‘;/y

(4.14) 2 , 3
A*Y - BAY = '—“(?mAﬁby - ¢yA‘l/m) - a¢w'vg}’;/y

W@, 0) = (@, 1) = ¢y, (@, 0) = g, (@, 1) = 0

4.
@19 ¢z, 0) = ¢(x, 1) = ¢, (2, 0) = ¢, (x, 1) = 0.

Let us consider the operator A: H3(Q) — HZ(Q), defined implicitly by the fol-
lowing problem

M= (A‘xba;sby - Aﬁby be) + (Agbx’l); - ‘.bxlug;;/y)

(4.16) 2 w
A% — BN = "“(‘é'sxA‘rl/y - ¢yA‘./Jx) - “¢xv;§/y

(@, 0) = w(@, 1) = w, @, 0) =w,(r, 1) =0
d(x, 0) = Y(x, 1) = ¢y, (2, 0) = ¢, (w, 1) = 0.

4.17)
Problem 6 can clearly be written as a functional equation of the from
(4.18) é=nA(¢).

The Frechet’s derivative A'(0) of A is implicitly defined by

Ao = (A‘zb’c'vy* - ‘,b:v’vgz/y) Az‘l/ —BAY = _aqsx’vy’?/y

with the boundary conditions (4.17). We quote below a well-know elementary
result [6].

Theorem 3. Let B be a Banach space and A: B — B an operator (not ne-
cessarily compact) such that A(0) = 0. Assume A’ (0) exists, then the set of the
bifurcation points of A¢ = A ¢ is contained in the spectrum of A'(0).
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A crucial information on the spectrum of A’ (0) can easily be obtained as fol-
lows. Consider the equations

(4.19) A2 = (A, v — pv,) AP — BAY = —ad, vk, .

Now, let us multiply the first equation by ¢ and the second by ¢ and then by A¢.
Integrating by parts over £ we have

(4.20)

=S|

Qf [A¢|2dx dy = —ﬁgfséxAsbﬁ;* dw dy +ﬂ9f¢xv;;y¢dwdy

2
[ |Ag|%dxdy + %Qf [V |2dwdy = =B v, vdudy
Q 9

R |™

(4.21)

422) L |veaglPdedy + £ [agl2dedy = [é.vg, 0 dudy.
0 Q Q

Adding (4.20), (4.21) and (4.22), we obtain, recalling (4.12) and the Poincaré
inequality :

2
2 JIvan® dwdy + 22 2 [P dndy + £ [ vlandy + £ J 1862 dwdy
]

=Cfé,Mdrdy < e dvay + £ [|ag)Pdedy.
Q 49 2 0

Since 2 [ |A¢|*dady < [ |V(AY)|2dx dy we finally obtain
9 a

2 2ﬁ C 28 C
E+ T [InPdody+ L [ehratdody+ (- 2) fot,anay<o.
Therefore if

(4.23)

Q|0
+
\%

i e

(4.24) — =

problem (4.14), (4.15) can have only the trivial solution.
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Remark 2. Attent and Moreau [2] study the electroconvective vortices,
taking as starting equation

(4.26) J=uqE +qu.

This makes the equation for the electric potential similar to the corresponding
equation in the so-called space charge problem (see [4] and references therein).
Adopting (4.26), they are able to prove instability of purely electric origin even
neglecting the dependence on the temperature.
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Sommario

1l teorema di biforcazione dell’autovalore semplice ¢ applicato per provare la non
unicita della soluzione per il problema di wno strato di liquido dielettrico soggetto a un
campo elettrico, @ un gradiente di temperatura e ad iniezione di cariche elettriche.
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