F. PAPALINI and S. VERCILLO (*)

Existence of solutions to a class of evolution equations (**)

1 - Introduction

The existence of solution to the Cauchy problem for evolution inclusions of the form

$$\dot{x} \in -\partial V(x) + f(t) \qquad x(0) = x_0 \qquad x_0 \in D(\partial V)$$

where ∂V is the sub-differential of a proper, convex and lower semicontinuous function V, defined on an Hilbert space, and f is a single valued perturbation, has been largely studied (cf. [4], [5], [6]). Later, some Authors (cf. [2] and [11]) have studied the problem (1.1) in the more general context that the perturbation is a multifunction.

In 1990, F. Ancona and G. Colombo [1] have studied the problem

(1.2)
$$\dot{x} \in F(x) + f(t, x)$$
 $x(0) = x_0$

by assuming that $F: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is an upper semicontinuous and cyclically monotone multifunction with compact (not necessarily *convex*) values, while $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is a single valued function such that

- β. for every $x \in \mathbb{R}^n$, $t \mapsto f(t, x)$ is measurable
- ββ. for a.e. $t \in \mathbb{R}$, $x \mapsto f(t, x)$ is continuous on \mathbb{R}^n
- βββ. $\exists m \in L^2(\mathbf{R}, \mathbf{R})$ such that $||f(t, x)|| \le m(t)$, for a.e. $t \in \mathbf{R}$ and for all $x \in \mathbf{R}^n$.

This result has been improved in [12]. We obtain the existence of solutions for

^(*) Dip. di Matem., Univ. Perugia, Via Vanvitelli 1, Perugia, Italia.

^(**) Riceived July 19, 1993. AMS classification 34 G 20.

the problem (1.2) by substituting the condition $\beta\beta\beta$ (for us, it is enough that f is defined on $[0, b] \times \mathbb{R}^n$) with the weaker assumption

 $\beta\beta\beta_{w}$. $\exists p \in]1, 2[$ and $\exists h \in L^{p}([0, b], \mathbf{R}) \cap L^{2}_{loc}([0, b], \mathbf{R}),$ such that $||f(t, x)|| \leq h(t)$, for a.e. $t \in [\in [0, b],$ for all $x \in \mathbf{R}^{n}$.

In 1991, A. Cellina and V. Staicu [9] obtained an existence result to the Cauchy problem of the form

$$\dot{x} \in -\partial V(x) + F(x) \qquad x(0) = x_0 \qquad x_0 \in D(\partial V)$$

where $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper, convex and lower semicontinuous function and $F: U(x_0) \to 2^{\mathbb{R}^n}$ is an upper semicontinuous and cyclically monotone multivalued operator, with compact values and defined on some neighbourhood of x_0 .

V. Staicu in [13] has unified the results of [1] and of [9] by proving the existence of solutions for the problem

$$\dot{x} \in -\partial V(x) + F(x) + f(t, x) \quad x(0) = x_0 \quad x_0 \in D(\partial V)$$

where V and F are as in [9] and f is like in [1].

In this note we consider the Cauchy problem of the form (1.4), in the case that x_0 belongs to the interior of $D(\partial V)$ ($x_0 \in \operatorname{int} D(\partial V)$). We prove that (cf. Theorem) it has solutions by supposing that $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and $F: U(x_0) \to 2^{\mathbb{R}^n}$ are, as for V. Staicu, respectively a proper, convex and lower semicontinuous function and an upper semicontinuous and cyclically monotone multifunction with compact values, while $f: [0, b] \times \mathbb{R}^n \to \mathbb{R}^n$ (not necessarily defined, as for V. Staicu, in $\mathbb{R} \times \mathbb{R}^n$) satisfies the weaker conditions β , $\beta\beta$ and $\beta\beta\beta_w$.

In the case that $x_0 \in \text{int } D(\partial V)$, our theorem contains the theorem presented by V. Staicu in [13] (cf. Remark 3) and the one obtained by A. Cellina and V. Staicu [9]. When V is a constant function, our proposition reduces to the theorem of [12] and so, even in this particular case, our theorem contains the mentioned result of A. Ancona and G. Colombo [1].

Finally in the Corollary, we obtain the existence of solutions to the problem (1.4) where the single valued perturbation f is replaced by a multifunction $G: [0, b] \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ such that

- j. G(t, x) is nonempty, closed and convex, $\forall (t, x) \in [0, b] \times \mathbb{R}^n$
- jj. $\forall x \in \mathbb{R}^n$, $t \mapsto G(t, x)$ is measurable

jjj. $\forall t \in [0, b], x \mapsto G(t, x)$ is lower semicontinuous and has closed graph

jv. $\exists p \in]1, 2[$ and $\exists h \in L^p([0, b], \mathbf{R}) \cap L^2_{loc}([0, b], \mathbf{R}),$ such that $||y|| \le h(t),$ $\forall y \in G(t, x),$ for a.e. $t \in [0, b]$ and for all $x \in \mathbf{R}^n$.

2 - Preliminaries

Let [a, b] be an interval and μ the Lebesgue measure on it. For $x \in \mathbb{R}^n$ and $\varepsilon > 0$ we set $B(x, \varepsilon) = \{y \in \mathbb{R}^n : ||y - x|| < \varepsilon\}$, where $||\cdot||$ is the Euclidean norm in \mathbb{R}^n endowed by the scalar product $\langle \cdot, \cdot \rangle$, and, given a subset A of \mathbb{R}^n , we put $B(A, \varepsilon) = \{x \in \mathbb{R}^n : \rho(x, A) < \varepsilon\}$, where $\rho(x, A) = \inf\{||y - x|| : y \in A\}$. For a closed and convex subset A of \mathbb{R}^n , we denote with m(A) the element of A such that $||m(A)|| = \inf\{||y|| : y \in A\}$.

Let be $1 \le p < +\infty$, we put

 $L_{loc}^p([a, b], \mathbf{R}^n) = \{x: [a, b] \rightarrow \mathbf{R}^n: x \text{ is measurable in } [a, b]\}$

$$\cap \{x: [a, b] \to \mathbb{R}^n: \int_{c}^{d} ||x(t)||^p dt < +\infty, \quad \forall c, d \in]a, b[\}$$

 $W^{1,p}([a,b], \mathbf{R}^n) = \{x: [a,b] \rightarrow \mathbf{R}^n: x \text{ is absolutely continuous on } [a,b]\}$

$$\cap \{x: [a, b] \rightarrow \mathbf{R}^n: \dot{x} \in L^p([a, b], \mathbf{R}^n)\}.$$

A function $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is said to be *proper* if $D(V) \neq \emptyset$, where $D(V) = \{x \in \mathbb{R}^n : V(x) < +\infty\}$. If V is proper, convex and lower semicontinuous, the multifunction $\partial V: \mathbb{R}^n \to 2^{\mathbb{R}^n}$, defined by

$$\partial V(x) = \big\{ y \in \mathbf{R}^n \colon \, V(\xi) - V(x) \ge \big\langle y, \, \xi - x \big\rangle, \ \, \forall \xi \in \mathbf{R}^n \big\}, \quad \, \forall x \in \mathbf{R}^n$$

is called sub-differential of V. We put $D(\partial V) = \{x \in \mathbb{R}^n : \partial V(x) \neq \emptyset\}$.

A multifunction $F: \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is called *lower semicontinuous* (upper semicontinuous) if $\forall x \in \mathbb{R}^n$ and $\forall \varepsilon > 0$ there exists $\delta > 0$ such that

$$F(x) \subset B(F(y), \ \varepsilon) \qquad \qquad (F(y) \subset B(F(x), \ \varepsilon)) \qquad \qquad \forall y \in B(x,\delta) \ .$$

Moreover F is said to have closed graph, if the set

$$\operatorname{Gr} F = \{(x, y) \in \mathbf{R}^n \times \mathbf{R}^n \colon y \in F(x)\}\$$

is closed in $\mathbb{R}^n \times \mathbb{R}^n$.

Let \mathcal{C} be the σ -algebra of Lebesgue measurable subsets of \mathbb{R}^n . The multifunction F is called *measurable* if for any closed subset $C \subset \mathbb{R}^n$, we have

$$\{x \in \mathbb{R}^n \colon F(x) \cap C \neq \emptyset\} \in \mathcal{A}.$$

The multivalued operator F is said to be *cyclically monotone* if for every cyclical sequence $x_0, x_1, ..., x_N = x_0$ and for every sequence $y_1, ..., y_N$ such that $y_i \in F(x_i), i = 1, ..., N$, we have

$$\sum_{i=1}^{N} \langle y_i, x_i - x_{i-1} \rangle \ge 0.$$

Remark 1. We recall that (cf. [7], Theorem 2.5) F is cyclically monotone if and only if there exists a proper, convex, lower semicontinuous function $W: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ such that

$$F(x) \subset \partial W(x)$$
 $\forall x \in \mathbb{R}^n$.

From Theorem 3.4 and Proposition 3.8 of [7] it is easy to deduce the following proposition that will be used in Sec. 3.

Lemma. Let $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper, convex and lower semicontinuous function. For every $x_0 \in \operatorname{int} D(\partial V)$ and $h \in L^1([0, b], \mathbb{R}^n)$, there exists a unique absolutely continuous function $x^h: [0, b] \to \mathbb{R}^n$ with the property

(2.1)
$$\dot{x}^h(t) \in -\partial V(x^h(t)) + h(t)$$
 a.e. in [0, b] and $x^h(0) = x_0$.

Remark 2. Let $x^0: [0, +\infty[\to \mathbb{R}^n]$ be the unique absolutely continuous function such that

$$\dot{x}^{0}(t) \in -\partial V(x^{0}(t))$$
 a.e. in $[0, +\infty[$ and $x^{0}(0) = x_{0}$.

From Theorem 3.2.1 of [3], using (26) of [7], if $x^h:[0, b] \to \mathbb{R}^n$ is the unique function that satisfies (2.1), it follows that

(2.2)
$$||x^{h}(t) - x_{0}|| \leq \int_{0}^{t} ||h(s)|| \, \mathrm{d}s + t ||m(\partial V(x_{0}))|| \qquad \forall t \in [0, b].$$

3 - Existence theorem

We consider the Cauchy problem

$$\dot{x} \in -\partial V(x) + F(x) + f(t, x) \qquad x(0) = x_0 \in \mathbb{R}^n$$

where $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, F: U(x_0) \to 2^{\mathbb{R}^n} (U(x_0) \text{ is a neighbourhood of } x_0)$ and $f: [0, b] \times \mathbb{R}^n \to \mathbb{R}^n$ verify respectively the properties:

- i. V is a proper, convex, lower semicontinuous function
- α . F(x) is non empty and compact, $\forall x \in U(x_0)$
- $\alpha\alpha$. F is upper semicontinuous
- $\alpha\alpha\alpha$. F is cyclically monotone
 - β. ∀x ∈ Rⁿ the function $t \mapsto f(t, x)$ is measurable
 - ββ. for a.e. $t \in [0, b]$ the function $x \mapsto f(t, x)$ is continuous on \mathbb{R}^n
- βββ_w. $\exists p \in]1, 2[, \exists h \in L^p([0, b], \mathbf{R}) \cap L^2_{loc}([0, b], \mathbf{R})$ such that $||f(t, x)|| \le h(t)$, for a.e. t ∈ [0, b], for all $x ∈ \mathbf{R}^n$.

We observe that for every compact set K, containing x_0 , there exists $x^* \in K$ such that $\inf\{V(x): x \in K\} = V(x^*)$. Since $\partial(V(x) - V(x^*)) = \partial V(x)$, we can assume $V \ge 0$.

An absolutely continuous function $x:[0,T]\to \mathbf{R}^n$ is called a solution of the Cauchy problem (3.1) if there exists $u\in L^2([0,T],\mathbf{R}^n)$, a selection of $F(x(\cdot))$ (i.e. $u(t)\in F(x(t))$ a.e. in [0,T]), such that $\dot{x}(t)\in -\partial V(x(t))+u(t)+f(t,x(t))$ a.e. in [0,T] and $x(0)=x_0$.

Our existence result is the following

Theorem. Let V, F and f satisfy the conditions i, α , $\alpha\alpha$, $\alpha\alpha\alpha$, β , $\beta\beta$, $\beta\beta\beta_w$ and let $x_0 \in \text{int } D(\partial V)$. Then there exist T > 0 and a solution $x: [0, T] \to \mathbb{R}^n$ of the Cauchy problem (3.1).

We start by observing that from i, α , $\alpha\alpha$ and from Theorem 0.7.2 of [3], it is possible to find two positive real number R and M with the properties:

(3.2)
$$||y|| < M \quad \forall y \in F(x) \text{ and } \forall x \in \operatorname{cl} B(x_0, R)$$

(3.3)
$$||z|| < M \quad \forall z \in \partial V(x) \text{ and } \forall x \in \operatorname{cl} B(x_0, R)$$

where clA denotes the closure of the set A.

By $\beta\beta\beta_w$ there exists $T_1 > 0$ such that

(3.4)
$$\int_{0}^{T_{1}} (h(t) + M) dt < \frac{R}{2}.$$

Let T_2 be a positive number such that

(3.5)
$$T_2 < \frac{R}{2(R + ||m(\partial V(x_0))||)}.$$

We shall consider a sequence of functions defined in [0, T], $T = \min\{T_1, T_2\}$, and prove that a subsequence converges to a solution of the Cauchy problem (3.1).

For every $m \in \mathbb{N}$ we set

$$I_{m, 1} = [0, \frac{T}{m}]$$
 $I_{m, i} =](i-1)\frac{T}{m}, i\frac{T}{m}]$ $\forall i \in \{2, ..., m\}.$

1st step i=1. Choose $y_{m,\,0}\in F(x_0)$ and define $f_{m,\,1}\colon I_{m,\,1}\to R^n$ by $f_{m,\,1}(t)=y_{m,\,0}+f(t,\,x_0),\ \forall t\in I_{m,\,1}$. Since $f_{m,\,1}\in L^1(I_{m,\,1},\,R^n)$, by the above Lemma there exists a unique absolutely continuous function $x_{m,\,1}\colon I_{m,\,1}\to R^n$ such that

$$\dot{x}_{m,1}(t) \in -\partial V(x_{m,1}(t)) + f_{m,1}(t)$$
 a.e. in $I_{m,1}$ and $x_{m,1}(0) = x_0$.

Therefore, by (2.2), (3.2), $\beta\beta\beta_w$, (3.4), (3.5) and (3.3), we obtain

$$||x_{m,1}(t) - x_0|| < R$$
 $\forall t \in I_{m,1}$ and $||\dot{x}_{m,1}(t)|| < 2M + h(t)$ a.e. in $I_{m,1}$.

 2^{nd} step i=2. Now we take $y_{m,\,1}\in F(x_{m,\,1}(Tm^{\,-1}))$ and define $f_{m,\,2}\colon\,[\,0,\,2Tm^{\,-1}\,]\to {\pmb R}^n$ by

$$f_{m,\,2}(t) = \begin{cases} f_{m,\,1}(t) & \forall t \in I_{m,\,1} \\ y_{m,\,1} + f(t,\,x_{m,\,1}(Tm^{\,-1})) & \forall t \in I_{m,\,2} \; . \end{cases}$$

We have that $f_{m, 2} \in L^1([0, 2Tm^{-1}], \mathbb{R}^n)$, and so there exists a unique absolutely continuous function $x_{m, 2}: [0, 2Tm^{-1}] \to \mathbb{R}^n$ such that

$$\dot{x}_{m,2}(t) \in -\partial V(x_{m,2}(t)) + f_{m,2}(t)$$
 a.e. in $[0, 2Tm^{-1}]$ and $x_{m,2}(0) = x_0$.

Obviously $x_{m,2} = x_{m,1}$ on $I_{m,1}$ and

$$||x_{m,2}(t) - x_0|| < R \quad \forall t \in [0, 2Tm^{-1}] \text{ and } ||\dot{x}_{m,2}(t)|| < 2M + h(t) \text{ a.e. in } [0, 2Tm^{-1}].$$

Analogously we proceed until the step i = m. We obtain a sequence $(x_m)_m$,

 $x_m: [0, T] \to \mathbb{R}^n$, of absolutely continuous functions, defined by

$$x_m(t) = x_{m, m}(t) = \sum_{i=1}^{m} x_{m, i}(t) \chi_{I_{m, i}}(t)$$
 $\forall t \in [0, T]$

where $\chi_{I_{m,i}}$ is the characteristic function of the set $I_{m,i}$. Now we set:

$$\delta_m, \gamma_m: [0, T] \rightarrow [0, T]$$
 and $f_m, g_m: [0, T] \rightarrow \mathbb{R}^n$

where

$$\delta_{m}(t) = \sum_{i=1}^{m} (i-1) \frac{T}{m} \chi_{I_{m,i}}(t) \qquad \gamma_{m}(t) = \sum_{i=1}^{m} i \frac{T}{m} \chi_{I_{m,i}}(t) \qquad \forall t \in [0, T]$$

$$f_m(t) = f_{m,m}(t) = \sum_{i=1}^m f_{m,i}(t) \chi_{I_{m,i}}(t)$$
 $\forall t \in [0, T]$

$$g_m(t) = \sum_{i=1}^m y_{m, i-1} \chi_{I_{m,i}}(t) \qquad \forall t \in [0, T].$$

Moreover, by construction, we have

(3.6)
$$\delta_m(t) \to t$$
 and $\gamma_m(t) \to t$ uniformly in [0, T]

$$(3.7) g_m(t) \in F(x_m(\delta_m(t))) \forall t \in [0,T] \forall m \in N$$

$$(3.8) f_m(t) = g_m(t) + f(t, x_m(\delta_m(t))) \forall t \in [0, T] \forall m \in N$$

$$\dot{x}_m(t) \in -\partial V(x_m(t)) + f_m(t) \quad \text{a.e. in } [0,T] \quad \forall m \in \mathbb{N}$$

$$||x_m(t) - x_0|| < R \qquad \forall t \in [0, T] \quad \forall m \in \mathbb{N}$$

(3.11)
$$\|\dot{x}_m(t)\| < 2M + h(t)$$
 a.e. in $[0,T] \quad \forall m \in N$

and, by (3.7), (3.10) and (3.2), it is trivial to prove that

$$||g_m(t)|| < M \qquad \forall t \in [0, T] \quad \forall m \in N.$$

By (3.11) and $\beta\beta\beta_w$ we have that $(\dot{x}_m)_m$ is bounded in $L^p([0,T],\mathbf{R}^n)$. Hence, by taking Arzela-Ascoli Theorem and Theorem III.27 of [8] into account, it follows that there exist a subsequence of $(x_m)_m$, still denoted by $(x_m)_m$, and an

absolutely continuous function $x: [0, T] \rightarrow \mathbb{R}^n$ such that:

- (3.13) $(x_m)_m$ converges uniformly to x
- (3.14) $(\dot{x}_m)_m$ converges weakly in $L^p([0, T], \mathbf{R}^n)$ to \dot{x} .

Moreover, by (3.12) and Theorem III.27 of [8], we can assume that

(3.15)
$$(g_m)_m$$
 converges weakly in $L^2([0, T], \mathbf{R}^n)$ to g .

On the other hand, from (3.7), (3.6) and (3.13) we obtain

(3.16)
$$\lim_{m \to +\infty} \rho((x_m(t), g_m(t)), \operatorname{Gr} F) \leq \lim_{m \to +\infty} ||x_m(t) - x_m(\delta_m(t))|| = 0$$

a.e. in [0, T].

From $\alpha\alpha$, (3.13), (3.15), (3.16) and from the convergence Theorem 1.4.1. of [3], there exists (Remark 1) a proper, convex and lower semicontinuous function $W: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ such that

$$(3.17) g(t) \in \partial W(x(t)) a.e. in [0, T].$$

Now, fix a closed interval $J = [c, d] \subset]0$, T[. By using (3.11) and $\beta\beta\beta_w$ it follows that $(\dot{x}_m)_m$ is bounded in $L^2(J, \mathbb{R}^n)$, therefore, by (3.14) and Theorem 2 of [10], p. 222, we have that

(3.18)
$$(\dot{x}_m)_m$$
 converges weakly in $L^2(J, \mathbf{R}^n)$ to \dot{x}

and so $x \in W^{1,2}(J, \mathbb{R}^n)$.

By Lemma 3.3 of [7] (cf. (3.17)) it follows that

(3.19)
$$W(x(d)) - W(x(c)) = \int_{c}^{d} \langle g(s), \dot{x}(s) \rangle ds.$$

On the other hand, by (3.7) and by the definition of ∂W , we have

$$W(x_m(i\frac{T}{m})) - W(x_m((i-1)\frac{T}{m})) \ge \langle y_{m, i-1}, \int_{(i-1)Tm^{-1}}^{iTm^{-1}} x_m(s) ds \rangle$$

$$=\int\limits_{(i-1)Tm^{-1}}^{iTm^{-1}}\left\langle g_m(s),\,\dot{x}_m(s)\right\rangle\mathrm{d}s\qquad\forall i\in\left\{\gamma_m(c)\frac{m}{T}\,+\,1,\,\ldots,\,\delta_m(d)\frac{m}{T}\,\right\},\qquad\forall m\in\mathbf{N}$$

and by adding for $i=\gamma_m(c)\frac{m}{T}+1,\,...,\,\delta_m(d)\frac{m}{T},$ we obtain

$$W(x_m(\delta_m(d))) - W(x_m(\gamma_m(c))) \ge \int\limits_{\gamma_m(c)}^{\delta_m(d)} \left\langle g_m(s), \, \dot{x}_m(s) \right\rangle \mathrm{d}s \qquad \forall m \in \mathbb{N} \,.$$

Hence, by taking (3.13), (3.6), Proposition 2.12 of [7] and (3.19) into account, we have

(3.20)
$$\lim_{m \to +\infty} \sup_{c} \int_{c}^{d} \langle g_{m}(s), \dot{x}_{m}(s) \rangle ds \leq \int_{c}^{d} \langle g(s), \dot{x}(s) \rangle ds.$$

Now, by using Lemma 3.3 of [7] (cf. (3.18), (3.15), (3.8), $\beta\beta\beta_w$ and (3.9)), it follows that

$$(3.21) \int_{c}^{d} ||\dot{x}_{m}(s)||^{2} ds = V(x_{m}(c)) - V(x_{m}(d)) + \int_{c}^{d} \langle g_{m}(s), \dot{x}_{m}(s) \rangle ds + \int_{c}^{d} \langle f(s, x_{m}(\delta_{m}(s))), \dot{x}_{m}(s) \rangle ds \quad \forall m \in \mathbb{N}.$$

Analogously, by taking theorem 1.4.1. of [3] into account (cf. (3.15), (3.18), (3.13) and (3.9)), from Lemma 3.3 of [7], we obtain

(3.22)
$$\int_{c}^{d} ||\dot{x}(s)||^{2} ds = V(x(c)) - V(x(d)) + \int_{c}^{d} \langle g(s), \dot{x}(s) \rangle ds + \int_{c}^{d} \langle f(s, x(s)), \dot{x}(s) \rangle ds .$$

Moreover, since (cf. (3.6), $\beta\beta$, $\beta\beta\beta_w$ and (3.18))

$$\lim_{m \to +\infty} \int_{c}^{d} \langle f(s, x_m(\delta_m(s))), \dot{x}_m(s) \rangle ds = \int_{c}^{d} \langle f(s, x(s)), \dot{x}(s) \rangle ds$$

by (3.21), (3.20), (3.22) and the lower semicontinuity of V, we obtain

$$\lim_{m \to +\infty} \sup_{\infty} \|\dot{x}_m\|_{L^2(J)} \le \|\dot{x}\|_{L^2(J)}.$$

Therefore (cf. (3.18) and Proposition III.30 of [8], p. 52) $(\dot{x}_m)_m$ converges strongly in $L^2(J, \mathbf{R}^n)$ to \dot{x} . Hence (cf. [8], Theorem IV.9, p. 58), there exist a subsequence of $(\dot{x}_m)_m$, still denoted $(\dot{x}_m)_m$, which converges pointwise a.e. in J to \dot{x} and $\lambda \in L^2(J, \mathbf{R})$ such that $||\dot{x}_m(t)|| \leq \lambda(t)$ a.e. in J, $\forall m \in \mathbb{N}$.

Now, set $H: J \to 2^{\mathbb{R}^n}$, $\sigma: J \to \mathbb{R}$ and η_m , $\eta: [0, T] \to \mathbb{R}^n$, to be:

$$H(t) = F(x(t)) + f(t, x(t)) - \dot{x}(t) \qquad \qquad \sigma(t) = M + h(t) + \lambda(t)$$

$$\eta_m(t) = f_m(t) - \dot{x}_m(t)$$
 $\eta(t) = g(t) + f(t, x(t)) - \dot{x}(t).$

By construction, $\gamma_m(t) \in F(x_m(\hat{\sigma}_m(t))) + f(t, x_m(\hat{\sigma}_m(t))) - \dot{x}_m(t)$, a.e. in J. Hence $\|\gamma_m(t)\| \leq \sigma(t)$, a.e. in J, $\forall m \in \mathbb{N}$, and

$$\rho(\gamma_m(t), H(t)) \leq \|\dot{x}_m(t) - \dot{x}(t)\| + \|f(t, x_m(\delta_m(t))) - f(t, x(t))\|$$

$$+ \sup \{ \rho(z, F(x(t))) : z \in F(x_m(\delta_m(t))) \}$$
 a.e. in $J, \forall m \in \mathbb{N}$.

Then, taking (3.13), (3.6), $\beta\beta$ and $\alpha\alpha$ into account, we have

$$\lim_{m \to +\infty} \rho(\eta_m(t), H(t)) = 0 \quad \text{a.e. in } J.$$

Therefore, by Lemma 3.2 of [9], it follows that the multifunction $\psi: J \to 2^{\mathbb{R}^n}$, defined by $\psi(t) = \bigcap_{m \in N} \operatorname{cl}(\bigcup_{i \geq m} \{ \eta_i(t) \}), \ \forall t \in J \text{ is such that } \psi(t) \text{ is nonempty and compact, } \forall t \in J, \ \psi \text{ is measurable in } J \text{ and}$

(3.23)
$$\psi(t) \in F(x(t)) + f(t, x(t)) - \dot{x}(t)$$
 a.e. in J .

Consider now, the multifunction H^* defined by $H^*(t) = \partial V(x(t)) \cap \operatorname{cl} B(0, \sigma(t))$. Since $\eta_m(t) \in \partial V(x_m(t)) \cap \operatorname{cl} B(0, \sigma(t))$, a.e. in J, and $x \mapsto \partial V(x) \cap \operatorname{cl} B(0, \sigma(t))$ is upper semicontinuous in $\operatorname{cl} B(x_0, R)$, $\forall t \in J$, we have

$$\lim_{m \to +\infty} \rho(\eta_m(t), H^*(t)) = 0 \quad \text{a.e. in } J.$$

Hence, by using Lemma 3.2 of [9], we get

(3.24)
$$\psi(t) \in \partial V(x(t)) \cap \operatorname{cl} B(0, \sigma(t)) \quad \text{a.e. in } J.$$

Let $v_J: J \to \mathbb{R}^n$ be a measurable selection of ψ , and set $u_J: J \to \mathbb{R}^n$, $u_J(t) = v_J(t) + \dot{x}(t) - f(t, x(t))$. By (3.23) and (3.24), we have that $u_J \in L^2(J, \mathbb{R}^n)$, $u_J(t) \in F(x(t))$ and $\dot{x}(t) \in -\partial V(x(t)) + u_J(t) + f(t, x(t))$, a.e. in J.

Since J is arbitrary, it follows that $\forall s \in \mathbb{N}$, \exists a closed interval $J_s \subset]0$, T[, $\mu([0,T] \setminus J_s) < \frac{1}{s}$, and \exists a function $u_s \in L^2(J_s, \mathbb{R}^n)$ such that $u_s(t) \in F(x(t))$, a.e. in J_s , and $\dot{x}(t) \in -\partial V(x(t)) + u_s(t) + f(t,x(t))$, a.e. in J_s .

Set $D = \bigcup_{s \in N} J_s$ and $u: [0, T] \to \mathbb{R}^n$ defined by

$$u_1(t)$$
 $t \in J_1$

$$u(t) = u_i(t)$$
 $t \in J_i \setminus \bigcup_{j=1}^{i-1} J_j$,

$$0 t \in [0, T] \setminus D.$$

It is easy to see that $u(t) \in F(x(t))$, a.e. in [0, T], and so (cf. (3.2) and (3.10)) $u \in L^2([0, T], \mathbb{R})$. Since $\mu([0, T] \setminus D) = 0$, we have that

$$\dot{x}(t) \in -\partial V(x(t)) + u(t) + f(t, x(t))$$
 a.e. in $[0, T]$.

Since $x_m(0) = x_0$, $\forall m \in \mathbb{N}$, it follows that x is a solution of the Cauchy problem (3.1).

Remark 3. In the case $x_0 \in \operatorname{int} D(\partial V)$, our proposition improves the existence theorem of V. Staicu [13]. In fact it is obvious that if $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is a function satisfying condition H_3 of [13], then f satisfies our assumptions β , $\beta\beta$, $\beta\beta\beta_w$ (cf. [10], Theorem 6, p. 101). On the other hand, the function $f: [0, 1] \times \mathbb{R} \to \mathbb{R}$, defined by

$$f(t, x) = \frac{1}{\sqrt{t}} \qquad (t, x) \in]0, 1] \times \mathbf{R}$$
$$0 \qquad (t, x) \in \{0\} \times \mathbf{R}.$$

satisfies the conditions β , $\beta\beta$, $\beta\beta\beta_{\rm w}$ but does not satisfy the hypothesis H_3 of [13].

Remark 4. This existence result contains a proposition of [12] (cf. Theorem at p. 198). It is sufficient to assume V(x) = 0, $\forall x \in \mathbb{R}^n$.

Finally we observe that, by using a proposition of [12], p. 203, we obtain

Corollary. If $V: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ and $F: U(x_0) \to 2^{\mathbb{R}^n}$ satisfy respectively the conditions i, α , $\alpha\alpha$, $\alpha\alpha$ and $G: [0, b] \times \mathbb{R}^n \to 2^{\mathbb{R}^n}$ is a multifunction with the properties:

- j. G(t, x) is nonempty, closed and convex, $\forall (t, x) \in [0, b] \times \mathbb{R}^n$
- ij. $\forall x \in \mathbb{R}^n$, $t \mapsto G(t, x)$ is measurable
- jjj. $\forall t \in [0, b], x \mapsto G(t, x)$ is lower semicontinuous and has closed graph
- jv. $\exists p \in]1, 2[$ and $\exists h \in L^p([0, b], \mathbf{R}) \cap L^2_{loc}([0, b], \mathbf{R})$ such that $||y|| \leq h(t)$, $\forall y \in G(t, x)$, for a.e. $t \in [0, b]$ and for all $x \in \mathbf{R}^n$, then there exist a number T > 0 and an absolutely continuous function $x: [0, T] \to \mathbf{R}^n$ that is a solution of the Cauchy problem

$$\dot{x} \in -\partial V(x) + F(x) + G(t, x)$$
 $x(0) = x_0$ $x_0 \in \text{int } D(\partial V)$.

References

- [1] F. Ancona and G. Colombo, Existence of solutions for a class of nonconvex differential inclusions, Rend. Sem. Mat. Univ. Padova 83 (1990), 71-76.
- [2] H. Attouch and D. Damlamian, On multivalued evolution equations in Hilbert spaces, Israel J. Math. 12 (1972), 373-390.
- [3] J. P. Aubin and A. Cellina, Differntial Inclusions, Springer, Berlin 1984.
- [4] P. Benilan and H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert, Ann. Inst. Fourier 22 (1972), 311-329.
- [5] H. Brezis, Propriétes régularisantes de certains semi groupes non linéaires, Israel J. Math. 9 (1971), 513-534.
- [6] H. Brezis, Monotonicity methods in Hilbert space and some applications to nonlinear partial differential equations, Contributions to nonlinear functional analysis, E. Zarantonello ed., Academic Press, New York 1971.
- [7] H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam 1973.
- [8] H. Brezis, Analyse fonctionelle, théorie et applications, Masson, Paris 1983.
- [9] A. Cellina and V. Staicu, On evolution equations having monotonicities of opposite sign, J. Differ. Equat. 90 (1991), 71-80.
- [10] L. V. KANTOROVICH and G. P. AKILOV, Functional Analysis, Pergamon, 1982.
- [11] D. Kravvaritis and N. S. Papageorgiou, Multivalued perturbations of subdifferential type evolution equations in Hilbert spaces, J. Differ. Equat. 76 (1988), 238-255.
- [12] F. Papalini, Existence of solutions for differential inclusions without convexity, Rend. Ist. Mat. Univ. Trieste 24 (1992), 193-206.
- [13] V. Staicu, On the existence of solutions to a class of differential inclusions, Rend. Sem. Mat. Univ. Pol. Torino 48 (1990), 137-148.

Sommario

In questo lavoro otteniamo un teorema di esistenza per problemi di Cauchy della forma $\dot{x} \in -\partial V(x) + F(x) + f(t, x)$, $x(0) = x_0$, dove F è un operatore multivoco di \mathbf{R}^n , ∂V è il sottodiferenziale di una funzione reale V definita in \mathbf{R}^n e f è una perturbazione monodroma. Questo teorema migliora i teoremi di esistenza conseguiti in [1] e in [12], e, nel caso $x_0 \in \operatorname{int} D(\partial V)$, contiene i teoremi di [9] e di [13].

* * *