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F. PAPALINI and S. VERCILLO (%)

Existence of solutions to a class of evolution equations (**)

1 - Introduction

The existence of solution to the Cauchy problem for evolution inclusions of
the form

(1.1) 2e —aV(a) + f(1) 2(0)=uy ;e DEV)

where 0V is the sub-differential of a proper, convex and lower semicontinuous
function V, defined on an Hilbert space, and f is a single valued perturbation,
has been largely studied (cf. [4], [5], [6]). Later, some Authors (ef.[2] and [11])
have studied the problem (1.1) in the more general context that the perturba-
tion is a multifunction.

In 1990, F. Ancona and G. Colombo [1] have studied the problem

(1.2) ‘ Ze Flx) + f(1, x) 2(0) = x

by assuming that F: R*— 2% is an upper semicontinuous and cyclically
monotone multifunction with compact (not necessarily convex) values, while
f: RXR"—R" is a single valued function such that

B. for every x e R", {+>f(t, x) is measurable
pp. for a.e. teR, x—f(t, x) is continuous on R
8. Ime L*(R, R) such that ||f(t, x)|| < m(t), for ae. teR and for all

reR™

This result has been improved in [12]. We obtain the existence of solutions for

(*) Dip. di Matem., Univ. Perugia, Via Vanvitelli 1, Perugia, Italia.
(**) Riceived July 19, 1993. AMS classification 34 G 20.
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the problem (1.2) by substituting the condition Bpg (for us, it is enough that fis
defined on [0, b] X R*) with the weaker assumption

B88y. dpell,2[ and 3FreLP([0,b],R)N L2.([0,b],R), such that
£, 2)l| < A(t), for ae. telel0,b], for all xeR™

In 1991, A. Cellina and V. Staicu [9] obtained an existence result to the
Cauchy problem of the form

(1.3) 2e —dVix) + Flx) 2(0)=ny 2, DEV)

where V: R*— R U {+ « } is a proper, convex and lower semicontinuous func-
tion and F: Ulx,)— 2% is an upper semicontinuous and cyelically monotone
multivalued operator, with compact values and defined on some neighbourhood
of xg.

V. Staicu in [13] has unified the results of [1] and of [9] by proving the exi-
stence of solutions for the problem

14) te —~WV(x) + Flx) +ft, ) x(0)=ay a9 D(BV)

where V and F are as in[9] and f is like in[1].

In this note we consider the Cauchy problem of the form (1.4), in the
case that x, belongs to the interior of D(8V) (xy e int D(3V)). We prove that
(cf. Theorem) it has solutions by supposing that V: R* >R U {+«} and
F: Ulx,) — 28" are, as for V. Staicu, respectively a proper, convex and lower
semicontinuous function and an upper semicontinuous and cyclically monotone
multifunction with compact values, while f: [0, b] X R" — R" (not necessarily
defined, as for V. Staicu, in R X R") satisfies the weaker conditions B, 8§
and B8Ry .

In the case that x, € int D(3V), our theorem contains the theorem presented
by V. Staicu in [13] (cf. Remark 3) and the one obtained by A. Cellina and V.
Staicu [9]. When V is a constant funection, our proposition reduces to the theo-
rem of [12] and so, even in this particular ease, our theorem contains the men-
tioned result of A. Ancona and G. Colombo [1].

Finally in the Corollary, we obtain the existence of solutions to the problem
(1.4) where the single valued perturbation f is replaced by a multifunction
G: [0, b] X R*—2F" such that

j. G{t, x) is nonempty, closed and convex, Y(t, x) [0, b] X R"

jj- VxeR", t—G(t, x) is measurable
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jij. Vte[0,b], 2—G({,x) is lower semicontinuous and has closed
graph

jv. dpell, 2[ and 3k e LP([0, b], R) N LE. ([0, b], R), such that [ly| < A(?),
Yy e G(t, ), for a.e. te[0, b] and for all x e R".

2 - Preliminaries

Let [a, b] be an interval and u the Lebesgue measure on it. For x € R” and
e >0 we set Bz, ) = {y e R": |ly — «| < ¢}, where ||-|| is the Euclidean norm
in R" endowed by the scalar product (- ), and, given a subset A of R", we put
B4, &) = {x e R": o(w, A) < ¢}, where o(x,A)=inf{|ly —=|: yeA}. For a
closed and convex subset 4 of R", we denote with m(A) the element of A such
that [Im(A)]| = inf {|y]: y e A}.

Let be 1<p <+, we put

Ll.(a, bl, R*) = {x: [a, b]— R": =z is measurable in [a, b]}
d
N{x: [a, b] = R™: [|lx@®)|Pdt < + =, Ve, d ela, b[}

W2 ([a, bl, R") = {x:[a, b]—>R": x is absolutely continuous on [a, b]}
N{: [a, b] - R": &< L?(a, b], R*)}.

A function V: R*" >R U {+»} is said to be proper if D(V)s= @, where
D(V)={xeR": V(z) < +«}. If V is proper, convex and lower semicontinu-
ous, the multifunction 8V: R* — 2F', defined by

V(w) = {yeR*: V(&) - V(z) = {y, £ —z), VicR"}, VYzeR"

is called sub-differential of V. We put D(3V) = {x e R": dV(z) # §}.
A multifunction F': R* — 2% is called lower semicontinuous (upper semicon-
tinuous) if Vo e R" and Ve > 0 there exists ¢ > 0 such that

F(x) c B(F(y), €) (F(y) c B(F(x), €)) VyeB(x,).
Moreover F' is said to have closed graph, if the set
GrF={(z,y) e R"XR": yeF(x)}

is closed in R" X R™.
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Let @ be the o-algebra of Lebesgue measurable subsets of R™ The
multifunction F is called measurable if for any closed subset CcR", we
have

{xeR": Fx)yNC=6}ea.
The multivalued operator F' is said to be cyclically monotone if for every cyecli-

cal sequence %y, %, ..., €y = ®y and for every sequence ¥, ..., ¥yn» such that
y;e F(z;), =1, ..., N, we have

N
.21@1', @ —%;_1)=0.
i<

Remark 1. We recall that (cf. [7], Theorem 2.5) F' is cyclically monotone if
and only if there exists a proper, convex, lower semicontinuous function
W: R*" >R U {+ e} such that

F(x) c oW(x) VxeR".

From Theorem 3.4 and Proposition 3.8 of [7] it is easy to deduce the following
proposition that will be used in See. 3.

Lemma. LetV: R*"—R U {+ «} be a proper, convex and lower semicon-
tinuous function. For every x, € int D(3V) and h e L1 ([0, b], R™), there exists a
unique absolutely continuous function x*: [0, b]— R™ with the property

2.1) " (t) e —aV(x"(t)) + h(t) ae. in [0, b] and x"(0) =12, .

Remark 2. Let z°:[0, + ©[—R" be the unique absolutely continuous
function such that

£%(t) e —3V(x®(t)) a.e. in [0, + o[ and 2°(0) =, .

From Theorem 38.2.1 of [3], using (26) of [7], if «*:[0, b]— R" is the unique
funection that satisfies (2.1), it follows that

t
22) lle® (&) — o} < J l2(s)]| ds + tflm(aV(a, )| Vte[0, b].
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3 - Existence theorem

We consider the Cauchy problem
3.1) %e —aV(x) + F(x) + f(t, x) x(0) = xye R”
where V: R" >R U {+ o}, F: Ulxy) —2F" (U(x,y) is a neighbourhood of ;)
and f: [0, b] X R" — R" verify respectively the properties:
i. V is a proper, convex, lower semicontinuous function
a. F(x) is non empty and compact, ¥z e U(x,)
ac. F is upper semicontinuous

aca. F is cyeclically monotone

B. Vx e R" the function ¢+ f(t, x) is measurable
g3. for a.e. te[0, b] the function x> f(¢, x) is continuous on R"

BB Ipell, 2[, he LP([0, b], R) N L. (0, b], R) such that
lft, 2)| < A(t), for ae. tel0,b], for all x e R"

‘We observe that for every compact set K, containing x,, there exists £* € K
such that inf {V(x): x e K} = V(x*). Since 3(V(x) — V(x*)) = dV(x), we can as-
sume V= 0.

An absolutely continuous function x: [0, 71— R" is called a solution of the
Cauchy problem (3.1) if there exists u e L2([0, T1, R™), a selection of F(x(-))
(ie. u(t) e F(x(t)) a.e. in [0, TT), such that &(¢) e —3V(x(t)) + u(t) + f(£, (L))
ae. in [0, T] and 2(0) = xg.

Our existence result is the following

Theorem. Let V, F and f satisfy the conditions i, «, ao, aca, B, PB, BBRw
and let 2y e int D(3V). Then there exist T > 0 and a solution x: [0, T]— R of
the Cauchy problem (3.1).

We start by observing that from i, «, e and from Theorem 0.7.2 of [3], it is
possible to find two positive real number B and M with the properties:

(8.2) lyll < M Vy e F(x) and Vx e el B(z, R)
(8.3) el < M VzedV(z) and Vzx e cl Bz, R)

where clA denotes the closure of the set A.
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By BB, there exists T; > 0 such that

7 R
3.4) Jh(t) + M)dt < 5
0

Let T, be a positive number such that

R
< .
2(R + [m(aV(zo D

(3.5) T»

We shall consider a sequence of functions defined in [0, 7], T=min{T;, T>},
and prove that a subsequence converges to a solution of the Cauchy problem
3.1).

For every me N we set

o T e T T .
Im,l = [0, m Im,i—](z 1)7’)’1/’2’)7’11] Vie {2, ,’)’)’I,}

1% step i=1. Choose ¥, o€ F(x,) and define f, 1: I, 1—>R" by
i 1®) = Ym o + ft, ), Viel, . Since f, €L (I, 1, R"), by the above
Lemma there exists a unique absolutely continuous function z,, ;: I, ; —R"
such that

T, 1 (8) € =V (@, 1 (8)) + £, 1(8) ace. in I, 1 and w,, {(0) = x, .
Therefore, by (2.2), (3.2), BBBy, (34), (8.5) and (3.3), we obtain
w1 () — | <R Viel,; and [, ()] <2M +h(t)  ae in I, .

2" gtep i=2. Now we take ¥, 1€ F(%,1(Tm™")) and define
fuz: [0, 2Tm ' 1—R" by

S, 1(E) Viel,

m, 2 () =
T2 () Ym, 1 + [, @ 1 (TM™Y))  Viel, .

We have that f,, o € L' ([0, 2T'm '], R"), and so there exists a unique absolute-
ly continuous function w,, 2: [0, 27 ~']— R™ such that

B, 2 (8) € = V(@ 2 (D)) + fin, 2(8) ace. in [0, 2Tm 1] and ,, »(0) = .
Obviously @, 2= 2y, 1 on I, ; and
#nz@®—20| <R Vte[0,2Tm '] and |&,2@) || <2M +h(t) ae. in [0, 2Tm 1.

Analogously we proceed until the step i =m. We obtain a sequence (,,)n,



[7] EXISTENCE OF SOLUTIONS TO A CLASS OF EVOLUTION EQUATIONS 215

T [0, T]— R", of absolutely continuous functions, defined by

m

xm(t) = Tm, m (t) = .21 T, z(t) Zln,'i(t) Vie [07 T]

where y; . is the characteristic function of the set I, ;.
Now we set:

8ms Ym: [0, TT— [0, T] and f,, gn: [0, T]—>R"

where

aﬂt(t) = Zl(i - 1)%}(1’;;,1‘(75) Ym (t) = ,2lilxlryz,i(t) Vt € [0) T]

m
fu® = ® = 3 o 11,0 Viel0, 7]
In () = iglyﬂz,i—lXIm'i(t) Vie[0, T].

Moreover, by construction, we have

(3.6) 3 (t) =t and y,,(t) —t uniformly in [0, T
3.7 I (8) € F2, (3, (1)) Vte[0,7] VYmeN
(3.8 S (8) = g () + [, e (61 (8))) Vie[0,7] VmeN
(3.9) G (1) € —0V(@,, () + £ (£)  ae. in [0,T] VmeN
(8.10) it () — ol < R Vte[0,7] VmeN
(3.11) e, (DIl < 2M + R(t) ae in [0,T] VmeN

and, by (3.7), (8.10) and (3.2), it is trivial to prove that

(8.12) lg (O < M Vte[0,T] VYmeN.

By (3.11) and BpB,, we have that (£,,),, is bounded in L? ([0, 7], R"). Hence,
by taking Arzela-Ascoli Theorem and Theorem IT1.27 of [8] into account, it fol-
lows that there exist a subsequence of (,,),,, still denoted by (,,),., and an
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absolutely continuous function z: [0, 7] — R"™ such that:

(3.13) (x,, ) converges uniformly to x

(3.14) (€,,)m converges weakly in LP([0, T}, R*) to 2.
Moreover, by (3.12) and Theorem IIL.27 of [8], we can assume that

(8.15) (gm ) converges weakly in L%([0, T1, R*) to g.

On the other hand, from (3.7), (3.6) and (3.13) we obtain

(816)  lim o(@u(), gu (), GrF) < lim (8 = @ (8n (D] = 0

a.e. in [0, T].

From aa, (3.13), (8.15), (8.16) and from the convergence Theorem 1.4.1.
of [3], there exists (Remark 1) a proper, convex and lower semicontinuous func-
tion W: R*—>R U {+ «} such that

8.17 g(t) e OW(x(t)) a.e. in [0, T].

Now, fix a closed interval J = [¢, d] c]0, T[. By using (8.11) and Bpg,, it fol-
lows that (,,),, is bounded in L2(J, R"), therefore, by (3.14) and Theorem 2
of [10], p. 222, we have that

(3.18) (% )m converges weakly in L%(J, R") to &

and so xe WY2(J, R").
By Lemma 8.3 of [7T] (cf. (8.17)) it follows that

d
(8.19) Wi((d)) — W(x(c)) =Cf(g(s), @(s))ds.

On the other hand, by (8.7) and by the definition of W, we have

T ) T iTm ! ]
Wiz, (120) = Wan (G = D) 2 Ymi-1, [ dn(s)ds)

G-1DTm™!

iTm ™! ] . m m
= [ Agn(s), @,(s))ds Vie{yn()— +1, .., 8, )~} VmeN
(G-1)Tm™} T T
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and by adding for i = y,,,(c)% +1, ..., a,,,(d)ﬂ]?—, we obtain

S (d)

W(xm(d‘m (d))) - W(xnz(?’m(c))) = .{) (gm(s), itm (S» ds VmeN.
Tmic
Hence, by taking (3.13), (3.6), Proposition 2.12 of [7] and (8.19) into account, we
have

d d
(3.20) lim sup [(gr (5), & (3))ds < [(g(s), &(s)) ds .

m—+w C

Now, by using Lemma 3.3 of [7] (cf. (3.18), (8.15), (3.8), 8RB, and (3.9)), it fol-
lows that

d d
Sl (9P ds = Ve, (€)) = V@, (d)) + [{g(5), 5, (5)) ds
3.21) ¢ . ¢
+ J{f(8, %, (3,, (8N, %, (8))ds VmeN.

Analogously, by taking theorem 1.4.1. of [3] into account (cf. (3.15), (3.18),
(3.13) and (3.9)), from Lemma 3.3 of [7], we obtain

d d d
(3.22) cf“:i:(s)ﬂz ds = V(x(c)) — V(x(d)) +cf<g(s), #(s))ds +cf<f(s, x(s)), %(s))ds .

Moreover, since (cf. (3.6), 88, A8, and (3.18))

d

d
lim cf (8, By (8, (D)), @y (8))ds = [{ (s, 2(s)), #(s)) ds

c

by (3.21), (8.20), (8.22) and the lower semicontinuity of V, we obtain

lim sup [, [lz20y < [@l20 -
m—s + ®
Therefore (cf. (3.18) and Proposition IT1.30 of [8], p. 52) (%,,),, converges strong-
ly in L%(J, R") to &. Hence (cf. [8], Theorem IV.9, p. 58), there exist a subse-
quence of (%,,)y,, still denoted (&,,),,, which converges pointwise a.e. in J to %
and 2 eL?(J, R) such that [, @) < A(t) ae. in J, YmeN.
Now, set H: J —»2F' ¢: J >R and 1y, n: [0, T1—R", to be:

H(t) = F(a(t) + (¢, 2()) — 2(8) o(t) = M + Rh(8) + M)

N () = frn (8) — &0 (8) n(t) = g(®) + f(t, 2(t)) — 2(t).
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By construction, v, () € F(,, (8, () + f(E, %y (8, (D)) — %, (1), ae. in J.
Hence |jn,, (1) < o(t), a.e. in J, Y¥m e N, and

P(T/m (t); H(t)) < Ha'cm (t) - x(t)“ + ”f(t; Tm (am(t))) "’f(ty {U(t))“

+ sup {p(z, F(z(t): ze F(x,(¢,{®))} ae inJ, VmelV.
Then, taking (8.18), (3.6), 88 and «« into account, we have

lirrw} (@), HX) =0 ae inJ.

Therefore, by Lemma 8.2 of [9], it follows that the multifunction ¢: J — 2% de-
fined by (t) = ﬂN el( U {5:(®)}), VteJ is such that ¢(¢) is nonempty and
compact, Vi eJ, ¢ is measurable in J and
(3.23) () ¢ F(a(t)) + (¢, x(t) — 2(t) a.e in J.

Consider now, the multifunction H* defined by H* () = dV(«(t)) N el B(0, «(£)).
Sinee 1, (t) € dV(x,, (£)) N el B(0, o(t)), a.e. in J, and 2+ 3V(z) N el B(0, o(?)) is
upper semicontinuous in clB(xy, R), Vi e J, we have

lim o(n, @), H*({) =0 ae in J.

m— +
Hence, by using Lemma 3.2 of [9], we get
(8.24) J(8) c 3V(x(t)) NelB(0, o(t)) ae. in J.

Let v;: J—R" be a measurable selection of ¢, and set u;: J—R",
uy (&) =2v,0) + @) —f¢t,2(t)). By (3.23) and (3.24), we have that u;eL?(J,R",
uy () € Fx(t)) and #(t) e —OV(a(t)) + u,(t) + f(t, (), ae. in J.

Since J is arbitrary, it follows that Vse N, 3 a closed interval J, c]0, 7T,

2([0, TINJ;) < %, and 3 a function u, e L%(J;, B") such that u,(¢) e F(x(?)),

a.e. in J,, and ©(t) e —oV(x(f)) + u,(t) + f(t, x(£)), a.e. in J;.
Set D= UNJS and u: [0, T]1— R" defined by

w @) ted

i-1
w(t) = u; (t) teJi\jgle,

0 tel0, TIND.
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It is easy to see that u(t) e F(x(t)), a.e. in [0, T'], and so (cf. (3.2) and (3.10))
we L2([0, T], R). Since w([0, TI\D) = 0, we have that

£(t) e —oWV(x(D)) + u(t) + f(¢, «(t)) ae. in [0, T].

Since w,, (0) = %y, Vm e N, it follows that x is a solution of the Cauchy problem
3.1).

Remark 3. In the case x,e int D(8V), our proposition improves the exi-
stence theorem of V. Staicu [13]. In fact it is obvious that if fi R X R* > R"
is a function satisfying condition Hj of [13], then f satisfies our assumptions
B, 08, BRRy (cf.[10], Theorem 6, p. 101). On the other hand, the function
f:10,1] X R — R, defined by

1
—_ (t, x)el0, 1] X R

ft, @)= Vi
0 (t,x) e {0} XR.

satisfies the conditions 8, B8, P8B, but does not satisfy the hypothesis Hj
of [13].

Remark 4. This existence result contains a proposition of [12] (cf. Theo-
rem at p. 198). It is sufficient to assume V(x) =0, Vo e R".

Finally we observe that, by using a proposition of [12], p. 203, we ob-
tain

Corollary. If V: R*—>RU {+®} and F: Ux,) —2F satisfy respect-
wely the conditions i, «, aa, aca and G: [0, b] X R"— 2% is a multifunction
with the properties:

j. G, x) is nonempty, closed and convex, V(t, x) [0, b] X R*

ji. YxeR" t— G(t, x) is measurable

jij- Vtel0,b], x—G(t, x) is lower semicontinuous and has closed
graph

jv. dpell, 2[ and Ih e LP([0, bl, R) N LE. ([0, b], R) such that |ly| < h(2),
Vy e G(t, x), for a.e. te[0, bl and for all x e R, then there exist a number
T > 0 and an absolutely continuous function x: [0, T1— R" that is a solution
of the Cauchy problem

te —oV(x) + Flx) + Gt,x) «(0)=xy e intDV).
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Sommario

In questo lavoro otteniamo un teorema di esistenza per problemi di Cauchy della
Jorma £ e —3V(x) + F(x) + f(t, x), 2(0) = xy, dove F & un operatore multivoco di R", oV
¢ il sottodiferenziale di una funzione reale V definita in R" e f é una perturbazione mo-
nodroma. Questo teorema migliora i teoremi di esistenza conseguiti in [1] e in [12), ¢,
nel caso xye int D(AV), contiene i teoremi di[9] e di[13).



