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A. TOMASSINI and F. TRICERRI (¥)

Isocurved deformations

of Riemannian homogeneous metrics (**)

1 - Introduction

It is very simple to construct deformations of a Riemannian metric on a ma-
nifold (M, g), but it is much more difficult to keep the curvature or some other
Riemannian invariants of the deformed metric under control. Often the expec-
ted result is the rigidity of the special Riemannian structure which we are con-
cerned with, namely the impossibility to construet non-trivial deformations re-
maining in the same special class. More generally, some finiteness of the space
of the non-trivial deformations is often conjectured, and sometimes proved. We
refer to [2] for a discussion of the case of Einstein metries, and to [1], [5] for a
conjecture of Gromov closely related to the subject developed in the present
paper.

Here we construct and study deformations of Riemannian homogeneous me-
trics which preserve the Riemann curvature in a sense specified below. We
were inspired by some examples constructed in [3], and motivated by the aim to
complete the study started there.

In order to state our results in a precise form, it is convenient to consider
the Riemannian curvature R as a map defined on the total space OM of the or-
thonormal frame bundle of (M, g) with values in the vector space R(V) of alge-
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178 A, TOMASSINI and F. TRICERRI 2]

braic curvature tensor on V=R". Such a map is defined by
R('Lb)(fl, 52’ ‘53, 54) = (R:(1L))1L51,2¢52, udy, uk, ‘Ei eR"= V

where the elements % of OM are just the isometries between the Euclidean vec-
tor space V endowed with the standard inner product, and the tangent space
T,M at p = =(u), = being the projection of OM onto M. The orthogonal group
O(n) is acting on the right on OM, on the left on B(V) and the map E is equi-
variont w.r.t. such actions. If (M, g) is homogeneous, R(OM) is contained in
one single orbit. The converse is not true, and the manifolds having this proper-
ty are called curvature homogeneous. Thus, if (M, ¢g) is curvature homoge-
neous, we have

ROM)cOmn)K

where K is a fixed element of R(V). If K is the curvature tensor of some homo-
geneous space G/H = M, endowed with a G-invariant metric g,, we say that
(M, g) has the same curvature as the model space (My, 9o)-

The model spaces considered in the present paper are special solvable
Lie groups endowed with left invariant metrics. As Riemannian manifolds,
My,=RP? X R? and g, =gc is a homogeneous metric depending on a linear
map

C:R?— Sym(R?) x> C(x)

of R7 into the space of the symmetric p X p matrices, such that C(x) and C(x')
commute for any x and x’. This metric appears as a special case (ile. A =0) of a
metric g, ¢ depending also on a second linear map A. This time

A:R? —so(RY) w—>A(w)

maps RP? into the space of the skew-symmetric ¢ X g matrices in such a way that
A(w) and A(w') commute for any w and w'. If the following compatibility
condition

CAw)x)w = CAw)x)w

is satisfied then all the metrics g, ¢ have the same curvature as gc. In general,
they are not locally homogeneous and therefore not isometric to the model me-
trie. So, the family g4, ¢ is a non-trivial deformation of the homogeneous metric
gc preserving the Riemann curvature.

The metrics g4, ¢ can be deformed once more. This leads to a class of metries
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94, c,» depending also on a diffeomorphism h of R? whose Jacobian matrix, at
any point, is commuting with C(x), for all x e R?. Again, all these metries have
the same curvature as the model metric g¢. So we get non-trivial deformations
of a homogeneous metric preserving the Riemann curvature and depending in
an essential way on some arbitrary functions. In fact, we shall prove that, if
some genericity assumptions are satisfied, the isometry classes of these metrics
depend on a certain number of arbitrary functions. Namely, their moduli space
is not finite-dimensional.

The metrics g4, ¢ and g, ¢, are already defined as deformation of a flat right
mvariant metric on a Lie group. In particular, we prove that they are curva-
ture homogeneous if A and C satisfy the compatibility eondition stated above
and we show that a generic metric g4 ¢ is not homogeneous (see Section 3).
We find general conditions which guarantees the irreducibility and the com-
pleteness of the metrics g4, ¢ , (the metrics g ¢ are always complete) and the
isometries between two metric g4 ¢, and g4 ¢ - (with the same C, and there-
fore the same curvature) are studied and completely characterized under the as-
sumption of weakly generic Ricci curvature.

It is worthwhile to observe here that our method works because the model
space (My, go = gc) is reducible. This is equivalent to the requirement that the
kernel of the map #+ C(x) is not trivial. Otherwise the compatibility condition
forces A to be zero. In such a case, all metric g, 4, ; are isometric to g¢, and our
deformations are trivial.

It would be interesting, in case there are any, to construct non-trivial
isocurved deformations of an irreducible homogeneous Riemannian metric.

2 - The metric g, ¢, 94,¢,» and the model space

A Lie group admits a flat right (or left) invariant Riemannian metric if and
only if it is the semidirect product of two Abelian Lie subgroups whose Lie alge-
bras are mutually orthogonal and one factor is acting on the other by isometries
(4] p. 298). Such a group can be realized as the semidirect product R? x RY,
where R? is acting on R? as follows

@.1) (w, )(wy, %) = (W + wy, e 4@, + ).

In this formula, e 4™ denotes the exponential of the operator A(w), and
A:R? —s0(q) is a linear map into the Lie algebra so(q) of the skew-symmetric
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operators on RY such that
(2.2) [A(w), A(w')] =0

for each w, w'e R?.
It is easily checked that the Maurer-Cartan form on G = R? x RY is given by
(dw, 6) where

2.3) §=dr+Aldw)x.

We adopt here an index-free matrix notation; so dw and dx denote the vector
valued one-forms

dw' dac?
(2.4) dw=| : dx =
dw? dac?
where (w!, ..., w?) and (z!,..., 2% are, respectively, the coordinate functions

of the vector spaces RP? and RY?. dw is biinvariant and ¢ is right invariant.
Therefore,

(2.5) Go="'dw®@dw+9Q0

defines a right invariant Riemannian metric on R? x R?, which turns out to be
flat.
The subgroup R? is acting on R? x R? on the left by

—Awg)

(2.6) wo (w, x) = (wy +w, e x).

The orbit space of this action can be identified with R?. With this identification,
the projection = of RP x R? on RY? is given by

2.7 x(w, x) = e4® g,

On the other hand, R? ean be identified with the orbit of (w,, x;) via the
immersion

(2.8) Yy, 2 | B? = R? X RY w> (wy + w, e 4@ gg).

Then, we have
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Proposition 1. The metric gy is the unique Riemannian metric on BP x RY
such that the induced metric on the orbits is the Euclidean metric 'dw ® dw,
and = is a Riemannion submersion on the Euclidean space (RY,'dx ® dzx).

Consider now a linear map
C: RY— Sym(R?) x> C(x)
of R? into the space Sym (RP) of the symmetric operators of RP such that
(2.9) [C(x), C(x")] =0

for each z, 2’ in R?. Deform the metric g, along the RP-orbits of R? x R? by
putting

(2.10) Jac=0oQ@uw+"0®0
where
2.11) w=e’® dw.

Then, we obtain

Theorem 1. If the maps A and C satisfy the following compatibility
condition

2.12) CAwxz)w'=CAMwW)x)w

then all the metrics ga ¢ are curvature homogeneous with Riemann curvature
depending only on C.

It is expected that the isometry classes of these metrics depend on the maps
A and C and therefore, on a finite number of parameters (i.e. the components of
the tensors 4 and C). If we want to introduce other degrees of freedom in such
a way that these classes depend also on some arbitrary functions, we shall modi-
fy again the one-form « as follows. Consider the subgroup I¢ of the diffeomor-
phisms of RP whose differentials commute with all operators C(x), ie.

2.13) 9¢= {h e Diff (R?)| [dh|,, C(x)] =0, VzeR?, weRP}.

Let & be an element of 3C. Extend & to a diffeomorphism of R? x RY, denoted
by the same symbol, by means of the formula

(2.14) h(w, ) = (h{w), x)
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and define the metric g4 ¢, as follows
(2.15) gA,Cyh=th*w®h*w +t9®6.

We recover ga ¢ by choosing & equal to the identity of R?. In general, we
have

Theorem 2. If the compatibility condition (2.12) is satisfied, then the
metrics ga, ¢, are curvature homogeneous with the same curvature as

ga,c-

Remark 1. All the metrics g, o ) are flat, and all the metrics g, ¢, 5 are
isometric to

(2.16) 0o ="0o @ wy +'dr Q@ dv
where wo=e“@dw. In fact, if A =0, then 6 =dzx, and
@.17) k*g9c=go,c -

For any choice of the map C the metrics g¢ defined by (2.16) are homoge-
neous. In fact, g¢ is a left invariant metric on the goup G = R? X R? with the
product defined by

(2.18) (w, T)(wo, %) = (W + €~ (w), & + )

since di is biinvariant and o = e“® (dw) is left invariant with respect to this
product. All the metrics gy ¢, have the same Riemann curvature as the model
space (G, gc). Therefore, by keeping C fixed, we have constructed a wide class
of deformations of a homogeneous Riemannian metriec which preserve the Rie-
mann curvature. These metries depend on a tensor A and on a diffeomorphism %
of R?. If such parameters are chosen generically, then g4 ¢ ; is not homoge-
neous, even locally.

3 - Main results and explicit example
We prove that, for a generic choice of the tensor A, the norm of the cova-

riant derivative of the Ricci tensor is not constant. This fact implies that the
metrics g4 ¢, are not homogeneous, generically.
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In order to study the irreducibility of the metries g4, ¢, it is convenient to
suppose that C(x) is given in diagonal form (the canonical form is not necessary
here). Then we have

3.1) C(®)v; = (¢;, x)v; 1<sisp

where « is an elements of RY, {v;, 1 < < p} the natural basis of R? and ¢;,
1 <4 <p, are suitable vectors in R?. We have

Theorem 3. Let Cbe the set of {cy, ..., ¢,} and J(w) be the Jacobian ma-
trixz of h. If
ie#=0,1<isyp
ii. RY=a = Span {A(v;)"¢c;, 1<i<p, m =0}
iii. there is no partition of C in mutually orthogonal subsets

iv. (J(w) lv;, vy =0 for all i,1<i<0p,

then ga ¢ s trreducible.
About the completeness of the metrics g4 ¢, , we may prove

Theorem 4. Suppose C(x) and J(w) are in diagonal form. Denote by
a’(w;) the (i, i)-entry of J (w) (it depends only on w?). If there exist two positive
constants o’ and b* such that a'<a'(w) < b, then the metric ga ¢ s
complete.

We study the isometry classes of the metrics g, ¢ , when their Ricei curva-
ture r is generic in the sense we are going to specify.

Indeed it is easy to see that we can put  in diagonal form just by performing
an orthonormal change of basis in the space Span{(ci, ..., c,)}. After this
change, we note that the diagonal entries of r are given by

(3.2) A= <ci , % cm> ,

Aoy 1 S a €k, and 0 with multiplicity ¢ — k. This means that the Ricci principal
curvatures are the scalars 1;(1 <t <p), A, (1 Sa<k), and Ay = 0 with multi-
plicity (at least) equal to ¢ — k. We remark also that ¢ — k is just the index of
nullity of the metric.
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We say that the tensor r is (weakly) generic if the eigenvalues A; are non-
zero, different from X,, and distinet, ie. if

2 #=0 A #E A, A #E D

when 7 #7j. Of course, some of the eigenvalues ), could be zero or coin-
cide.
We have

Theorem 5. Let fbe an isometry between g' = ga: ¢, » and g = ga, ¢, », With
weakly generic Ricci curvature. Suppose that the genericity assumptions of
Theorem 3 guaranteeing the irreducibility of both metrics, are satisfied.

Then the metrics ¢'= ga-, ¢, n ONA § = ga, ¢, 5, Ore isometric if and only if there
exist

i. & p X p diagonal orthogonal matric L
il. @ g X g orthogonal matriz P such that C(Px) = C(x)

ili. o non-singular p X p matriz @ which verifies

(3.3) A'(w) = P(AQ'w))P

3.4) B (w) = (GohoG ) w).
Moreover, the diffeomorphism G is uniquely determined and

(8.5) Gw) = wy + Qw + Hw)),

where H is a (KerA)-valued function.

We give now an explicit example of such a metric g4 ¢ 5.
Suppose p =7+ 1 and ¢ = 2r + 1. Let {u,, ..., %, } be the natural basis of
RY and ¢; be the vectors of R? given by

(3.6) C;=7yiUsi—1 T Uspsy isT
(37) Cra1 = Ugri1 -
Choose r vectors a; of R?, 1 <1 <7, as follows

(3.8) a; = a;V;
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for some constant «;. Let A(w) and C(x) be the operators associated to the
matrices

0 (CL], 'w>
- <a1, w> 0
(3.9) 0 {as, w)
—{ag, w) 0
0
0
<cl ’ fL’>
(3.10)
(€p> %)

Then, the compatibility condition is satisfied. It follows that all the me-
tries

(3.11) Go, v, = 94,C, 0

where o = (ay, ..., ), ¥ = (y1, ..., ¥+), are ceurvature homogeneous as soon as
the Jacobian matrix J(w) of the diffeomorphism % of R? commutes with the

operators C(x).
Since C(x) is diagonal, from (3.10) and (3.6) we can derive at once that

[J(w), C(x)] =0 if and only if
(8.12) viJ}w)=0
for each i€r=p~1 and for ény J.
Therefore, if all the coefficients v; are non-zero, the matrix J(w) must be
diagonal. In such a case h is given by

(8.13) h(w) = (B (wh), ..., kP (w?)),

where each function #° depends only on the variable w’ and is invertible.
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Hence, the metrics g, , »=¢4,c 1, depend on 2r real parameters and

p =7+ 1 functions A'(w?), ..., h? (w?). Moreover, all these metries are curva-
ture homogeneous with curvature depending only on # real parameters
Y= (YI; veey Y7)

If all the parameters «; are zero, then g, ., , is homogeneous and isometric to
the model space gc = ¢y, ,,1a- But, in general, these metrics are not locally ho-
mogeneous. In this case we prove that the isometry classes of the metrics g, ,.
as h is varying in Diff (R?), depend at least on (p — 1) arbitrary functions
B (wh), ..., h'?~ 1 (wP 1), modulo some finite-dimensional parameter space. In
other words, the moduli space of the metries g, , », h e Diff (R?), is not
finite-dimensional.
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