G. GIGANTE and G. TOMASSINI (*)

Positive bundles over foliations with complex leaves (**)

1 - Introduction

In this paper we are dealing with positive CR-vector bundles over a foliation X with complex leaves ([3]). We give the notion of strictly q-pseudoconvexity and we focus our attention on those foliations for which N_F , the transverse bundle to the leaves is q-positive (Sec. 2).

- Let $\phi: X \to \mathbb{R}$ be an exhaustion function for X which is q-strictly plurisubharmonic along the leaves of X, outside a compact set K and $\overline{X}_c = \{\phi \leq c\}$ (Sec. 2). Then we prove:
- i. if X is real analytic, N_F is q-positive and $\sup_K \phi < c$, $\overline{X}_c = \{\phi \le c\}$ has a fundamental system of neighbourhoods in \widetilde{X} (the complexification of X) which are strictly q-pseudoconvex complex manifolds (Theorem 1).

Let $L \to X$ be a CR-bundle of rank one, L' its dual, \mathcal{L}_{an} the sheaf of germs of real analytic CR-sections of L. Then we have the vanishing theorem

ii. under the hypothesis of i, if L' is positive, then the groups $H^r(X_c, \mathcal{L}_{an}^s)$ vanish for $r \ge q$ and s > 0 (Theorem 3).

2 - Preliminaires

Let X be a foliation with complex leaves of dimension n and real codimension d(3). Let $\{U_j\}$ be a distinguished open covering of X, $U_j = V_j \times B_j$, $V_j \in \mathbb{C}^n$,

^(*) Dip. di Matem., Univ. Parma, Via M. D'Azeglio 85, 43100 Parma, Italia; Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italia.

^(**) Received October 6, 1994. AMS classification 32 L 20. This work was supported by the project 40% MURST Geometria reale e complessa.

 $B_i \in \mathbb{R}^d$ and

(2.1)
$$z_{j} = f_{jk}(z_{k}, t_{k}) \qquad t_{j} = h_{jk}(t_{k})$$

be the local transformations of coordinates: $z_k \in V_k$, $t_j \in B_j$, f_{jk} , h_{jk} are smooth and f_{jk} is holomorphic with respect to z_k .

We denote by $\mathcal{O} = \mathcal{O}_X$ the sheaf of germs of smooth CR-functions on X and when X is real analytic, $\mathcal{O}' \subset \mathcal{O}$ denotes the subsheaf of those germs which are real analytic.

al analytic. The matrices $\frac{\partial h_{jk}}{\partial t_k} = \frac{\partial (h_{jk}^1, \ldots, h_{jk}^d)}{\partial (t_k^1, \ldots, t_k^d)}$ determine a real vector bundle N_F , the

transverse bundle to the leaves of X.

Let us suppose that X is real analytic. Then the complexification \widetilde{X} of X in the sense of Whitney and Bruhat carries in a natural way a structure of holomorphic foliation such that the leaves of X are leaves of \widetilde{X} ([3]).

To construct \widetilde{X} we complexify \mathbf{R}^d and $\{U_j\}$ in such a way to obtain $\{\widetilde{U}_j\}$, $\widetilde{U}_j \subset \mathbf{C}^n \times \mathbf{C}^d$. Next we patch together the \widetilde{U}_j 's by the local holomorphic transformations

(2.2)
$$z_j = \widetilde{f}_{ik}(z_k, \tau_k) \qquad \tau_j = \widetilde{h}_{ik}(z_k, \tau_k)$$

which are obtained complexifying f_{jk} , h_{jk} with respect to t_k .

In particular the transverse bundle to the leaves of \widetilde{X} , \widetilde{N}_F is determined by $\frac{\partial \widetilde{h}_{jk}}{\partial \tau_k} = \frac{\partial (\widetilde{h}_{jk}^1, \ldots, \widetilde{h}_{jk}^d)}{\partial (\tau_k^1, \ldots, \tau_k^d)}.$

Let z_j , τ_j denote the complex coordinates on \widetilde{U}_j and let $\theta_j = \operatorname{Re} \tau_j$. Then on $\widetilde{U}_j \cap \widetilde{U}_k$ we have $\theta_j^s = \operatorname{Im} h_{jk}^s(\tau_k)$, $1 \leq s \leq d$ and consequently, since $\operatorname{Im} \widetilde{h}_{jk}^s = 0$, $1 \leq s \leq d$, $\theta_j^r = \sum_{s=1}^d \psi_{jk}^{rs} \theta_k^s$, where $\psi_{jk} = (\psi_{jk}^{rs})$ is a $d \times d$ invertible matrix whose entries are real analytic functions on $\widetilde{U}_j \cap \widetilde{U}_k$. Moreover, since \widetilde{h}_{jk} is holomorphic and $\widetilde{h}_{jk|X} = h_{jk}$, we also have $\psi_{jk|X} = \frac{\partial h_{jk}}{\partial t_k}$.

In what follows we prove a vanishing theorem for positive CR-vector bundles. One of the main points in the proof is the local existence of a fundamental system of strongly q-pseudoconvex neighbourhoods of X in \widetilde{X} and this is related to the positivity of N_F .

3 - q-pseudoconvex foliations

We recall that a function $\phi = \phi(z)$ is said to be *strictly q-plurisubharmonic* (strictly *q*-p.s.h) if its Levi form

$$\sum \frac{\partial^2 \phi}{\partial z_j \partial \overline{z}_k} \xi^j \overline{\xi}^k$$

has at least n - q + 1 positive eigenvalues.

A foliation X is said to be *strictly q-pseudoconvex* (strictly q-p.c.) if X carries a smooth exhaustion function $\phi \colon X \to \mathbb{R}^+$ which is strictly q-p.c. along the leaves outside a compact $K \subset X$, $1 \le q \le n+1$ and $\sup \phi = +\infty$. In particular, if $K = \emptyset$, X is said to be a q-complete foliation ([3]).

Consider a metric $\{\lambda_j^0\}$ on the fibres of N_F . For every j, $\{\lambda_j^0\}$ is a smooth map from U_j into the space of positive definite symmetric $d \times d$ matrices such that

$$\lambda_k^0 = \frac{{}^t\!\partial h_{jk}}{\partial t_k}\,\lambda_j^0\,\frac{\partial h_{jk}}{\partial t_k}\;.$$

If ∂ and $\overline{\partial}$ denote the complex differentiations along the leaves of X then the local tangential forms

$$\omega_j = \overline{\partial} \partial \, \log \, \lambda_j^0 - \overline{\partial} \, \log \, \lambda_j^0 \wedge \partial \, \log \, \lambda_j^0$$

actually give a global tangential form ω . N_F is said to be *q-positive* (along the leaves of X) if the functions λ_j^0 can be chosen in such a way that the hermitian form associated to ω has at least n-q+1 positive eigenvalues.

Remark 1. If l is a leaf of X and $N_{F|l}$ denotes the restriction of N_F to l then $\{\lambda_{j|l}^0\}$ gives a hermitian metric on the fibres of $N_{F|l} \oplus C$ and

$$\omega_j + \overline{\partial} \log \lambda_j^0 \wedge \partial \log \lambda_j^0$$

is the *curvature form* of this metric.

Let X be a real analytic strictly q-p.c. (with exhaustion function ϕ) and let $\overline{X}_c = \{\phi \leq c\}$, $\sup_K \phi \leq c$. We have

Theorem 1. If N_F is q-positive, \overline{X}_c has a fundamental system of neighbourhoods in \widetilde{X} which are strictly q-p.c. complex manifolds.

Proof. Let N_F be q-positive and let $\{\lambda_j^0\}$ be a smooth metric on the fibres of N_F . Let E be the vector bundle on \widetilde{X} defined by the cocycle ψ_{jk} (Sec. 2) and let $\{\mu_j\}$ be a metric on the fibres of E. On $\widetilde{U}_j \cap \widetilde{U}_k$ we have

$$\mu_k = {}^t \psi_{ik} \, \mu_i \psi_{ik}$$

and consequently, if $\mu_j^0 = \mu_{j|X}^0$ we have on X

$$\mu_k^0 \lambda_k^{0-1} = \frac{\partial h_{jk}}{\partial t_k} \mu_j^0 \lambda_j^{0-1} \frac{{}^t \partial h_{jk}^{-1}}{\partial t_k}.$$

Thus $\sigma^0 = \{\mu_j^0 \lambda_j^{0-1}\}$ is a smooth section of $N_F' \otimes N_F'$, N_F' the dual of N_F . Extend σ^0 by a smooth section $\sigma = \{\sigma_j\}$ of $E \otimes E$. Then $\{\sigma_j^{0-1} \mu_j^0\}$ is a new metric on the fibres of E whose restriction to X is $\{\lambda_j^0\}$. In particular E is q-positive on a neighbourhood of X provided N_F is.

Now consider on \widetilde{X} the smooth function ρ locally defined by $\theta_j^t \lambda_j \theta_j$; ρ is non negative and positive outside X. Drop the subscripts and compute the Levi form $\mathcal{L}(\rho)$ of $\theta^t \lambda \theta = \sum \lambda_{\alpha\beta} \theta^{\alpha} \theta^{\beta}$ with respect to $z_1, ..., z_n, \tau_1, ..., \tau_d$. Denoting by $\xi^1, ..., \xi^n, \eta^1, ..., \eta^d$ the variables of $\mathcal{L}(\rho)$ we have

$$\mathcal{L}(\rho) = \sum A_{jk} \xi^j \overline{\xi}_k + \sum B'_{\alpha\beta} \eta^{\alpha} \overline{\eta}_{\beta} + 2 \operatorname{Re} \sum C'_{j\alpha} \xi^j \overline{\eta}_{\alpha}$$

where

$$A_{jk} = \sum \; rac{\partial^2 \lambda_{\,lphaeta}}{\partial z_j \, \partial \overline{z}_k} \, heta^{lpha} \, heta^{eta}$$

$$B_{\alpha\beta}' = \frac{1}{2}\lambda_{\alpha\beta} + O(|\theta|) = B_{\alpha\beta} + O(|\theta|)$$

$$C'_{j\alpha} = i\left(\sum \frac{\partial \lambda_{\beta\alpha}}{\partial z_j} \theta^{\beta}\right) + O(|\theta|^2) = i\left(C_{j\alpha} + O(|\theta|^2)\right).$$

It follows that if $|\theta|$ is small enough and the $(n+d) \times (n+d)$ matrix

$$H(\rho) = \begin{pmatrix} A & B \\ {}^tC & D \end{pmatrix}$$

where $A = (A_{jk})$, $B = (B_{\alpha\beta})$, $C = (C_{j\alpha})$ is positive definite, then $\mathcal{L}(\rho)$ is also strictly positive definite.

Since these conditions are homogeneous in θ , we deduce that the positivity of $H(\rho)$ will follow from that of the matrix $H^0(\rho)$ obtained from $H(\rho)$ replacing A_{jk} ,

 $B_{\alpha\beta}$, $C_{i\alpha}$ respectively by

$$A^0_{jk} = {}^t heta rac{\partial \lambda^0_{lphaeta}}{\partial z_j\,\partial z_k}\, heta \qquad B^0_{lphaeta} = rac{1}{2}\;\lambda^0_{lphaeta} \qquad C^0_{jlpha} = i\;\sum\;rac{\partial \lambda^0_{etalpha}}{\partial z_j}\, heta^{\,eta}\;.$$

Now it is a simple matter to check that the hermitian form associated to $H^0(\rho)$ can be written

$$^{t}\theta(^{t}\bar{\xi}\Omega\xi)\theta+|2i(\lambda^{0})^{-\frac{1}{2}}(\partial\lambda^{0}\cdot\xi)\theta+(\lambda^{0})^{\frac{1}{2}}\eta|^{2}$$

where $\partial \lambda^0 \cdot \xi$ is the matrix $\sum \frac{\partial \lambda}{\partial z_i} \xi^j$ and $\Omega = \lambda \omega$.

This shows that $H^0(\rho)$ has at least n-q+1 positive eigenvalues in a neighbourhood of X and consequently that if ε is small the domains $\{\rho \le \varepsilon\}$ are strictly q-p.c.

To produce a fundamental system of strictly q-p.c. neighbourhoods of \overline{X}_c , $\sup \phi < c$ we use ϕ as in [3] to construct a function ψ , which is strictly q-p.c. in a neighbourhood of $\overline{X}_c \setminus K$ in \widetilde{X} and such that $\bigcap_{\varepsilon > 0} [\{\psi \le \varepsilon\}] = \overline{X}_c$. Then the domains $\{\sup(\rho, \psi) < \varepsilon\}$ have the desired properties.

Remark 2. In particular, if X is a Stein foliation every \overline{X}_c has a fundamental system of Stein neighbourhoods in \widetilde{X} ([3]).

For q=1 the above definition of positivity is too strong. Indeed suppose for simplicity d=1. Then due to the fact that h_{jk} does not depend on z, $\omega = \{\bar{\partial}\partial \log \lambda_j^0\}$ and $\eta = \{\partial \log \lambda_j^0\}$ are global tangential forms on X and $\omega = \mathrm{d}\eta$. If N_F is 1-positive, according to the above definition ω is a d-exact Kähler form on each leaf of X and from this it follows that X has no positive dimension compact submanifold. In particular compact leaves cannot be present. On the other hand, in view of Theorem 1 for $c \geq \sup_K \phi$, \overline{X}_c has a fundamental system of strictly 1-p.c. manifolds U. Since all these manifolds are obtained as point modifications of Stein spaces ([5]), from the above discussion it follows that U is in fact a Stein manifold. Conclusion: X is an increasing union of Stein foliations.

Similarly we see that for no compact foliation N_F can be 1-positive (according to the above definition). Thus for q=1 we say that N_F is 1-positive if for every $c>\sup_K\phi$, \overline{X}_c has in \widetilde{X} a fundamental system of neighbourhoods which are strictly 1-pseudoconvex.

Example 1. Consider in C^2 the subset $X' = \{|z_1| = |z_2|\}$. X' is a singular foliation with complex leaves, smooth for $z \neq 0$. Let $\pi \colon \widetilde{C}^2 \to C^2$ be the blowing-up of C^2 at 0 and X be the proper transformation of X'. X is smooth and foliated by complex curves. Moreover, a small neighborhood U of X in \widetilde{C}^2 is a complexification of X and there X is locally defined by $\theta_j = 0$ and $\theta_j = -\theta_k$ if $j \neq k$. It follows that $\rho = \{\theta_j^2\}$ is smooth and p.s.h. on U. Let $\phi(w) = |\pi(w)|^2$, $w \in U$ and $\overline{X}_c = \{\phi \leqslant c\} \cap X$. Then for c large $\psi = \phi - c + \rho$ is strictly p.s.h. in U and $\{\psi \leqslant \varepsilon\} \cap U$, $\varepsilon > 0$ gives a fundamental system of strictly 1-pseudoconvex neighbourhoods of \overline{X}_c . In particular N_F is 1-positive.

4 - Positive bundles

We consider for simplicity CR-bundles $L \to X$ of rank one. All results hold for arbitrary rank.

We suppose that L is real analytic i.e. the cocycle $\{g_{jk}\}$ is given by real analytic CR-functions ([4]). Then the total space of L is a foliation whose local transformations are

$$z_j = f_{jk}(z_k, t_k)$$
 $\zeta_j = g_{jk}(z_k, t_k) \zeta_k$ $t_j = h_{jk}(t_k)$.

We denote by \mathcal{L} and \mathcal{L}_{an} respectively the sheaves of germs of smooth and real analytic CR-sections of L.

Let \widetilde{L} be the complexification of L. In [4] we proved that if X is a Stein foliation then $H^r(X, \mathcal{L}) = 0$ for $r \ge 1$. Here we discuss the case when X is strictly q-p.c., in particular X compact.

 \widetilde{L} is a holomorphic line bundle over X. L is said to be *positive* (along the leaves) in the sense of Kodaira, if there exists a smooth metric $\{\lambda_j\}$ on the fibres of L with *positive curvature* i.e. such that the hermitian form

$$\sum_{r, s=1}^{n} \frac{\partial^{2} \log \lambda_{j}}{\partial z_{r} \partial \overline{z}_{s}} \xi^{r} \overline{\xi}^{s}$$

is strictly positive definite.

Then it is easily seen that $\{\lambda_j\}$ extends to a metric on \widetilde{L} in such a way that \widetilde{L} is positive on a neighbourhood of X ([4]). We have

Theorem 2. Suppose that X is strictly q-pseudoconvex, N_F is q-positive and L is positive. Then, for every $c > \sup_{K} \phi$, \overline{X}_c has in \widetilde{L} a fundamental system of neighbourhoods which are strictly q-pseudoconvex complex manifolds.

Proof. In view of Theorem 1, \overline{X}_c has in \widetilde{X} a fundamental system of neighbourhoods which are strictly q-pseudoconvex manifolds and \widetilde{L} is positive on a neighbourhood U of \overline{X}_c .

In such conditions, $\widetilde{L}|_U$ is a strongly q-pseudoconvex complex manifold ([2]) and from the proof given there, it follows that \overline{X}_c has in \widetilde{L} a fundamental system of neighbourhoods, which are strictly q-pseudoconvex complex manifolds.

Let \mathcal{O}' be the sheaf of germs of real analytic CR-functions on L. Then

Corollary 1. Under the above conditions every \overline{X}_c has a fundamental system $\{U_m\}$ of neighbourhoods in L such that $H^r(\overline{U}_m, \mathcal{O}')$ is finite dimensional for $r \geq q$ and its dimension is independent on m.

Proof. Let $\{\lambda_j\}$ be a smooth metric as above and let $\|v\|^2 = \lambda_j \zeta_j \overline{\zeta}_j$, $v \in \widetilde{L}$ and $W_c = \{v \in \widetilde{L} \colon \|v\|^2 \le c\}$, $U_m = W_{\frac{1}{m}} \cap L$.

Since every germ of \mathcal{O}' extends by a germ of \mathcal{O} (the structure sheaf of \widetilde{L}) we have that $H^r(\overline{U}_m, \mathcal{O}')$ is the direct limit of the groups $H^r(\overline{W}_{\frac{1}{m}}, \mathcal{O})$. Thus our statement easily follows from the isomorphism theorem of Andreotti and Grauert ([1]).

Remark 3. The same statement holds when \mathcal{O}' is replaced by a power of \mathcal{M} , the sheaf of the ideals of a finite set of points of X.

Now let $U=W\cap L$ be a neighbourhood of \overline{X}_c where W is a relatively compact neighbourhood of \overline{X}_c in \widetilde{L} , $W=\rho<0$, ρ smooth and strictly p.s.h. outside a compact of W. Then in view of the above corollary the groups $H^r(\overline{U}_m, \mathcal{O}')$ are finite dimensional for $r \geq q$ and their dimension is independent on U.

Let $\{K_m\}$ be a covering of X such that $L|_{K_m}$ is trivial and K_m is isomorphic to $\{|z| \leq 1\} \times \{|t| \leq 1\}$; let $\overline{U}_m = \pi^{-1}(K_m) \cap \overline{U}$ and \mathcal{U} be the covering $\{U_m\}$ of \overline{U} . Since every \overline{U}_m has a fundamental system of neighbourhoods which are Stein manifolds Leray's theorem implies that $H^r(\mathcal{U}, \mathcal{O}') \cong H^r(\overline{U}, \mathcal{O}')$ for $r \geq 1$. Furthermore the groups $H^r(\mathcal{U}, \mathcal{O}')$ have a natural filtration such that the graded group associated to this filtration is isomorphic to $\bigoplus_{s \geq 0} H^r(X, \mathcal{L}'^s_{an}), \mathcal{L}'_{an}$ being the sheaf of germs of real analytic CR-sections of the dual bundle L'. Thus from the above discussion we deduce

Theorem 3. Under the hypothesis of Theorem 2, if L' is positive then the groups $H^r(X_c, \mathcal{L}^s_{an})$ vanish for $r \ge q$ and $s \gg 0$ for every $c > \sup_{r} \phi$.

References

- [1] A. Andreotti and H. Grauert, *Théorèmes de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France 90 (1962), 193-259.
- [2] A. Andreotti and G. Tomassini, A remark on the vanishing of certain cohomology groups, Compositio Math. 21 (1969), 417-430.
- [3] G. GIGANTE and G. TOMASSINI, Foliations with complex leaves, Differential Geom. Appl., to appear.
- [4] G. GIGANTE and G. TOMASSINI, $G_{m,h}$ -bundles over foliations with complex leaves, to appear.
- [5] H. Grauert, On Levi's problem and the embedding of real-analytic manifolds, Ann. of Math. 68 (1958), 460-472.
