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PaorLo DE BARTOLOMEIS (*)

Complex landscapes (**)

0 - Introduction

Let M be a C “-smooth m-manifold and let L (M) be the principal GL (m, R)-
bundle of linear frames on M; a great deal of the geometry of M can be labelled
as the study of G-reductions of (or, more in general, G-structures on) L(M),
where G is a Lie subgroup of GL(M, R) (or, more in general, a representation
e: G— GL(m, R) is given).

We are interested in complex geometry, therefore m=2n and GcGL#%,C).

GL(n, C)-reductions of L(M) exist if and only if the GL(n, C)-bundle

L)

WD = GL(n, C)

admits global sections, or, equivalently, if and only if M is orientable and, given
any Riemannian metric g on M, the SO(2n)-bundle

50, (M)
U(n)

Z(M) =

admits global sections (SO,(M) being the principal SO(2n)-bundle of g-or-
thonormal, positively oriented linear frames on M).

So all the informations concerning the existence of GL(n, C)-reductions of
L(M) are encoded in the algebraic and geometric topology of M.

For example, if M is a compact connected 4-manifold, then Z(M) admits
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global sections if and only if there exists ke H2(M, Z) such that
h=w,(M)mod2) h%=p(M)+2e(M).

(S%, of course, does not meet these requirements.)

Definition 1. A section J of W(M) is called a complex structure on M.

Clearly, given a complex structure J on M, [u]l—>uoJyonu ™! (where
Jo=1 1(3 L

As usual, if the set of G-reductions is not empty, one looks further for some
distinguished element, tipically critical points for some natural functional invol-
ving ideas as «emergy», «volume», «curvature» or similar.

In the case of complex structures, we have the following:

_01"]) identifies ’.J as a global section of End(TM) with J? = —idgy.

a. J defines the bigraduation A" (T*M)* = +€B N I(T*M)C.
prg=r
b. Setting NP9 = AR 9(T* M), we have
d: /\p,q__>/\p+2,q—1@/\p+1,q$ /\p,q+1@ /\p—-l,q+2

and thus d=A4;,+9,+9;+A; with A; and A, zero order operators with
Aja=Asx and A;(a AB) =A;a AB+ (—1)*8*a A A 8.

¢. A distinguished family of J’s is therefore represented by those elements
for which 3; (or, equivalently, 3;) gives rise to a cohomology theory ie. for
which 85 = 0.

d. It is easy to check that the following conditons are equivalent:
i =0 ii. d=3,+39; iii. 4;,=0. _
Moreover, A;: N1 — A0 is given by: Aja(X, Y) = -i—a(NJ(X, Y)) where:
N, X, V)=[JX,JY]-[X, Y] - JJX, Y] - J[X, JY]

is the Nijenhuis tensor of J, extended as antisymmetric form on (TM)¢ with
values in (TM)¢, which is C-bilinear with respect to the canonical complex struc-
ture and C-biantilinear with respect to the extension of J to (TM)° (in fact, it
satisfies N;(JX,Y) =N, (X, JY) = —JN;(X, Y)) therefore: A;=0<N,;=0.

e. It is well known (5], [6]) that J is integrable (or it is a holomorphic struc-
ture) ie. it is possible to find local complex coordinates z; = x; + iy;, 1 <j < n,
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in such a way that

o y_ 9 Qy-_9

if and only if N; = 0 and this gives birth to the entire galaxy of holomorphic geo-
metry, but the existence of such a J looks like a bizarre condition, extremely
hard to be detected.

f. On the other hand, everybody knows that holomorphic objects are out-
standingly useful as exceptional patterns to describe our exceptional universe
and thus the old question

what is a holomorphic manifold?

is still there.

g. Therefore, it is possible to consider this double edged scheme:

1. Extend to the complex ease as many results as possible from holomor-
phic theory.

2. Investigate carefully how to pass from the generic the situation to the
exceptional one.

[8] Provides a nice example of 1; we want here briefly discuss some ideas
connected with 2.

1 - Totally non integrable complex structures
We start the following

Definition 2. J is totally non integrable at pe M if
S;lpl=[{N;[p)X, D|X, YeT,M}]=T,M

ie. if the elements of the form N;[pl(X, Y) span the entire T\, M.

It is clear that the first case where it is possible to find totally non integable
complex structures is dimp M = 6; from now on, we will confine ourselves to
this case.

We need some linear and bilinear algebra. Let (V, J) be a 6-dimensional real
vector space equipped with a complex structure; let g be a J-Hermitian scalar
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product on V and, as usual, set
hy (v, w) = —;— (g (v, w) + ig(w, Jw)).

Let ae A*°V* with |a|, =1; define V2: VX V-V as
a(v, w, w) = ky (v, V9 (w, u)).
Then clearly V.9 is hilinear and satisfies
@1 VO, w) = ~VOw,v)

(2.2) VIO (Jv, wy = V@, Jw) = —JVO(v, w).

Therefore V9 extends as antisymmetric form on V¢ with values in V¢ which
is C-bilinear with respect to the canoniecal complex structure and C-biantilinear
with respect to the extension of J to VC. Note that, if B = {v,, v,, v;} is a
hyunitary, a-special (i.e. a(v;, vz, v3) = 1) C-basis of V, then V9 (v,, v5) = vy,
Vi (vs, v1) = va, Vv, v5) = vy.

Assume ge N2 OV* satisfles |8], = 1; then 8 =¢"a and

(@) _ A9 _ -y ()
V"' =V =e "V

Assume ¢ is another J-Hermitian metric on V; then ¢g=L*(g) for
L eEnd(V), L g-symmetric positive definite, satisfying [L, J]= 0; assume
detL =1 (ie. g and ¢ determine the same volume form).

If xe N>°V* satisfies |a|, =1, then |a|z+q =1 and

Va(L*(g)) =["2%, Va(g) .

Let N:VXV—V be a bilinear map satisfying (2.1) and (2.2). Given
a J-Hermitian metric ¢ and ae A*°V* with |a|, =1, then there exists
R (N)e End (V) such that N = R¥(N)oV 9. Clearly:

2.3) [RY(N), J] =0

@24) R (N) =¢"RO(N)

2.5) RETOV(N) = RY(N)oL?

26) 2 hy (0, N(w, w) = r RO () a(v, w, u).

Note also that tr RE*O/(N) = b, (R (N), L?).
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Let now M be a 6-dimensional oriented manifold equipped with a complex
structure J; then, it is clear that, |det R\ (N;)| depends only on the volume
form of g. Moreover:

J is totally mon integrable < det R\’ (N;) # 0.

Consider now the following

Definition 8. LetJ be a complex structure on M; we say that J is strong-
ly totally non integrable if it is totally non integrable at every point of M and
there exists a J-Hermitian Riemannian structure g on M such that, if we set
(X, Y) = g(X, JX), then we have that

(X, Y, Z) = ©hy(X, N;(Y, 2)) = (d)*° (X, Y, Z)
is everywhere different from zero.
It is easy to prove the following

Lemma 1. Let M be a 6-dimensional oriented manifold equipped with a
complex structure J. Let g be a J-Hermitian structure on M. Then:

1. J is strongly totally non integrable with respct to g if and only if, for any
ae N2 O(M) with |«|, =1, we have det RV (N;) # 0 and tr B (N,) # 0.

2. J corresponds to a totally real submanifold of the twistor space
Z,(M) if and only if, for any oe N°(M) with |a|,=1, we have
det (R (N;) — (tr RO (N,)NI) = 0.

We leave as an interesting exercise to investigate the relations between to-
tal non integrability, strong total non integrability and being a totally real sub-
manifold of the twistor space.

Examples.

a. Let S®={x e ImCay ||x| = 1}. For pe S¢, x e T,S° set J[p)(x) = px.
Then J is a strongly totally non integrable complex structure. In fact

%‘NJ[p](x’ y) = (px) y — pwy)

and so, for every p eSS there exists an orthonormal C-basis {v;, vs, v3} of
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T,S% such that:

Nylplvy, ) = —4Jv;  Ny[pl(ve, v5) = —4Jv;  Ny[pl(vs, v1) = —4Jv,
and glp] = (v = i * o) A (0f = T * v A (o — i % 3)

is a well defined never vanishing global section of A*»°7* S5,
(Just consider the standard basis of Cay:

ol l) ol ol
] ] ] [

At p = ey, choose v; = e3, v, = €5, V3 = €, then use the fact that S® =
and the action of G, is J-holomorphic).

G,
SU(3)

b. Let (M,g) be an oriented Riemannian 4-manifold and let
SO, (M
U(2)

complex structure J on Z(M) is never totally non integrable, in fact N is hori-
zontal (and vertical valued) and so, at any pe Z(M), dimp Sy[pl <2.

The gauge invariant construction of complex structures on Z(M) [2] provides
patterns for totally non integrable objects.

This construction uses SO(2n)-equivariant parallelizations of SO, (M) in-
stead of connections and so J is defined as follows

Z(M) = ) be its twistor space. Then dim p Z(M) = 6 and the standard

PoX if X is vertical

JIP](X) = -1 ) . .
(reto(LoPotl)ory (X) if X is horizontal

where L is a g-orthogonal section of End (TM): L = idyy, in the standard case.
We have now the following easy

Lemma 2. Assume dimp M = 6 and J is a complex structure on M which
18 totally mon integrable ot x e M, then af x e M we have:

Ay N1 A20 and Ay AVO— AY2 are  bijective
Ay N2> N2 gnd Ay N2P— AVE are  imgective

Apt AVE AR and Ay AP N2 are  surjective .
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Note e.g. that, in the assumptions of Lemma 2, C;=A;1: N20— A" is
given by Cya(Z) =4a(X, Y) with Z=N;(X, Y).
This is a good definition because of the following

Lemma 3. Let (M, J) be a complex manifold of complex dimension 3 and
assume J is totally non integrable at p e M. Then:

a. Z,W,U,VeT,M satisfy N;[p}(Z, W)=N,;[plU, V) =0

if and only if [Z, W] =[U, V] with dimg[Z, W] =2

and U=aZ +bW, V=cZ+dW with det[a ZJ =1.
C

b. Z,WeT,M satisfy N;[pl(Z, W)=0 if and only if dim¢[Z, W] < 1.

3 - The set of bundle complex structures

One of the most interesting features of the generic case is that totally non in-
tegrability can be exploited in order to provide a good degree of holomorphicity
i.e. formally holomorphic connections in the sense of [1].

Let (M, J;; ) be a complex manifold and let G be a complex (reductive) Lie
group. Let n:P=P(M,G)—>M be a principal G-bundle. Then for every
zeM, = '(x) admits a complex structure J, defined by means of the relation
JJul(X*) = (1X)* (u) ie. J; is the complex structure induced from G via the
isomorphism = ~1(x) =G we get fixing a point u e ~!(z); of course J; is holomorphic.

Definiton 4. A bundle complex structure (bucs) J on P is a complex
structure on P such that: '

a. 7: P—> M is (J, Jy )-holomorphic
b. J induces J; on the fibres
c. G acts J-holomorphically on P.

We denote by B(P) = B[Jy I(P) the set of bucs on P. We have the following
results
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Lemma 4.

a. Let Je B(P) and let we C(P); then 0®'eB¥ (P, g, ad) and, conse-
quently »b%e C(P).

b. For any w e C(P), there exists one and only one J € B(P) such that w is
of type (1, 0) with respct to J.

c. Consequently, there exists a surjective map x: C(P)— B(P). Moreover,
% is G(P)-equivariant.

Set CLU(P) =y ().

Lemma 5. Let Je B(P) and let we CL(P); then (D,)"!=3; and so
D, :B%P)— B (P) splits as D, =3, + ;, with 3, = (D).

More in general, we have that:

D,:BPYP)—»TBP 2" Y(PYDTBPTLIP)DBITUP)DBP~L1+2(P)
and it splits as: D,=A;+38,+3;+4;
where Aj(a) =A; (aol,) with A, horizontal lift with respect to w.

Note that, since « is horizontal a0, and consequently A,(x) are indepen-
dent of w.

Lemma 6. Let Je B(P) and let w e CLO(P); then

3.1) Ny=2, 0Ny, omy +4(Q%2)*.

Consequently
a. N; is horizontal
b. For every ae G, (B,)*(Ny) = (R,)s o Ny te.
Ny ((Bo)y (X), (Bo)s (Y)) = (RBy)s (N (X, Y)).
Lemma 7. Let K be a compact maximal subgroup of G (and so K¢ =G)

and let Q be a K-reduction of P. Then, for every J € B(P), C»°(P) N e(Q) con-
sists of a single element.
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Example. Let (E,J) be a complex vector bundle of complex rankr
ie. a real vector bundle of rank 2r equipped with a section J of End (&) with
J? = ~idg and let P = C(E) be the principal GL (r, C)-bundle of complex frames
on E (in such a way that & = C(E) X g, ¢)R*"). Again the existence of such a J
is equivalent to the orientability of £ plus the existence, given any Riemannian
structure g on E, of global section of the SO(2r)-bundle

50,(E)
U(r)

Z(E) =

(SO, (E) being the principal SO (27)-bundle of g-orthonormal, positively oriented
linear frames on A).

Let & be a J-Hermitian structure on E; k can be described in the following
way:

h e B (C(E), gl(r, C), =)

where h(w) =th(u) > 0 for every ue C(E)
and v GL(r, C)— Aut (gl(r, C))
is given by (@) X) =ta 1 Xa"!.

Then U, (E) = {ueC(E)|h(u) =1} is the principal U(r)-bundle of Z-unitary
frames on E and, given J € B(C(E)), then w = h~13;h is the unique element of
CLUC(E)) N C(UL(E)).

Finally, from Lemma 2 we obtain immediately the following

Corollary. Let (M, Jy) be a totally non integrable complex manifold of
real dimension 6; let G be a complex (reductive) Lie group and let
mi P=PM, G)— M be a principal G-bundle. Then for any J € 8(P), for any
we Cy(P), we have:

A BB and A;iBY°—B%2 are bijective

A 8425821 and A;i62°—>BY2 are injective

A;Bhlo830 gnd A;:89'—>BY%2 are surjective.
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4 - Some special connections and some theoretical mathematics

Lemma 8. Let (M, Jy) be a totelly non integrable complex manifold
of real dimension 6; let G be a complex (reductive) Lie group and let
7 P=PM,G)—>M be a principal G-bundle. Then for any Je B(P),
for any we Cr°(P), we have

4.1) 8, A 10%2=02%0,

Proof. Let Je B(P). In order to clarify and simplify our notations, set

A=A;:8"1 6> and A=A

05 602

|

F=A;6"25%8%! and F=A;6>">6"2
R=A;8"'-%8°" and R=A4,:8"'>16"?3
C=A4;' and C=A;"
For any we @}'O(P), from D,Q, =0 it follows:
=(D,Q,)0%°=8,0%"+ RQLY)
=D, 0, )21 =8,05143,0%°+ F(Q%2)
=D, 2.)%2=8,0%%+03,0L1+ F(Q% 9
=D, 2.)0%=3,0%2+RQLY).
From DZ=e(Q,) it follows:
& +F3,+0,A=e(Q%%: 8" > B>}
8%+ R3,=e(Q%%): B> B0
& +Fo,+3,A=eQ%?): 8" -T2
3 +R3,=eQ%%: 8% > B3
8,9, + 3,8, +FA=e@QL1): 8L B!
3,8, + 8,0, +FA=e(Q%}1): B B2
0=R3,+3,A: 8" —B>°

0 =R3,+3,A: 6> 6%3,
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For ae. we Cy%(P) we have:
1. QL'¢KerR
2. [6.(6,C0%% - 04h, e(@uHTQL*INIm F = {0}.

For any such o, choose S:6%3— 64! and G: B2 6%" in such a way

that
a. RS =idg.o
b. SRQLY) =051
c. GF =idg.o

d G@B,(36,00%2-0QL1) =0=GR%>C%?).

Now: 3,=eQ%?C-3.C—-FQ,C:6"*— B!
and so 8,C=Ge(Q%%)C~-Ga:C—G3, 6"2—B>"°.
In particular 9,00Q%2= -GRCRL2-G3,0%2.
Finally

a G3,0%2=G3,0L1 +0%°

g -GECRY:=-G3,(3,00%% =G6,(53,0%%2~3,00%2%-383,0%2)

ie. 3,A710Q%2 =020,
Since (4.1) is clearly a closed condition, the proof is complete.

Proposition 1. Let (M, Jy) be a totally non integrable complex mani-
fold of real dimension 6; let G be a complex (reductive) Lie group and let

m: P=P(M,G)— M be a principal G-bundle. Then for any J e B(P) there
exists exactly one o e CY(P) such that Q%2 =0%°=0.
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Proof. For every u e P, we have:

a. T,P=S;[u]BW,.

b. For every ae G, S;[ual = (B, ), (S;[u)).
c. S;[u] is J[u]-invariant.

Therefore u +> S;[u] defines a connection, whose connection form « belongs
to €4 °(P). Moreover, because of (8.1), we have Q%% = 0. The rest follows im-
mediately from Lemma 8.

We want to perform some theoretical mathematics in the sense of [41.

From (8.1), it follows that, if J, is integrable, then N; is vertical Valued,
Q%2 is independent of the choice of we €¥%(P) and N;=0+0Q%%=

Therefore, assume we have:

1. a holomorphic 3-manifold (M, Jy).
2. a complex (reductive) Lie group G.
3. a principal G-bundle =: P — M.

We want to investigate the existence of J € 8(P) with N; = 0. We can ima-
gine the following steps:

a. Perturb Jy as (Ji).» o with Jj; totally non integrable and Jj — Jy as

e—0.

b. Therefore, by Proposition 1, for any J e B,(P) = B[J3(P) there exists
a unique w;e % *(P) with Q%2 =0.

¢. Use some compactness argument in G(P) in order to find

(T, ws,)— (], @) € BP) X C}°(P).

Clearly Q%%2=0.

In steps a and b one expects:

a. some obstructions e.g. in the Chern classes of M and P
p. some bubbling phenomena.

A similar pattern can be recognized in Taubes’ construction of antiselfdual
structures on compact 4-manifolds [7]. Start from (M*;[g]), consider (Z(M), J,)
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and perturb J in a totally non integrable way as J,. When you force J, to con-
verge to an integrable Jj, some infinite energy appears and you have to blow M
up in a finite number of points.
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