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Aspects of the geometry of the Jacobi operator (*%)

1 - Introduction

A central topic in Riemannian geometry is the study of curvature. One of the
useful tools for these studies are Jacobi vector fields. Recall that a Jacobi vector
field is a solution of the vector-valued Jacobi equation

Y'+R(Y,7)7=0

along a geodesic y in a Riemannian manifold (M, g), where B denotes the Rie-
mannian curvature tensor of M with the convention R(X,Y) =[Vy, Vy]
= Vix, r7- The symmetric tensor field

R, =R(, 7y

is called the Jacobi operator along y. The Jacobi operator plays also, via Jacobi
fields, a central role in the study of the intrinsic and extrinsic geometry of
geodesic spheres, tubes, and of reflections with respect to points, curves and
submanifolds.

In general, the explicit determination of the Jacobi fields is a very difficult
problem except for Riemannian manifolds with a simple curvature tensor. But
several properties of a Riemannian manifold may be discovered via those of its
Jacobi operators without knowing explicitly the Jacobi fields. To give an
example, consider the class © of all Riemannian locally symmetric spaces. In [4]
the following well-known property was considered: a Riemannian manifold
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(M, g) belongs to © if and only if for any geodesic y in M the following two
properties hold:

C. R, has constant spectrum

P. R, is diagonalizable by a parallel orthonormal frame field along y.

This characterization of locally symmetric spaces suggests to study the two
classes € and B consisting of all Riemannian manifolds for which just the re-
spective condition C and P holds. More precisely, a Riemannian manifold (M, g)
is called a €-space if for any geodesic y in M the associated Jacobi operator R,
has constant eigenvalues, and M is called a P-space if for any geodesic y in M
the Jacobi operator R, can be diagonalized by a parallel orthonormal frame field
along y.

There are also various characterizations of locally symmetric spaces in terms
of geometric properties of small geodesie spheres. We concentrate here on two
of them. Consider a non-stationary geodesic y in a Riemannian manifold (M, g)
parametrized by arc length and so that m = y(0) is defined.

First, for sufficiently small »e R, the geodesic spheres G,() and G,(r)
centered at p = y(r) and ¢ = y(—7), respectively, and with radius » are smooth
hypersurfaces of M and tangent to each other at m. In [51] it was proved that
M is locally symmetric if and only if for any such configuration of geodesic
spheres the shape operators S,(m) and S,(m) of G,(r) and G,(r), respectively,
at m coincide. The latter condition means that S, (m) and S, (m) have the same
eigenvalues and are simultaneously diagonalizable. Splitting up these conditions
leads to the two classes TE and T, More precisely, a Riemannian manifold
(M, g) is said to be a TC-space if for any such configuration G,(r) and G,(7)
have the same principal curvatures at m, and M is called a T-space if for any
such configuration S,(m) and S,(m) are simultaneously diagonalizable.

Secondly, for sufficiently small r e R, , the geodesic sphere G, () centered
at m and with radius r is a smooth hypersurface of M. Denote by s,, a local
geodesic symmetry of M at m. In [40] it was shown that a Riemannian manifold
(M, g) is locally symmetric if and only if

Sm* OSm(p) = Sm(Q) 0 8px

for any such configuration. As in the first case one can split up the latter condi-
tion into two, leading to the classes ©€ and &%. More precisely, a Riemannian
manifold (M, g) is called an ©C-space if and only if for any small geodesic
sphere in M the principal curvatures (counted with multiplicities) are the same
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at antipodal points, and M is called an ©%-space if for any such configuration
S, (p) and s,;%0S,,(q)os,,» are simultaneously diagonalizable.

Our general project is to find examples, derive classifications and nice geo-
metrical characteristic properties, study the geometry and the relations be-
tween these classes and other ones already discussed in the literature. In the
following we provide a survey about our work related to these questions that
has been done so far. We always suppose that a Riemannian manifold (M, g) is
connected and smooth unless stated otherwise.

2 - The classes 5, T, and SP

We start with two useful characterizations of real analytic $-spaces [4].
Each of the following two conditions is necessary and sufficient in order that a
real analytic Riemannian manifold M is a P-space:

- for any geodesic y in M the associated Jacobi operator R, and its covariant
derivative E; = (V,R)(:, y) v commute

— all small geodesic spheres in M are curvature-adapted.

Note that a hypersurface of a Riemannian manifold is curvature-adapted if its
shape operator commutes with the Jacobi operator with respect to the unit normal
vectors. A detailed discussion of curvature-adapted submanifolds may be found
in [5].

The fundamental result about these three classes is that

B =3IP =P
in the class of analytic manifolds [1], [6].

As regards examples, we first mention that any two-dimensional Riemannian
manifold is a -space. This is a trivial consequence of R, 7 = 0 and the symmetry of
R, . The local classification of all three-dimensional analytic 3-spaces is known [4].
Apart from the spaces of constant curvature certain warped products and triply or-
thogonal systems of surfaces appear in this classification. From the first characte-
rization of J3-spaces given above it follows also that the Riemannian product of two
analytic B-spaces is again a {S-space. Other sporadic examples of B-spaces are
known in the class of semi-symmetric spaces [12], [16].

From our point of view the main open problems regarding $-spaces are to
find further examples (perhaps there are some among the Stickel manifolds), to
continue the study of their geometry and to derive further (partial) classifica-
tions.
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3 - The classes €, T, and &€

The basic references for the results presented in this section are [4],[6],
and [1].

The first important remark is that the Ricci tensor of any space belonging
to €, E or &€ is invariant under the geodesic flow. Thus, any €-, TE- or
&E-space has constant scalar curvature and is analytic in normal coordinates.

In dimensions less or equal than three the classes €, TE and ©C coincide. A
two-dimensional Riemannian manifold is a €-space if and only if it has con-
stant curvature. Further, a three-dimensional Riemannian manifold is a €-space
if and only if it is locally symmetric or locally isometric to a naturally reductive Rie-
mannian homogeneous space. Note that the three-dimensional simply connected
naturally reductive Riemannian homogeneous spaces are the symmetric spaces
R S® RH®, S? x R, RH? x R and the Lie groups SU(2), SL(2, R), H, (Heisen-
berg group) equipped with suitable left-invariant Riemannian metrics [32]. In [7]
we gave some geometric realizations of the above naturally reductive Lie groups:
the naturally reductive metrics on SU(2) = S? are the induced metrics on the
geodesic spheres in CP? and CH?; the naturally reductive metries on SL(2, R) are
realized by the Riemannian universal covering spaces of tubes about totally
geodesic CH' in CH?; and the naturally reductive metrics on H; are realized by the
horospheres in CH®.

The most useful characterization of €-spaces says that a Riemannian mani-
fold (M, g) is a €-space if and only if for any geodesic y in M there exists a
skew-symmetric tensor field T', along y so that the associated Jacobi operator E,
satisfies the Lax-pair equation

R/ =IR,,T]

along y. By means of this characterization we define the subclass &, of € con-
sisting of all €-spaces for which T, might always be chosen parallel along . It is
possible to choose T, parallel if and only if the operators R, (t) are related to
R, (ty) for some fixed #, via conjugation with a one-parameter subgroup of the
respective orthogonal group.

Using the preceding characterization and the theory of homogeneous struc-
tures [48] we immediately get that any naturally reductive Riemannian homo-
geneous space is a C-space. It is clear that if a geodesic y is the orbit of a
one-parameter group of isometries, the eigenvalues of K, must be constant.
Thus any Riemannian g.o. space provides an example of a &-space. Note that
any naturally reductive Riemannian homogeneous space is a Riemannian g.o.
space and recall that a Riemannian g.o. space is a Riemannian manifold for
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which every geodesic is the orbit of a one-parameter subgroup of the group of
isometries of the space. Riemannian g.o. spaces have been studied in[39],
where also classifications up to dimension five and a partial classification for di-
mension six were achieved. The simply connected Riemannian g.o. spaces up to
dimension five are precisely the naturally reductive Riemannian homogeneous
spaces which have been classified in [32], [34], [38]. In dimension six there are
examples of Riemannian g.o. spaces which are in no way naturally reductive.
Note that we have the even stronger result that any Riemannian g.o. space is a
©,-space, but we will see later that the converse does not hold.

Using Killing tensors and geodesic flows it also follows that any commutative space
is a C-space. A commutative space M is a Riemannian homogeneous space for which
the algebra of all differential operators, which are invariant under the connected com-
ponent of the full isometry group of M, is commutative. The simply connected commu-
tative spaces up to dimension five are precisely the naturally reductive Riemannian
homogeneous spaces [32], [36], [9]. All commutative spaces known to us are also Rie-
mannian g.o. spaces, and we do not know whether this relation is true in general or not.
But there are examples (for instance, a particular generalized Heisenberg group, see
below) of Riemannian g.o. spaces which are not commutative.

By means of power series expansions for the shape operators of small
geodesic spheres it can be proved that both classes T€ and ©E€ are contained in
€. So we have the general inclusions:

two-point homogeneous spaces — symmetric spaces — naturally reductive spaces
— Riemannian g.o. spaces — €y-spaces — C-spaces

commutative spaces — E-spaces
TCE-spaces — C-spaces &C-spaces — C-spaces.

We now describe some special examples (see [3] for the various references).
The first ones are geodesic spheres and eertain tubes in two-point homogeneous
spaces. Geodesic spheres in R”, S, RP", and RH" are symmetric spaces, but
not those in CP*, CH", HP", HH", Cay P2, and Cay H% Any geodesic sphere
in a complex or quaternionic projective or hyperbolic space is a naturally reduc-
tive Riemannian homogeneous space, a property that does not hold for the
geodesic spheres in Cayley projective or hyperbolic plane. It is still an open
problem whether the latter ones are Riemannian g.o. spaces or not. We also re-
mark that any geodesic sphere in a two-point homogeneous space is a commuta-
tive space (see also section 7). Horospheres in CH" and HH" are naturally re-
ductive, and any horosphere in a non-compact two-point homogeneous space is
commutative. Any tube around a totally geodesic CP* in CP™, or CH* in CH",
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or HP* in HP* (1< k<mn—2), or HH* in HH" (1 < k <n — 1) is naturally re-
ductive and commutative. The same holds for the Riemannian universal cover-
ing space of any tube around a totally geodesic CH" ! in CH™. Also, any tube
around Cay H'! in Cay H% is a commutative space. (Note that in the last four
cases we mean commutativity with respect to the full isometry group.)

Further special examples arise from the theory of contact geometry and flow
geometry [10], [11], [23], [24], [25], [47], and [14] for further references. Any
Sasakian space form is a $E-space and also an ©C-space [1]. Sasakian space
forms belong to the larger class of ¢g-symmetrie spaces (Sasakian manifolds with
complete characteristic field such that the reflections with respect to the inte-
gral curves of that field are global isometries), which itself are special examples
of Killing-transversally symmetric spaces (Riemannian manifolds equipped with
a complete unit Killing vector field such that the reflections with respeet to the
flow lines of that field are global isometries). The simply connected manifolds
among the latter ones provide also examples of naturally reductive Riemannian
homogeneous spaces. It is worthwhile to mention that all these spaces (Sasakian
space forms, g-symmetric spaces, Killing-transversally symmetric spaces) are
reflection spaces in the sense of O. Loos [41].

A further consideration arises from the conjecture of Osserman [42] stating that
every Riemannian manifold with globally constant eigenvalues for the Jacobi opera-
tors is locally isometric to a two-point homogeneous space. A manifold satisfying
the hypothesis of this conjecture is called a globally Osserman space and is obvious-
ly a C-space. We refer to [22] for further results on globally Osserman spaces. In
this paper the notion of poinfwise Osserman spaces is introduced and related, for
four-dimensional manifolds, to self-dual Einstein manifolds. In this context it is also
worthwhile to mention that it is conjectured in [49] that Riemannian manifolds all of
whose small geodesic spheres are isoparametric are locally isometric to a two-point
homogeneous space. In [22] it is proved that the isoparametric condition implies
that the manifold is a globally Osserman space. An intrinsic analogue concerning
the Ricei tensor of small geodesic spheres is treated in [22].

All examples of €-spaces known so far are locally homogeneous manifolds
and one of the basic problems is whether this is a general fact: Is any €-space
locally homogeneous?

4 - Further motivating results

As mentioned above the classes T€ and SE€ are both contained in €. By
now we do not know whether these inclusions are strict or not. Also the relation
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between TE and SC€ is not clear, but a partial result was obtained in [1] and
says that if M is a commutative space or a &;-space, then M is a TE-space if
and only if it is an ©E-space.

An interesting class of Riemannian manifolds is formed by the D’Afri spaces, that
is, Riemannian manifolds whose local geodesic symmetries are volume-preserving up
to sign. These spaces were first introduced and studied in [19], [20], [21]. The following
relations between D’Atri spaces and the former classes are known:

Riemannian g.o. spaces — D’ Atri spaces [37]
€, -spaces — D’ Atri spaces[1] commutative spaces — D’ Atri spaces [35]

TE-spaces — D’ Atri spaces [6] &C-spaces — D’ Atri spaces [1].

None of the above inclusions is strict. An obvious problem, on which we come
back again later, is to study the relation between the €- and D’Atri spaces. Nice
candidates for these studies are Riemannian harmonie spaces, generalized Heisen-
berg groups, and weakly symmetric spaces. All these space are indeed D’Atri
spaces, but what ecan be said about their relation with the other classes discussed
above? Many of these and related questions have been settled in [3] (see also [2] for
a short summary), on which we report in the following two sections. The manifolds
we are considering first are the generalized Heisenberg groups and the Damek-
Rieci harmonic spaces. The first ones are two-step nilpotent Lie groups, the other
ones are solvable Lie groups arising as one dimensional extensions of the nilpotent
ones. These Lie groups have previously been studied in detail in harmonic analysis.
In Riemannian geometry these spaces have been proved useful as they provide
nice examples and counterexamples, for instance regarding the Lichnerowicz con-
jecture and related open problems on harmonie spaces [18], [49], in spectral geo-
metry [26], [46], and in the study of the relation between the classes discussed in
this paper [3]. We begin with the generalized Heisenberg groups.

5 - Generalized Heisenberg groups

We refer to[3] for details.

Generalized Heisenberg groups were introduced by A. Kaplan [29] and are
defined as follows. Let b and 2 be real vector spaces of dimensions n, meN,,
respectively, and fB: b X b—3 a skew-symmetric bilinear map. We endow
the direct sum 1n =@ 3 with an inner product (,) such that b and 3 are
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perpendicular and define an R-algebra homomorphism

J: 3> End(p) Z—=Jy

by VU, Veb VZe3 (JoU, Vy={(pU, V), Z)
and a Lie algebra structure on n by
YU, Vev, VX,Ye3 [U+X,V+Y]=8U,V).
The Lie algebra 1 is said to be a éenemlz’zed Heisenberg algebra if
VZe3 Ji= —{(Z, Z)id, .

The attached simply connected Lie group N, endowed with the induced left-in-
variant Riemannian metric g, is called a generalized Heisenberg group.

The classification of generalized Heisenberg groups is known and related to
the classification of representations of Clifford algebras of finite-dimensional
vector spaces equipped with negative definite quadratic forms. We first recall
some known properties of generalized Heisenberg groups.

— Every generalized Heisenberg group is a two-step nilpotent Lie group.

~ Every generalized Heisenberg group is diffeomorphic to the Euclidean
space of the respective dimension. For example, the Lie exponential map pro-
vides a suitable diffeomorphism.

~ Every generalized Heisenberg group is a D’Atri space [31].
— A generalized Heisenberg group N is a Riemannian g.o. space if and
only if
i. dimze{l,2,8}, or
ii. dimz=>5 and dimN =13, or
iii. dimz =6 and dimN = 14, or
iv. dim3 =17 and
(1) dimN =15, or
(2) dimN {28, 81} and b is isotypic [44].

— A generalized Heisenberg group is a commutative space if and only if it is
a Riemannian g.o. space, except when dimz =7 and dim N = 31 [43].
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— A generalized Heisenberg group is naturally reductive if and only if
dimze {1, 3} [31], [48].

— A generalized Heisenberg group is said to satisfy the J%-condition if for all
X, Ye3 with (X, Y)=0 and all non-zero Ueb there exists a Z e 3 so that
Jx JyU = Jz U. A generalized Heisenberg group satisfies the J2-condition if and
only if it is isometric to a horosphere in CH"*!, HH"*! or Cay H?[17].

- BEvery geodesic in a generalized Heisenberg group lies in a suitable totally
geodesically embedded three-dimensional Heisenberg group [30], [31].

We continue with some new properties of generalized Heisenberg groups.
First we mention that it is possible to write down explicitly the Jacobi operators
R,, its covariant derivatives R,, and the Jacobi vector fields (vanishing at a
point). This detailed and complicated work leads to the following proper-
ties:

~ Any generalized Heisenberg group is irreducible and non-symmetric, has
non-parallel Ricei tensor, and hence is not a harmonic space.

~ The Rieci tensor of any generalized Heisenberg group is a Killing tensor,
or equivalently, is invariant under the geodesic flow.

— None of the generalized Heisenberg groups carries a Kihler structure
which is compatible with its left-invariant Riemannian metric.

— Any generalized Heisenberg group is a €-space and hence, since it is non-
symmetric, never a $S-space. This result is obtained by an explicit calculation of
the eigenvalues of the Jacobi operators R, .

— Any generalized Heisenberg group is a €y-space. This is proved by an ex-
plicit calculation of a parallel skew-symmetric tensor field T, along any geodesic
y so that R/ =[R,, T,], and this shows that the rotational behaviour of the
eigenspaces of R, is described by a one-parameter subgroup of the respective
orthogonal group.

— Any generalized Heisenberg group is a T€-space. Here we use the explic-
it expressions of the Jacobi vector fields to determine the shape operators of
small geodesic spheres. As any generalized Heisenberg group is in &, it also
follows that any generalized Heisenberg group is an ©E-space.

— From the explicit expressions of the Jacobi vector fields it is possible to
determine all conjugate points in generalized Heisenberg groups.
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— The scalar curvature of any geodesic sphere in a generalized Heisenberg
group is the same at antipodal points.

— On any generalized Heisenberg group the eigenvalues of the metric tensor
with respect to normal coordinates are the same at antipodal points (with re-
spect to the center of the normal coordinates).

— The left-invariant distribution b is not integrable, whereas the left-invari-
ant distribution 3 is. Its maximal leaves are totally geodesic and isometric to R™
with its standard Euclidean metric.

These properties also give alternative proofs of some known results stated
earlier. Moreover, it follows that:

— there exist §y-spaces which are not Riemannian g.o. spaces and not com-
mutative spaces

— the property stating that the eigenvalues of the metric with respect to
normal coordinates are the same at antipodal points , does not characterize com-
mutative spaces, Riemannian g.o. spaces or naturally reductive Riemannian ho-
Mogeneous spaces.

6 - DR-spaces

We refer to[3] for details.

The basic idea for the construction of the DR-spaces from generalized
Heisenberg groups is to imitate the construction of the non-compact rank-one
symmetric spaces as solvable Lie groups by means of the Iwasawa decomposi-
tion of their isometry groups.

Let n be a generalized Heisenberg algebra, a a one-dimensional real vector
space and A a non-zero vector in a. We denote the inner product and the Lie
bracket on 1 by (,), and [,],, respectively, and define a new vector space

S=nha

as the direct sum of 1 and a. Each vector in 8 can be written in a unique way in
the form V + Y + sA with some Ve b, Y e 3 and s € R. We now define an inner
product (,) and a Lie bracket [,] on 3 by

(U+X+7A, V+Y+sA)=(U+X,V+Y), +rs

[U+X+74, V+Y+sA4] =[U, V], + érV— %sU+rY—sX.
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In this way $ becomes a Lie algebra with an inner product. The attached simply
connected Lie group, equipped with the induced left-invariant metric, is denot-
ed by S and is called a Damek-Ricci space, or briefly, a DR-space.

Also here, we start with some known properties:

— Any DR-space is a solvable Lie group diffeomorphic to the Euclidean
space of the respective dimension. Suitable diffeomorphisms are provided by
the Lie exponential map and by the exponential map at a single point.

— Any DR-space is harmonic and hence an irreducible Einstein mani-
fold [18].

— Any DR-space is a D’Atri space which is probabilistic commuta-
tive [33].

— Any DR-space is a homogeneous Hadamard manifold.

— A DR-space is a Riemannian symmetric space if and only if the attached
generalized Heisenberg group satisfies the J2-condition. Note that the symme-
tric DR-spaces are CH™*!, HH"*! and Cay H*[17].

— The associated generalized Heisenberg group of a DR-space S is isometric
to any maximal leaf of the Riemannian horosphere foliation in S centered at the
point at infinity corresponding to A. Each leaf of this foliation is an isoparame-

tric hypersurface of S with constant principal curvatures -21~ and 1 and respec-
tive eigenspaces b and 3.

— Every geodesic in a DR-space lies in a suitable totally geodesically embed-
ded CH? with constant holomorphic sectional curvature —1 [17].

We then have the following new results:

— A DR-space S admits a nearly Kihler structure which is invariant under
the group of left translations on S if and only if S is isometric to a complex hy-
perbolie space.

— The left-invariant distributions b and b @ a are not integrable. The left-in-
variant distribution 3 is integrable and the induced foliation is Riemannian; each
maximal leaf is a spherical submanifold (extrinsic sphere) of S with mean curva-
ture vector A and isometric to R™ with its standard Euclidean metric. The left-
invariant distribution a is integrable and the induced foliation of S is not Rie-
mannian; each maximal leaf is a totally geodesic submanifold of S isometric to R.
The left-invariant distribution 3 @ a is integrable and the induced foliation of S
is not Riemannian; each maximal leaf is a totally geodesic submanifold
of S isometric to the real hyperbolic space RH™*?! of constant curvature —1.



102 J. BERNDT and L. VANHECKE [12]

The explicit caleulation of the eigenvalues and eigenspaces of the Jacobi
operators R, leads to the following further results:

— The sectional curvatures K(s) of a DR-space S satisfy —1 < K(c) <0 and
—1 is attained. If S is symmetric, then —1 < K(o) < -——}I and —% is attained.
S attains zero as a value of the sectional curvature if and only if there exist a
unit vector V+ Yen with |V|®= 2
JxJyV is orthogonal to J, V. If S is odd-dimensional, then zero is attained as a
value of K(c). (Note that Boggino’s proof [13] for the result stating that zero is

always attained as a value of K(o) in the non-symmetric case is not correct. For
the even-dimensional DR-spaces this statement is therefore still an open problem.)

and a non-zero vector X e Y+ so that

— A DR-space is a C-space if and only if it is a symmetric space.
— A DR-space is a P-space if and only if it is a symmetric space.

The result on &-spaces yields the following corollaries:

— The following statements are equivalent for a DR-space S:
i, S is a symmetric space
ii. S is a naturally reductive Riemannian homogeneous space
iii. S is a Riemannian g.o. space
iv. S is a weakly symmetric space (see below)
v. S is a commutative space
vi. S is a €gspace
vii, S is a TC-space
viii. S is an ©C-space
ix. S is a globally Osserman space
x. S admits a quotient of finite volume
xi. S is semi-symmetric
xii. all geodesic spheres in S are curvature-homogeneous
xiii. all geodesic spheres in S are isoparametric.
— There are D’Atri spaces which are not €-spaces. We do not know whether
any &-space is a D’Atri space or not.
— There are probabilistic commutative spaces, which are not commutative
spaces (see [33] for the notion of probabilistic commutative spaces).

— The DR-spaces provide counterexamples for various conjectures about
k-harmonic spaces [49].
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7 - Weakly symmetric spaces

The basic reference for this section is [8].

Weakly symmetric spaces were introduced in 1956 by A. Selberg [45] in the
framework of his generalization of the Poisson summation formula to what is
now known as the Selberg trace formula. Selberg’s original definition is as fol-
lows. A Riemannian manifold M is called a weakly symmetric space if there
exists a subgroup G of the isometry group /(M) of M and an isometry f of M
with f2e G and fGf "' = G so that for any two points p, ¢ € M there exists an
isometry g € G with g(p) = f(q) and g(q) = f(p). Note that such a group G acts
necessarily transitive on M, so that a weakly symmetric space is always homo-
geneous. Taking G = I(M) and f=idy, one sees readily that any Riemannian
symmetric space is weakly symmetric. This definition is rather abstract and Sel-
berg gave only one example of a non-symmetric weakly symmetric space, name-
ly SL(2, R) with a special left-invariant Riemannian metriec.

An equivalent definition for weakly symmetric spaces is provided by the ray
symmetric spaces introduced by Z. Szabé [46]. A Riemannian manifold M is weak-
ly symmetric if and only if for every maximal geodesic y in M and any m e y there
exists an isometry of M which is a non-trivial involution on y with m as fixed point.

Finally, we mention an appealing geometrical characterization [8]. A Riemannian
manifold M is weakly symmetric if and only if for any two points p, ¢ € M there
exists an isometry of M mapping p to ¢ and g to p.

The last two characterizations lead us to a variety of new examples of weak-
ly symmetric spaces which we shall discuss below.

We first continue with some basic properties of weakly symmetric spaces:

— Any weakly symmetric space is a commutative space (with respect to the
full isometry group). This fundamental property was already proved by Selberg
who also stated the still unsolved question whether the converse holds.

— The Riemannian product of two weakly symmetrie spaces is a weakly sym-
metric space and conversely, each factor of a reducible weakly symmetric space
is also weakly symmetriec.

— The Riemannian universal covering space of a weakly symmetric space is a
weakly symmetric space.

.- Any weakly symmetric space is both a TE-space and an &E-space.
The new examples of weakly symmetric spaces were obtained via reflection

theory (see [50] for details about reflections and for further references). First,
suppose that B is a submanifold of a symmetric space. Then the reflection of the
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symmetric space in B is an isometry if and only if at each point of B both the
tangent space and the normal space are curvature-invariant [15]. In order to
find the submanifolds B in symmetric spaces such that the reflections in B are
global isometries we need to determine the subspaces of the tangent spaces
which are curvature-invariant and such that their orthogonal complements are
also curvature-invariant. This can be carried out easily in two-point homoge-
neous spaces since we know the complete totally geodesic submanifolds and we
have just to select those which have a curvature-invariant normal space at each
point. This gives the following list:

ambient space suibmanifold
E* Ek
N Slc
RP™ RP*
cpP” RP", CP*
HP" CcP”, HP*
Cay P? HP? Cay P!, {p}
RH" RH*
CH™ RH", CH*
HHA™ CH", HH*
Cay H? HH?, CayH?, {p}.

From this we may obtain the following weakly symmetric spaces:

ambient space hypersurface

CP" tube around {p}, CP, ..., or CP""!

HP" tube around {p}, HP!, ..., or HP""!

Cay P? tube around {p}, or Cay P!

CH" horosphere; tube around {p}, CH, ..., or CH""!
HH" - | horosphere; tube around {p}, HH', ..., or HH" !
Cay H? horosphere; tube around {p}, or Cay H*.

All these hypersurfaces are non-symmetric (which is not obvious and needs a
proof). In the compact cases the radius of the tube has to be less than the di-
stance to the focal set of the respective submanifold. Note that in R”, S", RP"
and RH™ any tube around a complete totally geodesic submanifold is a Riemann-
ian symmetric space.
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We continue with some conclusions:

— Any geodesie sphere in a two-point homogeneous space is weakly symme-
tric and hence a commutative space.

— If all small geodesic spheres in a Riemannian manifold M (dim M > 2) are
weakly symmetrie, then M is locally isometrie to a two-point homogeneous space.

— Any horosphere in a non-compact two-point homogeneous space is weakly
symmetric. These horospheres are generalized Heisenberg groups (except for
RH" where the horosphere is isometric to R”~!) and it is still an open problem
to determine the weakly symmetric spaces among the generalized Heisenberg
groups. But note that any weakly symmetric generalized Heisenberg group is
commutative and a g.o. space, which reduces the possible list considerably.

We mention that the simply connected weakly symmetric spaces are classi-
fied for dimensions < 4. In these dimensions the weakly symmetric spaces coin-
cide with the naturally reductive Riemannian homogeneous spaces.

Finally we mention that Sasakian space forms are weakly symmetric. This
fact may be shown easily by using reflection theory or the results above.
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