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A. SANINI (%)

Submanifolds and Gauss maps (*%)

1 - Introduction

Many extrinsic properties of a riemannian submanifold (M, g) of R" can be
read in terms of the Gauss map of the submanifold itself,
A result in this framework is the following theorem of Ruh and Vilms

(19D:

The Gauss map is harmonic if and only if the mean curvature vector field of
the submanifold is parallel in the mormal bundle.

One can extend results of this kind to the Gauss maps relative to submani-
folds of a space form or of an arbitrary riemannian manifold.

In this paper we will study some problems relative to riemannian submani-
folds (M, g) of R satisfying a weaker property than that of Ruh-Vilms theo-
rem. More precisely, given the Gauss map y: (M, g) — (G(m, n), I') (where I is
the canonical metric of the Grassmannian of the m-planes in R") we will study
and give examples of submanifolds M for which the tension field of y, 7., is non
zero and orthogonal to the image manifold y(M).

Problems of this sort were first studied by B.Y. Chen and T. Nagano in a
paper of 1984 ([3]). They assumed that the Gauss map y was injective and they
found conditions under which the identity map 4y: (M, 9) — (M, y*I') is har-
monie.

Sections 2 and 3 are devoted to some general properties of maps between
riemannian manifolds and of the Gauss map, respectively.

(*) Dip. di Matem., Politeecnico Torino, Corso Duca degli Abruzzi 24, 10129 Torino,
Italia.
(**) Received October 6, 1994. AMS classification 58 E 20.
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In section 4 the differential condition characterizing the submanifolds which
are studied is determined. It is proved that it is equivalent to the condition of
Chen and Nagano.

Section 5 and section 6 are devoted respectively to the study of the surfaces
of R* and the hypersurfaces of R* which satisfy this condition.

2 - Second fundamental form and tension field of a map

Let f: (M, g) — (N, G) be a differentiable map between the riemannian ma-
nifolds M and N. The differential df: TM — f TN is a 1-form with values in
the bundle f~!TN.

The covariant differential of df, Vdf, called the second fundamental form of
the map f, is the symmetric f ! 7TN-valued 2-form defined explicitly by

@.1) (VAF)X, ¥) = (Vy(df)X) = V& ™ (dfX) - dFV¥X).

If Vdf = 0, f is said totally geodesic (or affine) and is a map sending geodesic of
M to geodesic of N, preserving the parametrization.

The tension field =, of fis the trace, with respect to the metric g, of Vdf, ie.
7r= Vdf(e;, €;), where {e;} denotes an orthonormal basis of (M,g). If 7,=0
the map f is called karmonic (cfr.[4], [5], [6D.

The energy density of f is defined by

@2 o= TIaf|P = 5 tr, f*G
and the energy of the map f on a compact set KcM is given by
@2.8) Er=[erdv,.

k

77= 0 is the Buler-Lagrange equation of the functional E, defined on the space
of the differentiable maps of M into N.

In case fis a riemannian immersion of M into N, Vdf = k is the usual second
fundamental form of the immersion, tr= mH, where H is the mean curvature
vector of the submanifold M and m is the dimension of M.

It will be useful to consider the stress emergy temsor of f, defined by
(efr. [1])

(24) . Sf-_— erg —f*G.

S;=0, if and only if m =2 and f is weakly conformal.
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The tensor Sy has a relevant geometrical meaning. It represents twice the
gradient of Ey(g), the latter considered as a functional on the metric g of M, for
a fixed f. In fact one has

dE(g(?) 1 dg

— o= 5 J S (.
One can prove (cfr.[1])
(2.5) diVSf= “(’Tf, df)g

where divS;(X) = (V,,S/)(e;, X).
About the product of two differentiable maps f: (M, g)—> (N, G) and
$: (N, G)—> (P, G') we have

2.6) Vd(gf) = dg(Vdf) + Vde(df, df).
It follows
2.7 Ter = doTy+ Vdé(dfe;, dfe;).

3 - Gauss maps

Let (M, g) be an m-dimensional riemannian submanifold, isometrically im-
mersed in R* The Gauss map y: (M, g) —» G(m, n), Grassmannian of the m-
planes of R”

SO(n)

GOm, %) = S50y % S0 — m)

associates with any point x € M the tangent space T, M, translated into the ori-
gin of R™

A tangent vector to G(m, n) at a point [«], corresponding to the m-plane =
of R"jis a linear map of = in =*. G(m, n) has a canonical structure of symmetric
space (cfr. e.g. [7], vol. I, ch. 11). If {e;} and {e,} are orthonormal basis of =
and =+, the metric of G(m, n) is the one with respect to which {e* ® ¢, } is an
orthonormal basis.

One can verify that (cfr. [5], [9])

(38.1) (dy(XNY =X, Y) for any X, Ye T .M

where h is the second fundamental form of M in R™
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A simple computation shows that
(3.2) (Vdy)(X, ) Z = (V¥ hXX, Z) = (V; )X, Y)
which implies in particular
3.3) T, =mVtH

and hence the theorem of Ruh and Vilms.
Moreover one should note that

(3.4) (r*INX, Y) = WX, ¢;) MY, ¢;).
Hence, using the Gauss equation,
(8.5) (y*I'(X, Y) =mh(X, Y)-H — Ricy (X, Y)

where the right hand side must be augmented by c¢(m — 1)g(X, Y) if M is im-
mersed in a space form N(c) of constant curvature c.
The relation (3.4) implies

€ = g IhI7 = G lews ) e, ).
Hence by (2.4)
(3‘6) Srzélhlzg_)”"r.

If the second fundamental form 7% is considered as an element of
L(TM, L(TM, T+ M)), the relative nullity index v of M is given by v = dim ker &.
Ifv =0, y*I'is a metric on M, called the Gauss metric of M. If v > 0, y* I'is a sym-
metric positive semidefinite 2-form on M.

4 - On a particular type of submanifold

Here we study the M dimensional submanifolds (M, ¢g) of R™ such that the
tension field 7, of the Gauss map y is orthogonal to y(M).
By (8.8) 7, at any point © € M, is the linear map of T, M into T;* M defined

by
7, (X) =mV4 H.
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On the other hand, any vector dy(X) tangent to y(M) at y(z) is the linear
map

(dy(XNY=hrX,Y).

Hence <. is orthogonal to y(M), if and only if

Y

4.1) h(e;, X)-Va H=10 for any X.
By (2.5), (4.1) is equivalent to
4.2) divS, =0

which can be verified also directly.

If y is injective, (4.2) was equivalently formulated by Chen and
Nagano ({3)).

In fact let us consider the following maps:

(4.3) (M, 9)—> M, y*1); v (M, y*I) > (G(m, n), I')
where y = y"iy and y' is an isometric immersion. By (2.7)
4.4) 7, =dy'(z;,) + trgh'

where k' is the second fundamental form of the submanifold y(M), which is iso-
metrically immersed in G(m, n).

(4.4) represents the splitting of <, in its tangential and normal part with re-
spect to y(M). Hence v, is orthogonal to y(M) if and only if 4 is harmonie, or
also if and only if the Gauss metric y*I' is harmonic with respect to the metric g
of M.

In [8] it is shown that the harmonicity of i), is expressed by the following dif-
ferential condition

(4.5) V,tr,y*I'=2div, y*T

which is the exact translation of (4.2) to this setting.

In general, a symmetric 2-form T on M is said harmonic if it satisfies (4.5).
For instance, as an easy consequence of the second Bianchi identity, the Ricci
tensor of any Riemannian manifold (M, ¢g) is harmonic with respect to g¢.

Remark that (4.1) has the same meaning for any submanifold of a space
form, independently on the injectivity of the Gauss map.

A general result on the submanifolds M for which the tension field of the
Gauss map 7, is orthogonal to y(M) is expressed by
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Proposition 1. If M is a compact orientable submanifold for which (4.1)
holds, then the mean curvature vector H has constant norm.

As a matter of fact let us prove that, for any vector field X on M
(4.6) [x(H®)dv, = [2(VEH -H)dn, = 0.
M M

Let us consider the symmetric 2-form B(X,Y) =X, Y) H.
We have

(div B)X) = (V,,B)(e;, X) = ¢;(Ble;, X)) — B(V;! ¢;, X) — Ble;, V' X)
= Vi (he;, X))-H + h(e;, X)-Vo H— W(Ve;, X)-H — h(e;, V' X)-H
whenee, by (4.1) and the symmetry of A,
.0 (divB)(X) = (Vs h)(e;, X)-H=mVg H-H.
On the other hand, by the symmetry of #,
4.8) (div B)(X) = div (B(X))*

where (B(X))* is the vector field associated to the 1-form B(X) via the metric g
of M.

(4.6) is a consequence of Green’s Theorem and (4.7), (4.8). As X can be arbi-
trary chosen, Proposition 1 follows.

In the sequel examples and properties of the submanifolds for which (4.1)
with V* H # 0 holds will be examined. Indeed a classification of the above is of
course impossible. More precise informations on these submanifolds can be ob-
tained as soon as suitable restrictions on the dimension and the codimension are
made.

Thus, if dimM =1, (4.1) expresses that M has constant first curvature,
hence also VX H =0.

In codimension 1, let H = fe,, be the mean curvature vector, where f is the
mean curvature function. In this case V* H = 0 is equivalent to V£ 0 and (4.1)
can be written as (X, Vf) = 0, whence the relative nullity index of M is greater
or equal to 1. The integral curves of unitary vector field & = Vf- |Vf| ~! orthogo-
nal to the level sets of f are geodesics of M and of R™ (or of the space form N(c)
into which M is immersed as an hypersurface).

One should remark that, as a consequence of the Codazzi equation, the rela-
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tive nullity foliation 97 of a submanifold M of a space of constant curvature is to-
tally geodesic in M and in N(c).

5 - Surfaces of R"

Let us suppose that M has dimension 2. It is well known that this dimension
is peculiar in the theory of harmonic maps, because the tension field of any map
defined on (M, g) depends only on the conformality class of the metric g.

This implies that in dimension 2 (4.1) is certainly satisfied if the Gauss map y
is conformal. By (8.5) and as Riey (X, Y) = Kg(X, Y) (K Gaussian curvature of
M), this condition is equivalent to

5.1) WH,Y)-H = gX, )|H|?,

ie. M is a pseudoumbilical surface (the normal section determined by H, if
H # 0, is a umbilical section).

To see if this is the only possible case in which (4.1) holds, one has to take
into account the topology of M.

Let z=x + iy be a system of isothermal coordinates such that g = A(dx?
+ dy®). Let us consider a symmetric 2-form 7' on M and its Hopf transform f,
given by the complex valued function

_ T(3,,8,)— T(3,,8,)

fr 5 = 1(8;, 8,).

The tensor T is harmonic with respect to g, i.e. it satisfies (4.5), if and only if
(efr. also [3]) the function fr is holomorphic and hence f; dz% is a holomorphic
quadratic differential on M. Hence, if M has the topology of the sphere, the
Gauss metric T = y* I is harmonic with respect to g if and only if f7 = 0, i.e. y is
conformal.

Taking account of this result we give examples of surfaces which locally sa-
tisfy (4.1). Distinction will be made with respect to the codimension and the
pseudoumbilicity.

a. codimM = 1.

a;. If M is pseudoumbilical, then M is minimal or M is totally umbilical.
In both cases V*H = 0.

a,. If M is not pseudoumbilical and locally satisfies (4.1), then M has ne-
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cessarily relative nullity index equal to 1 and the nullity vector field coincides
with the gradient Vf of the mean curvature function. We prove

Proposition 2. The surfaces of a space form N3(c) which locally satisfy
(4.1) with V* H #= 0 are ruled surfaces by geodesics intersecting orthogonally a
plane curve L of constant curvature in N3(c). In particular, if ¢ = 0, they are
round cones.

Proof. Let us choose a Darboux frame {e;, e;, es} on M so that e; is
normal to M and e, is the nullity versor. Then

hiey, ;) = 2fes h(ey, ex) = h(es, 3) =0 62=Vf']Vf|"1.

This implies in particular that the Gaussian curvature of M is ¢, hence (efr.
e.g.[10], Chap. 7, Prop. 34) M is locally a ruled surface of N3(c), ie.
M = expys (tV(s).

On the other hand, in this setting, if {6%, 6%} is the coframe on M dual to
{e, €2}, we have

wl=27" wi=0 e(f)=0.
Applying the Codazzi equations we get
Wi=at'  e(f)=af

and by the Gauss equation e, () =«? +c.

Moreover, as [e;, es] = —ae;, it follows 0 = [e, e;] f = ¢; («) f, which implies
e (o) =0.

Proposition 2 is a consequence of the following

Lemma. Any integral curve L, of the vector field e, is a plane, constant
curvature curve of N3(c). The plane of Ly has a constant angle ¢ with the inte-
gral curves (geodesics) of the vector field e, based at points of L,. The angle ¢ is
mdependent of L, if and only if ¢ =0.

Proof of the L.emma. As a consequence of the econditions written
above

Ve =aey +2fes  VE Ve = —(a®+4f%)e
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which implies that e;, VNe, and VY VYe, lie on a same plane and moreover
N 2_ .2 2
IVGIZI I =a“+ 4f

which is constant along any curve L.
The angle between e, and the normal to the plane of L, is = — ¢ and

2
2
cos (£ — ) =sin g = —f_—
(a® + 4f2)2
which implies
-2
gp (sin p) = —afc; .
(% + 4]"2)E

This proves the Lemma.

Remark that, if ¢ = 0, the surfaces as above have a singularity (the vertex of
the cone and its analogue). If ¢ < 0 those surfaces may also be non singu-
lar.

For example, we consider the hyperbolic space H®(—1) represented by the
semihyperboloid of B3 (with the Lorentz metric)

—xl+y?+ 22+ wli=—1 x>0

the central projection of a round cone belonging to the hyperplane =: x =1
(identified with the euclidean space R?) and with axis through (1, 0, 0, 0) is a
surface M of H3(—1) satisfying (4.1). If the vertex of the cone is external to the
unit ball B3(1) of =, M has no singular point.

b. codimM = 2.

by. M is pseudouwmbilical. In codimension 2, if M is pseudoumbilical and
|H| = constant, then necessarily VX H =0 (cfr.[2]. Prop. 2.4, pag. 179).
Hence, in this case, a surface with conformal Gauss map and V* H = 0 must
have mean curvature vector with non constant norm.
An example is given by

e*(cos u cos v, cos % sin v, sin % cos v, sin # sin v)

whose metric is g =e?(2du®+ dv?), while the Gauss metric is
yE[ =g g,

be. M mot pseudoumbilical with |H| = constant. We prove
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Proposition 8. The non pseudowmbilical surfaces with |H| = constant,
Vi H # 0 satisfying (4.1) are flat and are the Riemanwian product of a constant
curvature curve and a straight line.

Proof. Let us choose a Darboux frame {e;, e, es, ¢4 } such that e; is paral-
lel to the mean curvature vector and the Weingarten operator with respect to it
has the diagonal form

« 0
4= (0 ﬁ) '
Then A, = (’\ # )
@ —A

and H = %(a + B)es, o + 3 = constant, « # 8.

Set wi =19 + mo?,
ViH=Z(at+B)le, ViH= S+ B)yme,

with I, m never both zero. By (4.1) we get
M+tum=0 pl-2m=0

which implies A = = 0, that is the first normal space has rank 1.

Differentiating w% =10, w%=0, one gets ma =0, {8 =0. Supposed for in-
stance B=0, it follows « # 0, m =0, hence w}=af?, wi=0. As dw}=0,
one gets «(—wd A6%2) =0, hence w}=ph% Differentiating wj one obtains
dws + wd A w3 =0, whence p = 0, which proves that M is flat.

One has moreover Vf; g, = 0, hence the integral curves of e; are straight
lines, while Vf e, = ae; shows that the integral curves of e; have constant
curvature.

An explicit example of such surface is the riemannian product of a circular

helix and a line
(7 cos ¢, rsin ¢, ke, t).

bs. M non pseudowmbilical with |H| non constant. An example of this
kind satisfing (4.1) with V* H = 0 is given by

(z(s), y(s), chs cos v, chs sin v)

where (2(s), y(s)) is a curve of R? parametrized with arc length and having the
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function chs as curvature. For such a surface one has
g = ch®s(ds? + dv?)

1
ch? (s)

with Gaussian curvature K=

2
1'}‘Chsdsz+ L g2,
ch®s ch®s

and Gauss metric y*I=

Moreover it is not difficult to prove the following

Proposition 4. If M is a surface in R* contained in the sphere S° it
satisfies (4.1) as a surface of R* if and only if it satisfies the same condition
in S5

c. codimM > 2,

In this case, the conditions determined by (4.1) are weak. Hence it is possi-
ble to give various examples. Also because in relationship with what said above,
we mention the surface product of a circular helix and a circle

P(u, v) = (a cos u, a sin u, 4, b cos v, b sin v), a, b, constant.

One can verify that

1 a? 1
H|? = = (————— 4+ —) = constant
A= v ety

V+ H # 0 and that (4.1) holds. This surface is flat and it is pseudoumbilical if and
(1+a?)?

aZ

only if b%=

6 - Hypersurfaces of R*

The study of the hypersurfaces, which locally satisfy (4.1) with V* H = 0, can
be made in a similar way as the one of the surfaces of N3(c) in Section 5.
As the relative nullity index of M is greater or equal to 1, we may choose an
orthonormal frame {e;, e;, ¢35} on M such that the Weingarten operator has the
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following diagonal form

A 0 0
6.1) A:(O u 0).

0 0 o0

The integral curves of es (unitary vector of the gradient of the mean curvature
function) are geodesics of M and R*, ie. straight lines. Moreover

e A+p)=e(A+uw)=0 e(A+u)=0

e; and e, being vector fields tangent to the level sets on M of the mean curva-
ture function.
One has the following cases:

1 A=#0, u=0, thus the relative nullity index is 2.
2 2A=p=0.
3 )\ #Z fl, # O Z= )\.

By Codazzi and Gauss equations, in case 1 and 2 one gets easily a characteri-
zation of the three dimensional manifolds 3/ of these kinds satisfying (4.1) with
VYH = 0.

In case 1 one proves that these manifolds are the Riemannian product of a
circular cone and a straight line.

The manifolds of type 2, satisfying (4.1), are cones which project from a
point a sphere SZ.

In both cases we have three dimensional conformally flat manifolds.

The most interesting and difficult case to be studied is 3. Taking into account
the conditions implied by the Gauss and Codazzi equations and some known re-
sults on three dimensional econformally flat manifolds (efr. [8], Prop. 3. page 84),
one gets that the hypersurfaces of type 3 satisfying (4.1) are conformally flat if
and only if the foliation normal to the relative nullity foliation is umbilical, i.e.
the level surfaces on M of the mean curvature function are umbilical.

If one projects from the origin of R* the torus of S®

(cos u,sin %, a cos v, a sin v)

with a constant # 1, one obtains a hypersurface of R* verifying (4.1) with V+ H
# 0 and conformally flat.

One gets an analogous result by projecting from O any not umbilical surface
of S® with constant mean curvature.
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On the other hand, if M is the ruled manifold given by the straight lines in-

tersecting the circles

y1: (cos s,sin s, 0, 0), ya: (0,0, a cos t, asin £)

then also this hypersurface (of which v, and y, are the focal manifolds) satisfies
(4.1), but is not conformally flat.

(1]

(2]
(3]

(4]
(5]
(6]
(7
(8]
[9]

[10]

P.

References

BairD and J. EELLS, A conservation law for harmonic maps, Geom. Symp.
Utrecht 1980, Lecture Notes in Math. 894, Springer, Berlin 1981.

B.-Y. CHEN, Geometry of submanifolds, Dekker, New York 1973.
B.-Y. CHEN and T. Nacano, Harmonic metrics, harmonic tensors and Gauss

J.

J.

maps, J. Math. Soc. Japan 36 (1984), 295-313.

ErLLs and L. LEMAIRE, A report on harmonic maps, Bull. London Math.
Soc. 10 (1978), 1-68.

EeLLs and L. LEMAIRE, Selected topics in harmonic maps, CBMS Regional
Conf. Series 50, AMS Publ, Providence, R.I. 1983.

EELLS and L. LEMAIRE, Another report an harmonic maps, Bull. London
Math. Soc. 20 (1988), 385-524.

KoBavasu1 and K. Nomizu, Foundations of differential geometry 1 and 1I,
Interscience, New York 1963, 1969. s
LAFONTAINE, Conformal geometry from the Riemannian viewpoint, Aspects
of Math. 12 (1988) 65-92.

. Rud and J. ViLms, The tension field of the Gauss map, Trans. Amer. Math.

Soc. 149 (1970), 569-573.

. SPIVAK, A comprehensive introduction to differential geometry IV, Publish

or Perish, Wilmington, USA 1979.






