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ED0ARDO VESENTINI (¥)

Geodesics and Moebius transformations (**)

1 - Introduction

If X and X' are differentiable manifolds endowed with affine symmetric conneec-
tions I" and I'’ in their tangent bundles, an affine collineation of X onto X' is, by
definition, a diffeomorphism F of X onto X' mapping every geodesic y of I" onto a
geodesic y' of I'', and inducing an affine correspondence between affine parame-
terson yand on y'. If Q and Q' are the connection forms of I"and I'’, F is an affine
collineation if, and only if, F/* Q = Q', where F'* is the linear mapping on differen-
tial forms induced by F. If, more in general, F maps the geodesics of I' onto the
geodesics of I"' without any further restriction on its action on affine parameters, F’
is called a projective collineation, and I' and I'" are said to be projectively related.

Projective collineations were first investigated in 1921 by H. Weyl who, in a
letter to F. Klein [17], noted that what he called a projective property (projec-
tive Beschaffenheit) of X—a property which he characterized in terms of par-
allel transport of directions—is preserved when the affine connection I' is modi-
fied preserving the geodesic curves. H. Weyl's research seems to have been ini-
tially motivated by the theory of general relativity (). From a historical point of
view, it should be noted, however, that—as was pointed out by E. Bortolot-
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() In der Relativitdtstheorie haben projective und konforme Beschaffenheit eine un-
mittelbar anschauliche Bedeutung. Die erstere, die Beharrungstendenz der Weltrichtun-
gen eines sich bewegenden materiellen Teilchens, welche thm, wenn es in bestimmter
Weltsrichtung losgelassen ist, eine bestimmie natiirliche Bewegeny aufndtigl, its jene
Einheit von Trigheit und Gravitation, welche Einstein an Stelle beider setzte, fiir die es
aber bislong an einem suggestiven Namen mangelt [17]. In the same article, after
having shown that a pseudo-riemannian metric is completely determined by its projective
and conformal geometries, Weyl notes that Es geht aus diesem Satz hervor, dass allein
durch die Beobachtung der natiirlichen Bewegung materieller Teilchen und der Wirkuns-,
insbesondere der Lichisausbreitung die Weltmetrik festgelegt werden kann; Mafstibe und
Uhren sind nicht dazu erforderlich; see also [18] and [19].
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ti [4]—the first example of a projective collineation goes bach to 1865, when E.
Beltrami [1] (see also [3], p. 310-313, 642-645) proved that the surfaces with con-
stant curvature are the only ones which are projectively equivalent (at least lo-
cally) to the euclidean plane. Four years later, U. Dini[5] (see also [3] p. 313-
815) characterized projectively equivalent riemannian surfaces, showing that
(apart from trivial cases) they are all Liouville surfaces.

Assuming for the sake of simplicity that X = X', according to H. Weyl [17]
(see also [4] [6]) the identity map is a projective collineation if, and only if, there
is a linear differential form ¢ on X such that, in terms of local coordinates
Xy, ..., &, on X (where n = dimp X), ¢ is expressed by ¢ = > ¢;da;, and the coef-
ficlents I}, and I'ji are related by

I =T +3dlo, +elo;
for all 4,7, k=1, ..., n. Affine parameters ¢ and ¢’ for I and I’ are then related
by the equation

t'=afef 2ot + b

where @ and b are real constants and the integrals are taken along the geodesic.

The fact that, if the identity map is an affine collineation, the affine parame-
ters are preserved, up to an affine map, raises the question whether it is possi-
ble to define an intrinsic parameter on the geodesic y which is essentially pre-
served under the action of a projective collineation. An answer to this question
was provided by L. Berwald in [2] (see also [4] for further bibliographical refe-
rences). If y is a geodesic for the connection I, starting from an affine para-
meter on y L. Berwald constructs a parameter p — which he calls a normal pro-
Jjective parameter — such that, if the same construction is performed on y for a
connection I'', projectively related to I', then the corresponding normal projec-
tive parameter is related to p by a Moebius transformation on R (3).

In this lecture we shall see how the theory originating from H. Weyl's paper
of 1921 sets the stage for somewhat similar developments in which the differen-
tiable manifold X and the geodesics y are replaced by a domain B in a complex
Banach space and by the complex geodesics for an invariant Finsler metric on
B. Tt is not unexpected that the rigidity of the complex geodesics (when they
exist) leads to stronger conclusions.

(®) In Berwald’s paper the Moebius transformation arise from differential equations
involving the Schwarzian derivative. A similar approach was developed for a Finsler me-
tric positive constant curvature on a surface, by P. Funk in [8].
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The results described in this preliminary report are far from being exhaus-
tive and concern only some examples. Detailed proofs are to be found in [14],
[15], [16].

2 - Complex geodesics

In the following, B will be a bounded domain in a complex Banach space §,
and d will be a distance on B which is contracted by all holomorphic maps of B
into B, and defines the relative topology of B in &.

If B' is a domain in a complex Banach space &', Hol(B, B') will stand for the
set of all holomorphic maps of B into B'. Throughout the following, d will al-
ways be the Carathéodory distance, which is defined as follows [7]. Let 4 be the
open unit dise of C, and let w be the Poincaré distance on A. Then, for
x, yed

d(x, y) = sup {w(f(@), f(y))| fe Hol(B, 4)}.

A similar construction yields the Carathéodory differential metric of B. If, for
¢ed and veC, (r), is the lenght of v with respect to the Poincaré differential
metric of A at the point ¢, then the lenght x(x; v) of a vector v e § with respeet
to the Carathéodory differential metric of B at the point z e B, is given by

K (ac; ) = sup {(df (@) v)qyy | fe Hol(B, 4)}.

A complex geodesic [12] (for the Carathéodory distance d) is a funetion
¢ e Hol(4, B) such that for all ¢; and ¢, in 4,

(1) w(zu 52) = d(¢(:1 ), ¢(<:2))

The immage $(4) c B will be called the support of the complex geodesic ¢. Since
the Poincaré distance is complete, and ¢ is an isometry, ¢(4) is closed in B. If ¢
is another complex geodesic having the same support as ¢, there is a Moebius
transformation M of 4 onto 4 such that ¢ = ¢oM; and viceversa [13].

Proposition 1. Let ¢ € Hol(4, B). If there are two distinet points ¢y, &y in
A for which (1) holds, or, if there is some e A such that

K($(0); ' (D) = (1),

then ¢ is a complex geodesic [13).
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Complex geodesics may or may not exist. There are no complex geodesics,
for instance, when B is a bounded non-simply connected domain in C.

If B =B(3) is the open unit ball of a complex Hilbert space 3¢ and if
¢ is a complex geodesic in B(3(), ¢(4) is the intersection of B(J() with a complex
affine line L of 9C Viceversa, if L is any complex affine line in J¢, such that
L N B(9C) # @, there is an affine map € — 3¢ whose image is L, and whose
restriction to 4 is a complex geodesic in B(3(). As a consequence, for any two
distinet points x, ¥ in B(3(), there is a complex geodesic whose support contains
x and y; furthermore, all these complex geodesics have the same support.

Let T be a compact Hausdorff space and let B = B(T) be the open unit ball of
the Banach space C(T) of all complex-valued, continuous functions on T, with
the uniform norm. The complex geodesies of B(T) are described by the following
proposition [9].

Proposition 2. A function ¢ € Hol(4, B(T)) is a complex geodesic if, and
only if, there exists t e T such that the function A — A defined by {— (D) is a
Moebius transformation of A onto A.

In this case (if T is not reduced to one point) the structure of the set of all
complex geodesics is quite different from that of B(3(). Although also in this
case any two distinet points x and y of B(T) belong to the support of some com-
plex geodesie, the support is not necessarily unique. Uniqueness can be charac-
terized in the following way, in terms of the set E(T) of all complex extreme
points of the closure B(T) of B(T). This set consists of all e C(T) such that
|u4(¢)| = 1 for all £ e T, and turns out to coincide with the set of all real extreme
points of B(T).

First of all, due to the fact that the group Aut(B(T)) of all holomorphic
automorphisms of B(T) acts transitively, and that, for any F e Aut(B(T)),
Fo¢is a complex geodesic whenever ¢ is a complex geodesie, there is no restrie-
tion in assuming that one, say ¥, of the two points is the center 0 of B(T). Then,

the support containing 0 and « # 0 is unique if, and only if, ﬂiwx e E(T), ie, if

and only if |x(¢)| is independent of ¢ € T In that case the complex geodesic is
expressed — up to a holomorphic automorphism of 4 — by the holomorphic map
L —g—x of 4 into B(T).

le]

We shall denote by G the family of all complex geodesics {+>{u for
ue E(T). .



[5] GEODESICS AND MOEBIUS TRANSFORMATIONS 71

3 - The unit ball of a Hilbert space

Complex geodesics have found several applications in complex analysis, es-
pecially in exploring the structure of the sets of fixed points of holomorphic
maps (see [12] also for a comprehensive report and for bibliographical refe-
rences). In this lecture we shall see how the behavior along complex geodesics
(in particular, the condition that supports are preserved) characterizes special
classes of holomorphic maps. The research is still in a preliminary stage, and the
results established so far concern only special types of homogeneous bounded
domains: namely B(3C) and B(T).

Let F e Hol(B(90), B(3()) and suppose that F maps the support of any com-
plex geodesic into the support of a complex geodesic. Since Aut(B(9C)) acts tran-
sitively on B(3(), there is no restriction in assuming that F(0) = 0.

For any x e B(9(), with x = 0, let K be the intersection of B(9() with the com-

plex line through x. The complex geodesic { > ﬂg—”-x — whose support is the com-

plex dise K — is (up to the action of an element of Aut(4)) the unique complex
geodesic in B(X) whose support contains 0 and z. For the same reason, F(K) is
contained in the intersection of B(9¢) with dF(0)(Cx). This fact implies that the
power series expansion of F(zx) is given by

F(z) =1+ p(x) + p2(x) + ...) dF(0)(x),

where p,: —C is a continuous homogeneous polynomial of degree
n=1,2,...If for any x € B(C), with 2 = 0, the restriction of F to K is a scalar
Moebius transformation, then 1 + p, () £ + po(x) 2 + ... is the power series ex-

pansion of the Moebius transformation {+> —lpﬁ , and F itself is the (vec-
- P

tor valued) Moebius traﬁsformation defined on x e B(3C) by

_ 1
Fx) = T=p@ dF(0)(x).

Since conversely any Moebius transformation maps complex affine lines into
complex affine lines, the following theorem holds [14].

Theorem 1. The map F e Hol(B(3C), B(30)) is a Moebius transformation
i, and only 1f, it maps the support K of any complex geodesic into the support
of a complex geodesic, and its restrinction to K defines o scalar Moebius
transformation.
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If F(0) = 0 and if F(K) is the intersection of B(3C) with a complex line, the
Moebius transformation of K is (conjugated to) a rotation £~ ¢® ¢ for some 0 € R.
Hence ||F(x)| = |lz| for all # € B(3¢), and therefore F' is the restriction to B(9C) of
a linear isometry 9¢— 9C [7]. This kind of argument yields.

Theorem 2. Let F e Hol(B(30), B(3C0). If there is a point x € B()) such
that, for any complex geodesic whose support K contains x, F(K) is the support
of a complex geodesic, and if the restriction of F to K is conjugated to a holo-
morphic automorphism of 4, then F is an isometry for the Carathéodory di-
stance, and viceversa.

4 - The unit ball of the space of continuous functions

In the case of the open unit ball B = B(T'), the set E(T) plays a crucial role in
the description of the semigroup Iso(B(T)) of all elements of Hol(B(T), B(T))
which are isometries for the Carathéodory distance. If A is a continuous linear
operator in C(T), for every ¢ e T there exists a unique regular complex Borel y,
on T such that

(2) Ax(t) = (x, ) = fxd.ut
for all x e C(T). If
(3) AE(T)cE(T),

then |(u, u;)| =1 for all u e E(T), and, as a consequence, ||4|| = |x.]| = 1. One
shows [15] that g, is concentrated on one point. Hence there is «({)e T and a
complex constant «(t), with |«(t)| =1, such that

(4) (2, py) = a(t) 2(7(2))
for every x e C(T).

Example. Here is a proof of this fact in the case in which T is the unit cir-
cle T = {e?"|te[0, 11}. If z;(n) denotes the n-th Fourier coefficient of u,
then |z;(n)| =1 for all teT and all »eZ. By Wiener’s theorem [11]

> |#t({3})|2_ hm Z |#t(n)| =1.

sel0,1 2N+1
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Hence there is a sequence {s;} in [0, 1] such that

]Zlm({sj})lzﬂ-

If the cardinality of the set of points s; on which u; > 1 were > 1, there would
be some integer » > 1 such that

Z e P >1.
J
But, since ||u,]| =1, then
1=l (D= M\ U )| + 2 o D] > 1.
e i

Going back to the general case, it is easily seen that the functions «: 7'~ 84
and =t I'— T are continuous. Then (2) and (4) yield [15].

Theorem 3. If the continuous linear operator A in C(T) satisfies (3),
there is a continuous map v T— T and a function «e E(T) such that

Ax(t) = a(t) x(=(1))

Jorall te T and all x € C(T). Moreover, A is a linear isometry of C(T) if, and
only if, A is injective, and that happens, if and only if © is surjective.

The isometry A is surjective if and only if = is bijective, i.e. = is a homeomor-
phism of T onto 7. Hence Theorem 3 extends a classical result by Banach and
Stone (see [15] also for bibliographical references) to non-surjective linear
isometries of C(T).

The inclusion (8) is a sufficient but not necessary condition for A to be con-
tained in Iso(B(T)), as examples show. On the other hand, (4) establishes a link
between linear isometries of C(T) and linear operators contained in Iso(B(T)):
Theorem 8 implies [15] that, if the continuous linear operator A satisfies (8) and
if = is surjective, then Az, e Iso(B(T)).

5 - Morbius transformations

Let F e Hol(B(T), B(T)). If F(0) =0 and if, for every < E(T) and some
Le N0},

(5) %nmnEw>
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or if
(6) lim + F(tw) < B(T)

then the strong maximum principle, coupled with L. A. Harris’ Schwarz lem-
ma [10], implies that F' is the restriction of dF(0) to B(T). Hence (5) coincides
with (3) where A = dF(0), and Theorem 3 yields the following result which ex-
tends to a class of elements of Iso(B(7T)) H.Cartan’s linearization theorem.

Theorem 4. If F(0) =0, if for every u e E(T), either (5) holds for some
teMN{0}, or (6) is satisfied, and if moreover AF(0) is injective, then
F= dF(O){B(T) e ISO(B(T))

In [16] we dealt with the weaker hypothesis whereby F' maps the support of
any element of G into the support of element of G establishing a theorem similar
to Theorem 1.

Theorem 5. If F(0) =0, if dF(0) is injective and i, for every w e E(T),
there exists a neighborhood V of 0 in A such that:

F(tu) is collinear to some point in E(T) for oll LeV
the restriction of F to Vu is a scalar Moebius transformation,

then there is a complex regular Borel measure o on T, with

(7) el < 1,
such that F(z) = ——— dF(0) for all % e B(T).
1-(z,p)

Viceversa, let R be an injective continuous operator on C(T) with |B| < 1,
such that |Ru(t)| is independent of t e T' for all w € E(T), and let ¢ be a com-
plex, regular Borel measure on T satisfying (7). The Moebius transforma-
tion

F: x> —-L—-Rx

1- (x) P)
defines a holomorphic map of B(T) into C(T). If F(B(T)) c B(T), F satisfies all
the hypotheses of Theorem 5, and in particular maps the support of any element
in G into the support of an element of G.
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