S. GARBIERO and L. VANHECKE (*)

A characterization of locally 3-symmetric spaces (**)

1 - Introduction

Locally 3-symmetric spaces are nice generalizations of locally symmetric spaces and have many remarkable properties. We refer to [2], [3], [6] for the basic results and for a lot of non-symmetric examples. We mention two important aspects of their geometry. They are locally homogeneous spaces and further, they also have an invariant quasi-Kähler structure. From these two properties it follows that such manifolds are equipped with a very special homogeneous structure [10]. For that reason we focus in this note on almost hermitian homogeneous structures and derive a new characterization of locally 3-symmetric spaces. It happens that this criterion is of a more practical use than the theoretical definitions, as has already been shown in [1]. Our main result generalizes at the same time Sato's criterion [8] for nearly Kähler locally 3-symmetric spaces, that is, locally 3-symmetric spaces with a naturally reductive canonical homogeneous structure.

2 - Locally 3-symmetric spaces

We start with some definitions and basic properties. Let (M, g) be a smooth, finite-dimensional, connected riemannian manifold with Levi Civita connection ∇ and riemannian curvature tensor R.

A family of local cubic diffeomorphisms is a differentiable function $p \mapsto s_p$

^(*) Dip. di Matem., Univ. Torino, Via Carlo Alberto 10, 10123 Torino, Italia. Dept. of Math., Katholieke Univ. Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium.

^(**) Received July 20, 1993. AMS classification $53\,\mathrm{C}\,35$. Work supported by GNSAGA of CNR and by MURST of Italy.

which assigns to each $p \in M$ a diffeomorphism s_p on a neighborhood \mathcal{U}_p of p such that $s_p^3 = \text{identity}$ and p is the unique fixed point of s_p .

Definition. A locally 3-symmetric space is a riemannian manifold (M, g) endowed with a family of local cubic diffeomorphisms $p \mapsto s_p$, $p \in M$, such that each s_p is a holomorphic isometry with respect to the canonical almost complex structure J determined by

(1)
$$S_p = (\mathrm{d} s_p)_p = -\frac{1}{2} I_p + \frac{\sqrt{3}}{2} J_p$$

where I_p is the identity endomorphism on the tangent space T_pM at p.

These manifolds are special elements of the broader class of *riemannian lo-cally s-regular manifolds*. We refer to [2] for more information and note that they may be defined by using tensor conditions involving S and its covariant derivatives.

Locally 3-symmetric spaces are quasi-Kähler manifolds with respect to the almost complex structure J. More precisely, (M, g, J) is an almost hermitian manifold such that

(2)
$$(\nabla_X J) Y + (\nabla_{JX} J) JY = 0$$

for all vector fields X, Y on M [3], [6]. Moreover, (M, g, J) is locally homogeneous which means that for all p, $q \in M$ there exists a holomorphic isometry f defined on a neighborhood of p and with f(p) = q. Such spaces may be characterized by using the following criterion of Sekigawa.

Proposition 1 [9]. A connected almost hermitian manifold (M, g, J) is a locally homogeneous almost hermitian manifold if and only if there exists a (1, 2)-tensor field T such that

(3)
$$\overline{\nabla} g = \overline{\nabla} R = \overline{\nabla} T = \overline{\nabla} J = 0$$

where $\bar{\nabla} = \nabla - T$.

We note that the first three conditions in (3) express that T is a homogeneous structure on (M, g) (see [10] for more details). If also $\overline{\nabla} J = 0$, then T is called an almost hermitian homogeneous structure. Further, if in addition

$$(4) T_{JX}Y = T_XJY = -JT_XY$$

then T is said to be a hermitian-homogeneous structure on (M, g, J) and this space is then called a hermitian-homogeneous space [5].

These notions have been used in [7] to prove the following key result which generalizes that for the special case of nearly Kähler spaces in [8].

Proposition 2 [7]. A locally 3-symmetric space is hermitian-homogeneous with respect to its canonical almost hermitian structure. Conversely, any hermitian-homogeneous almost hermitian manifold (M, g, J) is a locally 3-symmetric space with J as canonical almost complex structure.

In the course of the proof of this proposition it is shown that the tensor field \tilde{T} defined by

(5)
$$\widetilde{T}_X Y = \frac{1}{2} J(\nabla_X J) Y$$

for all vector fields X, Y, is a hermitian-homogeneous structure on any locally 3-symmetric space.

Now we come to our main result. Therefore, let (M, g, J) be an almost hermitian manifold. Define a tensor field S of type (1,1) by

(6)
$$S = -\frac{1}{2}I + \frac{\sqrt{3}}{2}J.$$

Then I-S is non-singular, g is S-invariant (that is, g(SX,SY)=g(X,Y)) and $S^3=I$. Next, put

(7)
$$T_X Y = (\nabla_{(I-S)^{-1}X} S)(S^{-1}Y)$$

for all vector fields X, Y. Then we have

Lemma 1. The tensor field T defined by (6) and (7) has the following expression

(8)
$$T_X Y = \frac{1}{2} J(\nabla_X J) Y + \frac{1}{4} JS\{(\nabla_X J) Y + (\nabla_{JX} J) JY\}.$$

Proof. (8) follows at once from (7) by using (6) and

$$S^{-1} = -\frac{1}{2} I - \frac{\sqrt{3}}{2} J \qquad (I - S)^{-1} = \frac{1}{2} I + \frac{\sqrt{3}}{6} J.$$

Then we have

Theorem 1. An almost hermitian manifold (M, g, J) admits the tensor field T given by (7) as an almost hermitian homogeneous structure if and only if (M, g, J) is a locally 3-symmetric space with J as canonical almost complex structure. In this case $T = \overline{T}$.

Proof. First, let (M, g, J) be a locally 3-symmetric space with J as canonical almost complex structure. Then the result follows directly from the information given above. Conversely, let T be given by (7). Then Lemma 1 and

$$(\nabla_{Y}J)JY = -J(\nabla_{Y}J)Y$$

yield, with $\overline{\nabla} = \nabla - T$,

$$(\overline{\nabla}_X J)\,Y = \,-\,\frac{1}{2}\,S\big\{(\nabla_X J)\,Y + (\nabla_{JX} J)\,JY\big\}\,.$$

Hence, $\overline{\nabla}J=0$ if and only if (M,g,J) is a quasi-Kähler manifold. In this case $T=\widetilde{T}$ and moreover, T satisfies (4). So, if T is an almost hermitian homogeneous structure, the result follows at once from Proposition 2.

Remarks.

A. As mentioned in 1, Theorem 1 generalizes Sato's result ([8], p. 141), where it was assumed that (M, g, J) is a nearly Kähler manifold, that is

$$(\nabla_X J) Y + (\nabla_Y J) X = 0$$

for all X, Y. Such a space is necessarily quasi-kählerian. In Sato's case, T is a naturally reductive structure [10], or equivalently, $\overline{\nabla} = \nabla - T$ and ∇ have the same geodesics (they are projectively related).

B. For a quasi-Kähler manifold, (5) determines the connection $\nabla = \nabla - T$ which is precisely the *characteristic connection* of the almost hermitian quasi-Kähler manifold (M, g, J) [4].

We finish this note with the following generalization of [8], Proposition 2(i).

Proposition 3. Let (M, g, J) be an almost hermitian space with almost hermitian homogeneous structure T. Then $T = \tilde{T}$ if and only if

$$(9) T_X J = -JT_X$$

for all vector fields X.

Proof. Put $T = \tilde{T} + Q$. Then a straightforward computation yields

$$(\bar{\nabla}_X J) \, Y = \, - \, Q_X J Y + J Q_X Y = 0$$

which leads to

$$T_XJY + JT_XY = 2JQ_XY$$
.

Hence (9) holds if and only if Q = 0.

References

- [1] E. ABBENA and S. GARBIERO, Almost hermitian homogeneous manifolds and Lie groups, Nihonkai Math. J. 4 (1993), 1-15.
- [2] P. J. Graham and A. J. Ledger, s-regular manifolds, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo 1972.
- [3] A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369.
- [4] A. Gray, M. Barros, A. M. Naveira and L. Vanhecke, The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, J. Reine Angew. Math. 314 (1980), 84-98.
- [5] V. F. Kiričenko, Hermitian-homogeneous almost hermitian manifolds, Soviet Math. Dokl. 30 (1984), 267-271.
- [6] O. KOWALSKI, Generalized symmetric spaces, Lecture Notes in Math. 805, Springer, Berlin 1980.
- [7] A. J. LEDGER and L. VANHECKE, On a theorem of Kiričenko relating to 3-symmetric spaces, Riv. Mat. Univ. Parma 13 (1987), 367-372.
- [8] T. Sato, Riemannian 3-symmetric spaces and homogeneous K-spaces, Mem. Fac. of Tech. Kanazawa Univ. 12 (1979), 137-143.
- [9] K. Sekigawa, Notes on homogeneous almost hermitian manifolds, Hokkaido Math. J. 7 (1978), 206-213.
- [10] F. TRICERRI and L. VANHECKE, Homogeneous structures on riemannian manifolds, London Math. Soc. Lecture Notes 83, Cambridge Univ. Press, Cambridge, England 1983.

Sommario

Gli spazi localmente 3-simmetrici sono caratterizzati mediante le strutture quasi hermitiane omogenee.
