LIN XIN(*)

Essential extensions of a dimension module (**)

1 - Introduction

Let M be a left R-module and d(M) denote the Goldie (uniform) dimension of M (that is, d(M) is the number of components in a longest direct sum of submodules contained in M, and is ∞ if no such direct sum exists). M is called a dimension module if

$$d(A + B) = d(A) + d(B) - d(A \cap B)$$

holds for all submodules A and B of M. In [1], dimension modules have been shown to be modules which have no submodules of the form $X \oplus X/Y$ with Y an essential submodule of X. If M is a dimension module, then there are essential extensions of M which are dimension modules. We call them essential dimension extensions of M.

The present paper exhibits the relationship between the rational extension and the essential dimension extension of a given dimension module. Recall that a module P is called a *rational extension* of a module M, if M is a submodule of P and $\operatorname{Hom}_R(K/M,P)=0$ for every between module $P\supseteq K\supseteq M$, or equivalently, if for any pair $a,b\in P$ and $b\neq 0$, there is an element $r\in R$ such that $ra\in M$ and $rb\neq 0$ ([3], Prop. 19.32).

Using torsion theories, we also characterize τ -torsionfree modules, which are dimension modules, where τ is a torsion theory on R-mod.

Throughout this paper, R is an associative ring with identity and modules are unitary left R-modules. If A, B are modules, then $A \leq B$ means that A is a

^(*) Dept. of Math., Fujian Normal Univ., Fuzhou, Fujian 350007, China.

^(**) Received April 15, 1993. AMS classification 16 D 90. This research was supported by Fujian Science Foundation.

submodule of B and $A extless{$\supseteq$} B$ means that A is an essential submodule of B. E(M) denotes the injective hull of M. The following notations are used frequently. For any $x, y \in M$, $(Ry: x) = \{r \in R \mid rx \in Ry\}$. In particular, $(0: x) = x^{\perp}$.

Lemma 1 ([1], Prop. 1 and Cor. 2). The following conditions are equivalent for a module M:

- 1. M is a dimension module.
- 2. For every partial endomorphism $f: A \to M$ with $A \cap f(A) = 0$, ker f is closed in A.
- 3. M has no submodule of the form $X \oplus X/Y$ with Y a proper essential submodule of X.

2 - Essential extensions of a dimension module

Let M be a dimension module. The injective hull E(M) of M need not be a dimension module. For example, the Z_4 -module $M=2Z_4\oplus 2Z_4$ is a dimension module, but $E(M)=Z_4\oplus Z_4$ is not a dimension module since

$$E(M) \supseteq Z_4 \oplus 2Z_4 \cong Z_4 \oplus Z_4/2Z_4$$
.

Lemma 2. Let P be an essential extension of a given dimension module M. If $d(P) < \infty$, then P is a dimension module, if and only if we have

$$A \cap M + B \cap M \preceq (A + B) \cap M$$

for all submodules A and B of P.

Proof. If M extstyle P then $A \cap M extstyle A$. So $d(A) = d(A \cap M)$. Similarly, $d(B) = d(B \cap M)$ and $d(A \cap B) = d(A \cap B \cap M)$. Assume that we have $A \cap M + B \cap M extstyle (A + B) \cap M$ holds for all A, B of P. Then

$$d(A+B) = d((A+B) \cap M) = d(A \cap M + B \cap M)$$

$$= d(A \cap M) + d(B \cap M) - d(A \cap B \cap M) = d(A) + d(B) - d(A \cap B)$$

and so P is a dimension module.

Conversely, assume that P is a dimension module. Since we have $A \cap M + B \cap M \subseteq (A + B) \cap M$,

$$d(A+B)=d((A+B)\cap M)\geq d(A\cap M+B\cap M)$$

$$= d(A \cap M) + d(B \cap M) - d(A \cap B \cap M) = d(A + B).$$

It follows that $d((A+B)\cap M)=d(A\cap M+B\cap M)$, so we can write $A\cap M+B\cap M \trianglelefteq (A+B)\cap M$.

Lemma 3. Let P be an essential extension of a given dimension module M and $d(P) < \infty$. Then the following conditions are equivalent:

- (1) P is a dimension module.
- (2) For any pair $x, y \in P$ and $0 \neq x + y \in M$, there is an $r \in R$ such that $r(x + y) \neq 0$, and $r(x + y) \in Ry$ or both $rx \in M$ and $ry \in M$ hold.
- (3) For any pair $x, y \in P$ and $0 \neq x + y$, there is an $r \in R$ such that $r(x + y) \neq 0$, and $r(x + y) \in Ry$ or both $rx \in M$ and $ry \in M$ hold.

Proof. It is immediate to prove that $(3) \Rightarrow (2)$.

Now we prove that $(2) \Rightarrow (1)$. By Lemma 2, it suffices to prove that $A \cap M + B \cap M \trianglelefteq (A+B) \cap M$ holds for all A, B of P. If $0 \neq a+b \in M$, where $a \in A$ and $b \in B$, then there exists an $r \in R$ such that $r(a+b) = ra + rb \neq 0$, and $r(a+b) \in Rb$ or both $ra \in M$ and $rb \in M$ hold. Thus $r(a+b) \in Rb$ implies that $r(a+b) \in B \cap M$ or $ra \in M$ implies that $ra \in A \cap M$ and so $rb \in B \cap M$.

Conversely, $(1) \Rightarrow (2)$. For any pair $a, b \in P$ and $0 \neq a + b \in M$, put A = Ra and B = Rb. By the assumption, $A \cap M + B \cap M \trianglelefteq (A + B) \cap M$. Hence there exists $0 \neq r \in R$ such that $0 \neq r(a+b) \in A \cap M + B \cap M$. Then there are $s, t \in R$ such that r(a+b) = sa + tb with $sa \in A \cap M$ and $tb \in B \cap M$. If s(a+b) = 0 then $r(a+b) = sa + tb = -sb + tb \in B \cap M$. If $s(a+b) \neq 0$ then we have $0 \neq s(a+b) = sa + sb \in M$ and so $sb \in N$ since $sa \in M$. Therefore condition (2) is satisfied.

Finally, (2) \Rightarrow (3). For any $0 \neq a+b \in P$, since $M \triangleleft P$, there exists an $r \in R$ such that $0 \neq r(a+b) = ra+rb \in M$. The remainder of the proof follows from (2).

Corollary 1. Let $d(M) < \infty$. Then M is a dimension module, if and only if there exists an essential dimension submodule A of M, such that, for any $x, y \in M$ and $x + y \neq 0$, there is an $r \in R$ such that $r(x + y) \neq 0$, $rx + ry \in Ry$ or both $rx \in A$ and $ry \in A$ hold.

Now, it is worth recalling that every rational extension of M is an essential extension and any two maximal rational extensions of M are isomorphic ([3], Prop. 19.32). Moreover a module M is called $rational\ closed$ in case there is no properly rational extension of M.

Lemma 4. If M is a dimension module and $d(M) < \infty$, then every rational extension P of M is dimension.

Proof. For any pair $x, y \in P$ and $0 \neq x + y \in M$, if $x \in M$, then $y \in M$. So we can assume that $x \notin M$ and $y \notin M$. If $(M:x) \subseteq (x+y)^{\perp}$, then $f: (Rx+M)/M \to P$ defined by $rx + M \mapsto r(x+y)$ is a nonzero R-homomorphism, which is a contradiction. Thus $(M:x) \not\in (x+y)^{\perp}$, and then we have an $r \in (M:x)$ but $r \notin (x+y)^{\perp}$. Therefore $r(x+y) \neq 0$, $rx \in M$ and $ry = r(x+y) - rx \in M$. By Lemma 3, P is an essential dimension extension of M.

Remark. The converse of Lemma 4 is false, since an essential dimension extension of M need not be rational.

For example. Let F be a field and $R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in F \right\}$. Then R is a left and right perfect ring and the Jacobson radical $J(R) = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$. So R is not a V-ring ([4], p. 356), and so there exists a simple R-module M such that $M \neq E(M)$. Clearly E(M) is an essential dimension extension of M and is not a rational extension of M, since every simple module over a left and right perfect ring is rational closed ([5], Prop. 2.10).

Now we are ready to prove the main result of this section.

Theorem 1. Let M be a dimension module and $d(M) < \infty$. Then a module P is a rational extension of M, if and only if the following conditions hold

- (1) P is an essential dimension extension of M
- (2) If $Rx \cap Ry \neq 0$ for $x, y \in P$ and $y \neq 0$, then $(M: x) \not\in y^{\perp}$.

Proof. If P is a rational extension of M, then (1), (2) hold obviously. Conversely, for any pair $x, y \in P$ and $y \neq 0$, by (2), we can assume that $Rx \cap Ry = 0$. If $Ry \cap R(x + y) \neq 0$, then $r_1y = r_2(x + y) \neq 0$ implies that

 $r_2x=(r_1-r_2)y=0$ and so $r_1y=r_2y\neq 0$. Thus we can assume that $Rx\cap Ry=0$ and $Ry\cap R(x+y)=0$. Since P is a dimension module, by Lemma 3 there is an $r\in R$ such that $r(x+y)=rx+ry\neq 0$, $rx\in M$ and $ry\in M$. If $ry\neq 0$, the proof ends. Thus we may assume that ry=0. So

$$Rx \cap R(x + y) = (Rx : x + y)(x + y) = (Rx : y)(x + y) \neq 0$$
.

Let $r \in (Rx : y)$. If r(x + y) = 0, then rx = ry = 0 (note that $Rx \cap Ry = 0$) and so $r \in y^{\perp}$. If $r(x + y) \neq 0$, since $r(x + y) = r_1 x \in Rx$, $(r - r_1)x = -ry$, and so ry = 0. Hence $r \in y^{\perp}$ and $(Rx : y) = y^{\perp}$. Clearly $y^{\perp} \subseteq (Rx : y)$ and so $(Rx : x + y) = (Rx : y) = y^{\perp}$. Hence

$$Rx \cap R(x+y) = y^{\perp}(x+y) = y^{\perp}x \neq 0$$

and $f \colon R(x+y) \to Ry$ defined by $r(x+y) \mapsto ry$ is a nonzero R-homomorphism. From $R(x+y) \cap Ry = 0$ and Lemma 1 it follows that $\ker f = y^\perp(x+y) = y^\perp x$ is closed in R(x+y). On the other hand, for every $0 \neq r(x+y) \in R(x+y)$, by Lemma 3 there is an $r_1 \in R$ such that $0 \neq r_1(rx+ry) \in Rx$ or $r_1rx \in M$ and $r_1ry \in M$. If the latter holds, as above, we may assume that $r_1ry = 0$. Then $0 \neq r_1r(x+y) \in Rx$ and so $R(x+y) \cap Rx = y^\perp x \leq R(x+y)$. Hence $R(x+y) = y^\perp x = \ker f$, whence f = 0, a contradiction. This completes the proof.

3 - Torsion theories and dimension modules

In this section, we freely use terminology and notations of [4]. If M is a module, X(M) is called the (hereditary) torsion theory cogenerated by M. Clearly $X(M) \ge \tau$ for any torsion theory τ , relative to which M is torsionfree.

If τ is a torsion theory, then $E_{\tau}(M)$ denotes the τ -injective hull of M.

There exists a torsion theory τ_G on R-mod defined by the condition that a left R-module M is τ_G -torsionfree, if and only if it is nonsingular. This torsion theory is called the *Goldie torsion theory*.

A module M is called τ -full if M is τ -torsionfree and every essential submodules of M is τ -dense in M. Every τ_G -torsionfree module is τ_G -full.

From [1] Prop. 5, τ_G -torsionfree **Z**-modules are dimension **Z**-modules. More generally, we have the following

Theorem 2. If τ is a (hereditary) torsion theory, then every τ -torsionfree module is a dimension module, if and only if every τ -torsionfree module is τ -full.

Proof. Assume that M is τ -torsionfree. If an essential submodule N of M is not τ -dense in M, then there is a τ -pure submodule T of M such that $M \supset T \supseteq N$. So $M \oplus M/T$ is τ -torsionfree, and then is dimension, a contradiction.

Conversely, assume that a τ -torsionfree module M is not dimension, then M has a submodule of the form $X \oplus X/Y$ for some $Y \lhd X$ with $Y \neq X$. Since X is τ -full, Y is τ -dense in X, a contradiction.

By [4], Cor. 15.7, we have

Corollary 2. If every τ -torsionfree module is dimension, then every τ -torsionfree module is τ -dense in its injective hull.

We recall that τ is called *faithful* if R is τ -torsionfree.

Corollary 3. If τ is faithful, then every τ -torsionfree module is a dimension module, if and only if $\tau = \tau_G = X(R)$.

Proof. By ([4], Prop. 15.5), the lattice of all τ -pure left ideals of R is complemented. Let M be a nonzero left R-module and let g be an R-homomorphism from E(M)/M into E, where E is a member of τ . If $x+M\in E(M)/M$ but $x+M\notin \ker g$, then $(M:x)\lhd R$, $(M:x)\not=R$ and so (M:x) is τ -dense in R. Thus $R(x+M)\cong R/(M:x)$ is τ -torsion, this contradicts the fact that $g|_{R(x+M)}:R(x+M)\to E$ is nonzero. Now by [4] Prop. 10.14, $\tau_G\leq \tau\leq X(R)$, and so τ_G is faithful by [4], example (5.15), $\tau_G=\tau=X(R)$.

Conversely, since every τ -torsionfree module is nonsingular, by [1] Prop. 4, every τ -torsionfree module is dimension.

A left ideal I of R is called τ -critical if R/I is τ -cocritical (i.e. R/I is τ -torsion-free and every proper homomorphic image of R/I is τ -torsion).

Theorem 3. Let R be a commutative ring. If any ascending chain of essential τ -pure ideals of R terminates after finitely many steps, then the following conditions are equivalent:

- (1) $\tau \geq \tau_G$.
- (2) Every τ -torsionfree module is dimension and there is no essential τ -critical ideal of R.

Proof. As a consequence of [1], Prop. 4 we remark that $(1) \Rightarrow (2)$.

Now we prove that $(2)\Rightarrow (1).$ If $\tau \not\geq \tau_G$, then there is a τ -torsionfree module M which is not τ_G -torsionfree. Hence we have a $0 \not= x \in M$ such that $x^\perp \lhd R$, and then $R/x^\perp \cong Rx$ implies x^\perp is an essential τ -pure ideal of R. If x^\perp is not a prime ideal of R then there are $r_1, r_2 \in R - x^\perp$ such that $r_1 r_2 \in x^\perp$. So $x^\perp \in (r_1 x)^\perp$, but $x^\perp \not= (r_1 x)^\perp$. Now $R/(r_1 x)^\perp = R(r_1 x) \subseteq Rx$ implies that $(r_1 x)^\perp$ is also an essential τ -pure ideal of R. Assume that we have the proper inclusions

$$x^{\perp} \in (r_1 x)^{\perp} \in (r_2 r_1 x)^{\perp} \in \ldots \in (r_n r_{n-1} \ldots r_1 x)^{\perp}$$
.

If $(r_n r_{n+1} \dots r_1 x)^{\perp}$ is not prime of R, as above, we have an essential τ -pure ideal $(r_{n+1} r_n \dots r_1 x)^{\perp}$ of R. So by assumption, there is an integer n such that $(r_n r_{n-1} \dots r_1 x)^{\perp}$ is prime of R. Write $y = r_n r_{n-1} \dots r_1 x$. Assume that N is a ideal of R with $y^{\perp} \in N \in R$. If N/y^{\perp} is τ -dense in R/y^{\perp} , the proof ends. If N/y^{\perp} is not τ -dense in R/y^{\perp} , we can assume that N/y^{\perp} is τ -pure of R/y^{\perp} . Then N/y^{\perp} is an essential ideal of R/y^{\perp} , since y^{\perp} is a prime ideal of R. Now $R/y^{\perp} \oplus (R/y^{\perp})/(N/y^{\perp})$ is dimension by assumption, a contradiction. Hence y^{\perp} is an essential τ -critical ideal of R, which is a contradiction.

Let M be a dimension module. Then there are essential dimension extensions of M ([1], Th. 8). We do not know if two maximal essential dimension extensions of a given dimension module M are isomorphic. However we have

Theorem 4. Let N be a dimension module and $d(N) < \infty$. If M is a maximal essential dimension extension of N in E(N) and all maximal essential dimension extensions of N are isomorphic, then M/N is X(N)-torsionfree, if and only if $N = E_{X(N)}(N)$, where X(N) denotes the torsion theory cogenerated by N and $E_{X(N)}(N)$ denotes the X(N)-injective hull of N.

Proof. If $N = E_{X(N)}(N)$, then E(N)/N is X(N)-torsionfree (see [4], p. 84), and so M/N is X(N)-torsionfree.

Conversely, let M/N be X(N)-torsionfree. $E_{X(N)}(N)$ is a maximal rational extension of N by [5], Prop. 1.4, and so is an essential dimension extension of N. If G is a maximal essential dimension extension of N containing $E_{X(N)}(N)$, then $G \cong M$ and so there is a maximal rational extension of N in M. But by [3], Prop. 19.32, $E_{X(N)}(N)$ is a unique maximal rational extension of N in E(N). Hence $E_{X(N)}(N) \subseteq M$. Now from [4] (Prop. 9.9 and Prop. 9.6), we have $N = E_{X(N)}(N) \cap M = E_{X(N)}(N)$.

References

[8]

- [1] V. Camillo and J. M. Zelmanowitz, *Dimension modules*, Pacific J. Math. 91 (1980), 249-261.
- [2] C. Faith, Algebra 1, Rings, modules and categories, Springer, Berlin 1981.
- [3] C. Faith, Algebra 2, Ring theory, Springer, Berlin 1976.
- [4] J. S. Golan, Torsion theories, Wiley, New York 1986.
- [5] H. STORRER, Rational extensions of modules, Pacific J. Math. 38 (1971), 785-794.

Summary

The present paper exhibits the relationship between the rational extension and the essential dimension extension of a given dimension module. Using torsion theories, we also characterize τ -torsionfree modules which are dimension modules.

* * *