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LiNn XIN (%)

Essential extensions of a dimension module (*%)

1 - Introduction

Let M be a left R-module and d(M) denote the Goldie (uniform) dimension
of M (that is, d(M) is the number of components in a longest direct sum of sub-
modules contained in M, and is o« if no such direct sum exists). M is called a di-
mension module if

d(A + B) = d(A) + d(B) - d(AN B)

holds for all submodules A and B of M. In [1], dimension modules have been
shown to be modules which have no submodules of the form X @ X/Y with Y an
essential submodule of X. If M is a dimension module, then there are essential
extensions of M which are dimension modules. We call them essential dimen-
ston extensions of M.

The present paper exhibits the relationship between the rational extension
and the essential dimension extension of a given dimension module. Recall that
a module P is called a rational extension of a module M, if M is a submodule
of P and Homg(K/M, P) =0 for every between module P> K2 M, or equi-
valently, if for any pair a, b € P and b # 0, there is an element r € R such that
ra e M and rb # 0 (3], Prop. 19.32).

Using torsion theories, we also characterize t-torsionfree modules, which
are dimension modules, where 7 is a torsion theory on R-mod.

Throughout this paper, R is an associative ring with identity and modules
are unitary left E-modules. If A, B are modules, then A < B means that A is a
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submodule of B and A =B means that A is an essential submodule of B. E(M)
denotes the injective hull of M. The following notations are used frequently.
For any z,yeM, (Ry:x)={reR|reeRy}. In particular, (0:2)=2"%

Lemma 1 ([1], Prop. 1 and Cor. 2). The following conditions are equiva-
lent for a module M:

1. M is a dimension module.

2. For every partial endomorphism f: A — M with A Nf(A) =0, ker f is
closed in A. ’ ‘

3. M has no submodule of the form X ® X/Y with Y a proper essential sub-
module of X.

2 - Essential extensions of a dimension module

Let M be a dimension module. The injective hull E(M) of M need not be a
dimension module. For example, the Z,-module M =27, 27, is a dimension
module, but B(M) =2,® Z, is not a dimension module since

EM)2Z,®2Z,=2,P Z,/2Z,.

Lemma 2. Let P be an essential extension of o given dimension module
M. If d(P) < o, then P is o dimension module, if and only if we have

ANM+BNM=2A+B)NM

Jor all submodules A and B of P.

Proof. If M=P then ANM=A. So d4)=dANM). Similarly,
dBYy=d(BNM) and dANB)=d(ANBNM). Assume that we have
ANM+BNM=(A+B)NM holds for all A, B of P. Then

dA+B)=d(A+B)NM)=dlANM+BNM)
=dANM)+dBNM) —dANBNM)=dA) + dB) —dANB)

and so P is a dimension module.
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Conversely, assume that P is a dimension module. Since we have
ANM+BNMcA+B)NM,

dA+B)=d(A+B)NM)=2d(ANM+BNM)
=dANM)Y+dBNM)—dANBNM)=dA+ B).

It follows that d((A+BYNM)=dANM+BNM), so we can write
ANM+BNMSA+B)NM.

Lemma 3. Let P be an essential extension of a given dimension module
M and d(P) < «. Then the following conditions are equivalent:

(1) P is a dimension module.

(2) For any pair x,ye P and 0 #x +ye M, there is an re R such that
rx+y)=0, and r(x +y)e Ry or both vee M and rye M hold.

8) For any pair x,yeP and 0=x+ 1y, there is an re R such that
rax+y)=0, and r(x +y)e Ry or both ree M and rye M hold.

Proof. It is immediate to prove that (3)=(2).

Now we prove that (2)=(1). By Lemma 2, it suffices to prove that
ANM+BNM=(A+B)NMholds for all A, Bof P. If 0 # a + b e M, where
aecA and be B, then there exists an re R such that r(a +b) =ra + b = 0,
and r(a+b)eRb or both raeM and rbeM hold. Thus r(a+b)e Rb
implies that r(e+b6)e BNM or rae M implies that rae ANM and so
rbe BN M.

Conversely, (1)=(2). For any pair a,be P and 02 a+ beM, put A=Ra
and B = Rb. By the assumption, ANM + BN M =2(A + B) N M. Hence there
exists 0 #re R such that 0=r(a+b)eANM+BNM. Then there are s, teR
such that r(a + b) =sa + tb with sac ANM and the BNM. If s(a +5) =0
then r(a+b)=sa+th=—sb+the BNM. If s(a+b)=0 then we have
0 = s(a + b) = sa + sb e M and so sb € N since sa € M. Therefore condition (2) is
satisfied.

Finally, (2)=(3). For any 0 # a + b e P, since M <P, there exists an re R
such that 0= r(a +b)=ra +rbe M. The remainder of the proof follows
from (2).

Corollary 1. Let d(M) < . Then M is a dimension module, if and
only if there ewists an essential dimension submodule A of M, such thai,
for any x,yeM and x+y #0, there is an re R such that r(x +y) =0,
rx + ry e Ry or both ree A and ry e A hold.
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Now, it is worth recalling that every rational extension of M is an essential
extension and any two maximal rational extensions of M are isomorphic ([3],
Prop. 19.32). Moreover a module M is called rational closed in case there is no
properly rational extension of M.

Lemma 4. If M is a dimension module and d(M) < o, then every ratio-
nal extension P of M is dimension.

Proof. Foranypairx,ye Pand0=x +yeM,ifxeM,theny e M. Sowe
can assume that x ¢ M and y ¢ M. If (M : ©) ¢ (x + ¥)*, then f: (Rx + M)/M — P
defined by r& + M > r(x + ) is a nonzero B-homomorphism, which is a contradic-
tion. Thus (M : z) ¢ (x + y)*, and then we have an re (M : x) but r & (x + y)*.
Therefore r(x + y) = 0,7 e M and ry = r(x + y) — rv € M. By Lemma 3, Pis an
essential dimension extension of M.

Remark. The converse of Lemma 4 is false, since an essential dimension
extension of M need not be rational.

For example. Let F be a field and R = {(g Z)|a, be F} Then R is a left
and right perfect ring and the Jacobson radical J(R) = (g lg) So R is not
a V-ring ([4], p. 356), and so there exists a simple R-module M such that
M = E(M). Clearly E(M) is an essential dimension extension of M and is not a
rational extension of M, since every simple module over a left and right perfect
ring is rational closed ([5], Prop. 2.10).

Now we are ready to prove the main result of this section.

Theorem 1. Let M be a dimension module and d(M) < ». Then a mo-
dule P is a rational extension of M, if and only if the following conditions
hold

(1) P is an essential dimension extension of M
@ If Re "Ry =0 for x,ye P and y # 0, then (M:z)¢ y*.

Proof. If P is a rational extension of M, then (1), (2) hold obviously.
Conversely, for any pair ¢, ye P and y # 0, by (2), we can assume that
ReNRy=0. If RyNRx+y)=0, then ny=mr(r+y)=0 implies that
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o =(r;—72)y=0 and so ry =1y #0. Thus we can assume that RxNRy=0
and By N R(x + y) = 0. Since P is a dimension module, by Lemma 3 there is an
reR such that r(x +y)=rx +ry # 0, re e M and ry e M. If ry # 0, the proof
ends. Thus we may assume that ry = 0. So

RxNRax+y)=Re:x+yle+y)=WRe:y)le+y)=0.

Let re (Rx: y). If »(x + y) =0, then rx = ry = 0 (note that Re N Ry = 0) and
so reyt If r(x +y) # 0, since r(x + y) =rx e Re, (r—r)e = —1ry, and so
ry=0. Hence rey* and (Rx:y)=y*. Clearly y'c(Rz:y) and so
(Rz: ¢ + y) = (Rx: y) = y. Hence

RxNRx+y) =y a+y)=ytx=0

and f: R(x + y) — Ry defined by r(x + y)— 1y is a nonzero R-homomorphism.
From R(x + ) N Ry =0 and Lemma 1 it follows that ker f=y*(x + y) = y*x
is closed in R(x + 7). On the other hand, for every 0 = r(x + y) e B(x + y),
by Lemma 8 there is an 7, e R such that 0 #r (re +ry)e Bx or mreeM
and 7,1y e M. If the latter holds, as above, we may assume that r,ry =0.
Then 0=mr(x+y)eRxr and so Rx+y)NRx=y'c<R(x+y). Hence
R(x +y)=y'x =ker f, whence f=0, a contradiction. This completes the
proof.

3 - Torsion theories and dimension modules

In this section, we freely use terminology and notations of [4]. If M is a mo-
dule, X(M) is called the (hereditary) torsion theory cogenerated by M. Clearly
X(M) = = for any torsion theory v, relative to which M is torsionfree.

If = is a torsion theory, then E_(M) denotes the t-injective hull of M.

There exists a torsion theory 74 on R-mod defined by the condition that a
left R-module M is 7g-torsionfree, if and only if it is nonsingular. This torsion
theory is called the Goldie torsion theory.

A module M is called «-full if M is v-torsionfree and every essential submo-
dules of M is z-dense in M. Every tq-torsionfree module is zg-full.

From [1] Prop. 5, v¢-torsionfree Z-modules are dimension Z-modules. More
generally, we have the following

Theorem 2. If v is a (hereditary) torsion theory, then every t-torsionfree
module is a dimension module, if and only if every t-torsionfree module is

wfull.
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Proof. Assume that M is t-torsionfree. If an essential submodule N of
M is not r-dense in M, then there is a 7-pure submodule T of M such that
M>T2N. So M® M/T is =-torsionfree, and then is dimension, a contradic-
tion.

Conversely, assume that a r-torsionfree module M is not dimension, then M
has a submodule of the form X @ X/Y for some Y <1X with ¥ = X. Since X is
z-full, Y is +-dense in X, a contradiction.

By [4], Cor. 15.7, we have

Corollary 2. If every v-torsionfree module is dimension, then every v-tor-
sionfree module is t-dense in ils injective hull.

We recall that « is called fuithful if R is ~-torsionfree.

Corollary 3. If « is fuithful, then every t-torsionfree module is a dimen-
ston module, if and only if v =15 =X(R).

Proof. By ([4], Prop. 15.5), the lattice of all =-pure left ideals of R is com-
plemented. Let M be a nonzero left R-module and let g be an B-homomorphism
from E(M)/M into E, where E is a member of 7. If x + M e E(M)/M but
x+ Mé¢kerg, then (M: x)<<R,(M: x) # R and so (M : %) is 7-dense in R. Thus
Rlx+M)=R/(M: x) is v-torsion, this contradicts the fact that g|pesan:
R(x + M) — E is nonzero. Now by [4] Prop. 10.14, 7¢ < 7 < X(R), and so 74 is
faithful by [4], example (5.15), v¢ = v = X(R).

Conversely, since every t-torsionfree module is nonsingular, by [1] Prop. 4,
every t-torsionfree module is dimension.

A left ideal I of R is called r-critical if R/I is z-cocritical (i.e. B/I is v-torsion-
free and every proper homomorphic image of R/I is t-torsion).

Theorem 3. Let R be a commutative ring. If any ascending chain of es-
sential T-pure ideals of R terminates after finitely many steps, then the follo-
wing conditions are equivalent:

(1) T=2T G-
(2) Bvery «-torsionfree module is dimension and there is mo essential
z-critical ideal of R.
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Proof. As a consequence of [1], Prop. 4 we remark that (1)=(2).

Now we prove that (2)= (1).If = # 74, then there is a z-torsionfree module
M which is not 7g-torsionfree. Hence we have a 0 # x e M such that 2t <R,
and then R/x'= Rz implies ' is an essential ~-pure ideal of R. If x* is not a
prime ideal of R then there are 7,7 eR —x! such that rrmext. So
ztc(r ), but ot = (rx)t. Now R/(r 2)" = R(r x) ¢ Rx implies that (r;x)*is
also an essential v-pure ideal of R. Assume that we have the proper inclu-
sions

zle(ra)ytcimma)tc. .. c(@,ry—1... " L)".

If (7% 4 1... 7 %) is not prime of R, as above, we have an essential z-pure ideal
(g 417n-..12)" of B. So by assumption, there is an integer » such that
(T ¥y _1... 71 2)*is prime of R. Write y = 7,7, _ ... 7 ©. Assume that N is a ideal
of R with y*cNcR. If N/y* is r-dense in R/y*, the proof ends. If N/y*
is not =-dense in R/y*, we can assume that N/y* is z-pure of RB/y*. Then
N/y* is an essential ideal of R/y*, since y* is a prime ideal of R.
Now R/y*®(R/y*)/(N/y*) is dimension by assumption, a contradiction.
Hence y* is an essential t-critical ideal of R, which is a contradiction.

Let M be a dimension module. Then there are essential dimension exten-
sions of M ([1], Th. 8). We do not know if two maximal essential dimension ex-
tensions of a given dimension module M are isomorphic. However we have

Theorem 4. Let N be a dimension module and d(N) < . If M is a maxi-
mal essential dimension extension of N in E(N) and all maximal essential di-
mension extensions of N are isomorphic, then M/N is X(N)-torsionfree, if and
only if N = Exy(N), where X(N) denotes the torsion theory cogenerated by N
and Exyy(N) denotes the X(N)-injective hull of N.

Proof. If N = Eyu,(N), then E(N)/N is X(N)-torsionfree (see [4], p. 84),
and so M/N is X(N)-torsionfree.

Conversely, let M/N be X(N)-torsionfree. Ex,(N) is a maximal rational
extension of N by [5], Prop. 1.4, and so is an essential dimension extension of N.
If G is a maximal essential dimension extension of N containing Ex., (N), then
G = M and so there is a maximal rational extension of N in M. But by [3],
Prop. 19.32, Exx,(N) is a unique maximal rational extension of N in E(N).
Hence Exu(N)cM. Now from [4] (Prop. 9.9 and Prop. 9.6), we have
N = Expny(N) N M = Exuy (N).
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Summary

The present paper exhibits the relationship between the rational extension and the es-
sential dimension extension of a given dimension module. Using torsion theories, we
also characterize =-torsionfree modules which are dimension modules.



