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Regular extension theorems for quaternionic functions (**)

Introduction

In this paper we develop some ideas contained in [1] and [2], in order to give
trace theorems for quaternion regular functions. The theory of the regular func-
tions of quaternion variable was founded and developed by R. Fueter in the
decade following 1935, whereas the first mathematician who studied regular
functions of several quaternion variables and established the first integral for-
mulas was G. B. Rizza (cf. [8]). Recently this theory has been considerably
extended; see, for instance, [3]-[6] and [9].

The problem, that we study in the present paper, is the following: consider a
bounded connected open subset U of H", with boundary of class C!, such that

— U is connected and let f: 8U — H be a continuous function. We want to
determine some necessary and sufficient conditions on f, so that it may exist a
function F continuous on H" — U, regular on H" — U , which extends f. In Sec-
tion 2 we solve this problem in the case n = 1, whereas in Section 3 we study
the ease n > 1, which differs, by Hartogs phenomenon, from the previous case.
At last we give similar theorems also for complex holomorphic functions.

1 - Preliminaries

Let us denote by H the algebra of quaternions and by to=1, i,=1, i9=1, i3=k
its standard basis; hence if ¢ € H we can write ¢ = Z,\ x, 1, , where wk e R. Let us

consider now the space H”. If ¢ = (¢4, ..., q,) eH” where ¢, = ZA M, , we
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denote by ¢q and |q|, respectively, the conjugate and the euclidean norm of q.
In this paper H” will be identified with C* by the map ¢, : C** — H", defined
by

— 1 .y (1 .
b (D, 280, 2™, 2 = (Y + 5V, L 2 ).

Consider now an open subset A ¢ H* and a function F: A — H of class C.
We say that F' is left-regular (or simply regular) if

3
QE—=ZAi oF =0 in A, for h=1, ...,n.

oq, ° "GP

If the domain A of the regular function F' is H", we will say, in analogy with
the complex case, that the function F is H-entire. We recall that every regular
function is harmonic. The Bochner-Mavrtinelli kernel for regular functions is

2n - 1) 2

Q. ()= ElliGi(q —q) 0N NG A ANDGNG N NG,

27t2n

q;
|4n ’

for q, qo e H", q # q,, where G(q) = and Dg;, 6, are the H-valued forms
defined in [4]. lg
If F is a regular funetion on an open subset A ¢ H” and U is a bounded open

set with C'-boundary such that U cA, we have, for every gye U (cef. [4])

oy F(go) = [ Qq () Fq).
U

If n=1, this formula reduces to the classical Cauchy-Fueter formula

(ef. [9D)

@ Flgo) = = [ G(q — 90) DgF(q)
2nc U

where G is the regular function on H — {0} defined by G(q) =

lg|*”
If we denote by Q and K the Bochner-Martinelli kernels in H" and C?® re-
spectively, we have

@ gl =(~1)"[K + jO]

where ¢ = @, (z) is a complex (4n — 1)-form, d-exact in c? — {zo}, for every
% € CZn .
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We conclude this introduective section with some notations. If m is a non-
negative integer, we set

om = {v = (my, mg, mg)|my, Mg, mgeN, my + mg+mg=m}.

It is clear that the cardinality of ¢,, is —%(m+1)(m+2). If v = (my, mq, my)ea,,
G
™ dx3™2 Qg
call that G, and P, are regular functions for all v.

we define G, = and the basic polynomial P,(q) as in [9]. We re-

2 - Regular extension on unbounded domains of H
Let U be a bounded connected open subset of H, with C'-boundary, such

that H— U is connected. Moreover suppose that the origin Oe U and let
f: U — H be a continuous function. We define

Fr@)= -1 [ Gg-9Dgflg) for teH—-T
27 o

L [ Gg-5Dgflg) for ceU.
27°aU

F=©&)=

F* and F~ are regular functions, because G is regular.
Suppose that there exists a continuous function F: H— U—H such
that

oF

— =0 inH-U Flog=f.
9q

@

If meN and v = (m,;, my, mg) € 5,,, We set

a,= | G,(q)Dq f(q).
U

Since U is bounded, there exists R > 0 such that U c {|q| < R}. Then, if r = R,
we have

a,= [ G,(q)DgF(q)

lgl =7
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because G,(q) DqF(q) is a d-closed 3-form (cf. [4], p. 48). In [6] we established
the following inequality for G,

125 (20e)™v!

(5) |G, ()] < o g where v! = m!my!mg!.
Then
o< I 16.@IIF@)] < (B L@
qgl=r lq] =7
Thus we get
+1 +2
Sl 1B e D Ke
veom M lgl =
and then

Er—y a, 206
Iim 7/ 2 la.] for every r= R.
m-—> + VE Ty V' T

|a,|

Thus we obtain

(6) im Y > =90.

N> + o vEay V!
Conversely suppose that (6) holds true. If ¢e U and |£] < 1nf |g|, from
Proposition 10 of [9], we have

F )= -1 [ Glg— ) Dg f(9)
27° o

+ oo

+ oo

=15, 3 PO [6WwDifo=-13, 3 P®a,.
2 0 vEGTy, sU 2 0 veay

Since |P,(8)] < IE— for every v e o, from (6) we deduce that the radius of

+ o
convergence of the series ., > P,(£)a,is + o, that is this series converges
0

for all £e H. Thus F~ can be regularly extended to H. From Lemms 8
of [4], also F'* can be continuously extended on H — U, and on 8U we have
F* — F~ =f. Therefore the function F = F* — F~ is a solution of the pro-
blem (4).
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Thus we have proved

Theorem 1. Let U be o bounded connected open subset of H, with
boundary of class C*, such that H — U is connected. Suppose O € U, and let
f: 8U — H be a continuous function. Then there exists a continuous function
F: H—-U-H, regular on H — U, which extends f if and only if

1im+ "\L/ 2 I(f;l =0 where a,= [ G,(q)Dq f(q) for every v.
m - 0 vEay y!l sl

We remark that, if the solution of problem (4) exists, it is unique. In fact, if
F: H—~ U — H is a continuous function, regular on H — U , which is zero on 3U,
we can continuously extend F' to a function v defined on all H, setting v equal to
zero in U. The function v (and hence also F') is necessarily identically zero, by
the principle of identity. In faet » is regular on H from Proposition 12
of [6].

By the same methods, it is possible to prove analogs of Theorem 1 for holo-
morphic functions of one complex variable (cf. [1]). More precisely, we can show
the following

Theorem 2. Let U be a bounded open subset of C, whose boundary is a
Jordan curve of class C. Suppose O € U, and let f: U — C be a continuous
Sfunction. Then there exists a continuous function F: C — U — C, holomorphic
on C— U, which extends f, if and only if

kliIE \k/lbk| =0 where b, = [ gi)l d¢ for every ke N.
G+ ol

Taking into account Theorem 9 of [4], Theorem 1 and Proposition 12 of [6],
we can deduce the following

Theorem 3. Let UcH and f: U — H be as in the statement of Theo-
rem 1. Then [ can be extended to o H-entire function if and only if

[P(q)Dqf(g)=0 Yeo,, YmeN and lirr+1 "{/2 i‘j,#lco
U m-—> + @ VEG, H

where a,= [ G,(q)Dq f(q) for every v.
oU
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3 - Entire extension of functions of several variables

In this section we will try to extend, to functions of several variables, the
methods and the results of the previous section. Hence consider a bounded
connected open subset U of H™ (n > 1), with boundary of class C', such that
H" — U is connected. Moreover suppose that the origh Oe U.Iff: U —->His a
continuous function, we can define, as in the previous section

FrE)= (fIQg(q)f(q) for te H" ~ U
E

F~(#) =G£Qf(q)f(q) for e U.

Since n > 1, the functions #* and F~ are, in general, not regular, but only
harmonic. The conditions which ensure the regularity of F* and F ~, are the so
called weak integral conditions of Cauchy-Riemann-Fueter (cf. [4], p. 64).
These conditions are necessary in order to have any regular extension of f and
can be expressed in the following form (cf. [4])

aQQO
¢)) f _-Of=0 V=1, .., n, Vg, ¢ 3U .
aUu aqh

Then, if f verifies (7), F* and F~ are regular functions on H” — U and U re-
spectively, and then, by Hartogs phenomenon (cf. [4]), F* can be extended to a
H-entire function. It is easy to see that we have Elim F*(£)=0 (cf. [4], p. 64),

and then, by Liouville theorem, F'* must vanish identically on H"”. From Lem-
ma 3 of [4], FF~ can be continuously extended on U, and, on dU, we get
—-F =1

We will try now some conditions, which ensure the extensibility of F~ to a
H-entire function; in this case — F~ will be a solution of the problem

®) OF _ o in H", for h=1,...,n Floy=Ff

a(jh

which is, by Hartogs phenomenon, the generalization to n > 1 variables of the
problem (4). We remark that the solution of (8), if it exists, is necessarily
unique.

We fix now some notations.
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If a=(af, 2P, 2P, all, .., a”, .., af”) e N is a multi-index we set
3!
- 3 _ 0 = o
a!—) (])-—[ 30‘(7\)! ]oc| -, 02 30‘21 D= e (e
L =0, ..., =0, ..., 1Yo 3
h=1,...,n h=1,..,n axO axgn

3
Moreover if £= (&, ..., &,) e H*, with £, = 20:;‘ P, P e R, we define the

r

real number £* setting

)
rr= ] Egh)@z‘
2=0,...,8
h=1,..,n

]

;
lq|*

Since the function G'(q) = is harmonic in H” — {0}, there exists ¢ > 0

such that if |£| <& and ¢ e U we have

Gig-&= 2 (=D B—ag,(—q)f“

aeN“m
(cf. [7], p. 199). Then, if |£] <&, we have

— !
_(E_Tf____ll. 2 (_1)Ialca§a

2n_2n we NiT

F-(&)=

where ¢, = —l'— [ 2:D*GH@)6; A\ ... ADg; \ ... N6, f(q) VaeN*".
degy 1

+

Sinee 2 [(=Dlle e < 2,0 2 leDlE™  if
aEN-in 0 laLI = M
) lim = > |e]|=0
m—> + o la| =m

the series >, (—1)!#l¢, £* converges for all £ H*, and then F~ can be ex-
2 e N41l
tended to H" as real analytic function. Since this function is regular for [£| <,

it is regular for all £ e H". Then, if (9) holds true, the problem (8) has a (unique)
solution.

Conversely, let us prove that, if (8) has a solution, (9) necessarily holds.
First of all we need of a generalization of (5).
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Proposition 1. If a e N*", we have

(4n+ 1)1 (dn(dn+1)e)l* a!
e4n !q|]a[+4n—1

YgeH"—- {0}, Vi=1, .., n

|D=G* ()] <

Proof. Let a=(a§", ..., a{”)e N**. Since G' and its derivatives are har-
monic functions, we have (cf. [7], p. 197), if ¢ =0,

[¢3)
. (4n)*" e =~ 1D o
ID*G* ()| < ) "— - max_ |[DOA-aDGIE)|
lq] 2 li—q| < lql
rEs el S
« “ (1) 29 (€3] (1)
(dm)e+ o gu? P =2, (D (1 o
< L max D0 s Gl g
|QI 2D g (D e 2l
s DA S
- - (dn)l=l gl=l =4 41 . Gice (dn(dn +1)e)l=l ! (4 4 1)1
= | , l ( )’ 4n je| +4n~1 n ) :
ql 3! |5— '<—————47’qu € ]ql
(m) s

Now suppose that F is a solution of (8). Since the form Q.(q) F(q) is d-closed
in H" — {&} (cf. [4], p. 44), if £ U and » > max |g|, from Stokes theorem, we
. ge
obtain

(10) agﬁs(q)f(qb [ QAq)F(g).

lgl =7

If we derive (10) with respect to £ and we set £=0, for any « e N*" we
obtain

fiD G O A... ADGN ... No, f(@= [ ZD GU@) 61N ... ADgG;A ... \6,F(q)

U fgl=r

that is  c,= -+ [ ;D G @O A ... ADGA ... N0, F(q) VaeN™.
“lel=r 1

aly

From this equality and from Proposition 1, for any « € N** we get

el <L 1 3¢ @I IR

al jg1=s
(11) An—1
<I n(4zzn+4i31 [ IFG )l](4n(4n + e Jie

e'r fq] =7
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and hence

m mn 4dn(dn + 1
m/!lz le,| < VK \/(m+1)4"—%—(——71;—;———)-‘i VmeN

where K is the expression in square brackets in (11).
We deduce that

4dn(dn + 1e

T ol S o] <

m—> + = I,[.—:m

Since r is an arbitrary number greater than max |gl, we obtain (9).
qge
Thus we have proved

Theorem 4. Let U be a bounded connected open subset of H" (n > 1),
with boundary of class C*, such that H" — U is connected. Suppose O € U, and
let f: U — H be a continuous function. Then f can be extended to a H-entire
Junction, if and only if it satisfies the weak integral conditions of Cauchy-Rie-

mann-Fueter and lim m/ > el =0, where
m— + o la] =m

(DGO N ... ADG N ... N0, f(q) VaeN".

»—AM§

1
Cx = *T f
229154

Remark. If 83U and f are of class C*, the weak integral conditions of
Cauchy-Riemann-Fueter in the statement of Theorem 4 can be substituted by
the condition of admissibility (see [6] for the definition). This last condition, for a
function of class C®, is equivalent to the trace differential condition we intro-
duced in [5].

By the same methods, we can prove analogs of Theorem 4 for complex holo-
morphic functions. The statement of this theorem becomes

Theorem 5. Let U be a bounded cgnnected open subset of C™ (n > 1), with
boundary of class C*, such that C* — U is connected. Suppose O e U, and let
f: dU — C be a C-function. Then f can be extended to an entire function, if and
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only if f is a CR-function and lini m/l Z |d,| =0, where

——f; Ciab: H (2) f(®) dey A... Ndz,Adz A .. NAZA...NdZ, VaeN”

%
lz‘Zn :

and Hi(z) = (=1)71
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Sommario

Si dimostrano aleuni risultati relativi alle tracce delle funzioni quaternionali, rego-
lari nel senso di Fueter, ed alle tracce delle funzioni complesse olomorfe.
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