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NicHoLAS DARAS (%)

Two counter-examples for the Okada theorem in C" (**)

1 - Statement of the problem

Let Q be an open subset of C" (0 Q). Let
N@) = (o,:(2) N(2)=(c () ...N,(2)=(c\i(2)

be (n + 1) infinite triangular matrices of complex-valued functions, defined in
C", satisfying

+ + +

lim o (0)=1 and lim > e (0) ... > ol (0)=1.
M-t o h Mpy =+ 0, My~ =0 k=0 "
Here and in the sequel z = (24, ..., 2,) and the indices m, k, m,, k., m;,
(r=1,...,n8=1,..,p; 1 =p<n) run over 0,1, 2, ....

The set of all functions holomorphic in @ will be denoted by H(Q2). H(Q) will
always be considered as a topological space, with the topology of uniform con-
vergence on compact subsets. If fe H(Q2), suppose we know the power series ex-
pansion of f, around the origin

-+ o + o
1) 20“}200‘%?‘”" wit..
V= =

A natural problem is to comstruct a domain A, satisfying conditions:

a. the power series (1) is continued holomorphically into A by means of the
summability transform N(z) (or by means of the summability transform
(N1 (=), ..., N, (2))

(*) Dept. of Math., Univ. Athens, Panepistemiopolis, 15784 Athens, Greece.
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b. A is independent of f.

This problem has been fairly sufficiently resolved for some special cases. The
purpose of this paper is to discuss the problem in the general case.

2 - Preliminaries

Let us first introduce the notations and the terminology we need.
The N(z)-transform of the sequence of the partial sums of f, around the ori-
gin, is the sequence

m k k
{kzoamk(z) 20..4 2 all), ez},
- 2

Yu =

The (N,(2), ..., N, (&))-transform of the sequence of the partial sums of f,
around the origin, is the sequence

my ky my ko My

ky
{k20c§,}3kl(z) ZO(kang,g,.,z(z) 20(...(]6200&;3,6"(2«) an,ﬂlf,)__,vnz{l...z;")...))}.
1= 1= 2= n = Yu =

vy =

Set

Py ={P'cQ | for any fe HQ), the N(z)-transform of the sequence of the
partial sums of f, around the origin, converges to f(z), uniformly on every com-
pact subset of P', if m— + o}

P, @, N ) = {P"cQ | for any fe H(Q), the (N,(2), ..., N, (2))-trans-
Jorm of the sequence of the partial sums of f, around the origin, converges to
f(z), uniformly on every compact subset of P", if m, — + o }.

With this terminology, one way of stating our problem is the following

Given the summability transform N(z) (or the summability transform
(N,(2), ..., N, (2))), construct a domain which is always contained in

EjHQ)= U P

P ePy.,

(respectively, in EY, o), ., N;,y(z)(H(\Q)) = . Y P").

P W@, s My n
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Consider the following sequences, { P, (%, 2) = Dy (X1, ...y Ty, 21y «ovy Z0)}
and {qem,, .., my (@, 2) = Qomy, ., m) @1y ooy Tny 215 .0y 2,)} Of functions of the
2n complex variables xy, ..., &,, 81, .oy 25

m

P (2, 2) = E & i () Z Z (B

= v;=0 g =

my

mn
Q(ml,...,mn)(my 7) = E O'gr%,)kl(z) 2( A E 557712 ,(Z) z xflz .- ;;"zv") D).

k1—0 v1=0 kn=0 Vp =

Suppose that w(V(+)) is the maximal open set in C*", in which the functions
pm (%, 2) are continuous and the sequence {p,, (x, 2)} converges, uniformly on
every compact subset of w(N()), to (1 —x,21) ... (1 — 2,2,)"". Further, as-
sume that w(V,,(+), ..., N, () is the maximal open set in C*", in which the
funetions Gy, ..., m,) (%, 2) are continuous and, the sequence {qum,, .., m, (%, 2)}
converges, uniformly on any compact subset of w(, (%), ..., N, (*), to

(1—@z) o (L= m,2,) 7Y, if my, — + o, ..., m, — + . Next, set
glw; Q) ={(z4, ..., zn)e.Q|(21—, , %, 21y ey Zy) € w, fOr any Cjeé’— pr; ()}
1 n

where © = o(N(+)), @V, (), ..., N, (+)) and where we have used the notation
pr;(Q) (j=1, ..., n) for the set

{¢eClthere is a (21,...,2j-1,2j+1,---,2)€C™ Y, such that (2y,...,2-1,4,2j41 - 2 €0}

In 1984, M. Eiermann proved that if » = 1 and if Q is any domain of C, then
9((N(+)); Q) € Efy (H(2)) ([2]). It should be noted that Eiermann’s result can
be considered as an extension of Okada’s theorem (in a generalized form, which
is due to W. Gawronski and R. Trautner [4]). Using techniques, similar to those
of Eiermann, we obtained an extension of Eiermann’s theorem, in the case of an
open polydisk in C* ([1]).

The questions which may be asked are

i. Is the domain g(w(N(-)); Q) always contained in E Ry, (H(2))?
ii. Is the domain g(w(V, ("), ..., N, ()); &) always contained in
ER, @), .. Ny, (HQ)?

In Sections 4 and 5 we shall give two examples, which show that the an-
swers are negative. In Section 3, we recall some topics of complex analysis. Fi-
nally, in Section 6, we modify the form of the sets g(w; ) and we construct two
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new domains
GloN(-)); Q) GV, (), ooy Ny, (4)); )

which are contained in
E y) (H((2)) E%, o, .., N, @ (H(Q))

respectively, under the assumption that Q is a polydomain, ie. a cartesian
product of domains of C.

3 - Some definitions and results of complex analysis

If A and B are two subsets of C*, then A cc B means that A is contained in a
compact subset of B. We denote by 4”(0, 1) the unit polydisk in C*. For the
boundary of a set 2 in C* we use the notation 3Q. If @ = Q, X ... X Q,, is a poly-
domain of C™", then bQ denotes the Shilov boundary of Q, that is its distin-
guished boundary 92, X ... X 3Q2,,.

An open set in C” is called a domain of holomorphy if we cannot find a con-
nected open set D intersecting 32 and a connected component D’ of D N Q, such
that for every fe H(Q) there exists g € H(D) with f= g on D’. Recall that in the
complex plane, all open sets are domains of holomorphy and that the situation is
totally different in C"*, when n > 1 (see [5]). A well known result, that will be
useful later, is

Proposition 1 (3], p. 17). If Q is a domain of holomorphy of C* and S is
an hypersurfuce of C", then Q — S is a domain of holomorphy.

If £ is an open subset of C™ and if K is a compact subset of Q, we define the
H(Q)-hull of K by

Kyoy={2eQ| |f@)] < sup |f], for any fe H(Q)}.

If Q and Q' are two open sets in C", such that Q' contains Q and H(Q') is a
dense subset of H(2), then we say that (Q, Q') is a Runge pair. In particular, if
(2, C™) is a Runge pair, then we say that Q is a Runge domain of C”. For later
use, we recall

Theorem 1 ([5], Theorem 4.3.3). Let QcQ' be domains of holomorphy.
Then the following conditions are equivalent

(Q, Q') is a Runge pair
For every compact set KcQ, there holds (Kgpy N Q2)cc.
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4 - The first counter-example

Let Q be an open subset of C*, 0e {2, such that:
@) pr;(Q)=4(0,1) j=1,2,...,n
3) (Q, A™(0, 1)) is not a Runge pair.

We shall show that there are (n+1) infinite triangular matrices
N(z2), N1(2), ..., N, (z) satisfying:

4) (WN()); Q) ¢ Efy, (H(Q))
5) 9Ny, (), ooy Ny, O Q¢ B, o, ., 0 (HQ)).

Let fe H(Q). Let (1) be the power series expansion of f, around the origin.
Choosing N(z) =N, (z) = ... =N, (2) = (3,1 ) (3, Kronecker’s symbol), it is obvi-
ous that
(6) g(a(NC); Q) = gV, (), ..., N, (1)); @) = Q.

Assume now that
(1) g((N(-)); Q) c E Ry, (H(Q)).

Combination of (6) and (7) shows that EZ%.,(H(Q)) = Q. Consequently

m k k
m 2 e 2 .. 2 ol atzr =12, e, )
Mmoo k=0 =0 =
uniformly on every compact subset of Q and therefore, f is the limit of a se-
quence of holomorphic functions in 4”(0, 1). Hence, (2, 47(0, 1)) is a Runge
pair, which is in direct contrast with the hypothesis (3). We conclude that the
assumption (7) is false and thus we have proved

Proposition 2. Let Q be an open subset of C" (0eQ), such that
pr; () =A10,1) (j=1,...,n) and (Q, 47(0, 1)) is not a Runge pair. Then
there holds g(m(N(-)); Q) ¢ E Ry (H(Q)).

Repetition of the proof of Proposition 2, making only formal changes
in substituting V() by oW, (), ..., N, (-)) and Ef (H) by
EY. @, .., ) (H(()), gives
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Proposition 3. Let Q be an open subset of C* (0eQ), such that
pr; (Q) = AY0,1) (7=1,2, ..., n) and (Q, a"(0, 1)) is not a Runge pair. Then
there holds

g(CU(N).l (), ceey N;,J‘)); Q) ¢ E'}%;M(z), o Ny (2) (H(Q)).

Next, we shall construct an example of an open subset of C?, satisfying (2)
and (3). Let Q be the domain of C? defined by

®) Q=4%(0,1) ~ {(21, 22) € C¥|2; + 2, = 1}.

Obviously, 0 € Q and pr; (Q) = pry (Q) = 4'(0, 1). Further, the open set Q is
a domain of holomorphy. In fact, it is sufficient to see that 42(0, 1) is a domain
of holomorphy of C? and that {(z,, z5) € C?|2; + 2, = 1} is an hypersurface in
C®. In order to show that (2, 42(0, 1)) is not a Runge pair, it suffices to apply
Theorem 1, that is to find a compact subset K of Q satisfying

(9) KH(AZ(O, 1) nge C/C.Q .

If we choose K = {(%, —Z-ew)ioseszz}, then (-21-, %)EKH(Jz(O’ 1. Since
(—;—, %) e 30, we obtain (9).

5 - The second counter-example

Let Q be an open subset of C? defined by
(10) Q={(z1, ) e C?| 21| <1, |2] <1, |2y + 23] <1}.

It is clear that 0 € 2 and that pr; (Q) = pr, (Q) = 41(0; 1). Moreover, it is easily
verified that (2, 4%(0, 1)) is a Runge pair. As in Section 4, we shall show that
there are (n + 1) infinite triangular matrices N(z), N, (2), N5 (2), ..., N, (2) satis-
fying (4) and (5).

Choose

1

T ta) e H(Q).

F1Q—C; (2, 2) > f(21, 2) =
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Clearly, f can be expressed, in a neighborhood of 0, as

Flwy, wy) = §)<wl+w2)v E(Zcp = S Ol wita

m,p=0

where m =v~p and C? = (;)

For any (w,, w.) € 2, set

k
Sk(wl)w2)= z Cl+pwl wz (]g—_-O, 17 2)--')'

m,p=0

Let us study the difference Sp.;(w;, we) —Si(wy, we) (w;, wy) ). Suppose
(21, ) is a point of Q. We have

k
k1 k+1 +1 k+1  k+1 _k+1
Sk+1(21,22) — S (21, 22) = E Ckﬂﬂ, 2P+ EOCm+k+1zfnz2 + Coivazr2s
e
In particular, when z; = —z; and k + 1 =2k' (i.e. even), the above difference
becomes
Ses1(21, 22) = S (21, 22) = Sopr (21, —21) — Sop —1(z1, —21)

2k -1 =1
2 CZk +p( l)pZZk TP z CZk +mz12k+m+02k

If we restrain our attention to the case where 2, > 0, then it is easily seen
that
2k —~1 2k —1 ,
2 CZk +p( 1)z K Ep 4 E Cgk+mzk+m>0 C4k Zf]">0.

m =0

Assuming that

. _ 1
an k-LHE-loo Sy (wy, wy) = FRZrr—" @, ) for any (w;, ws) e Q

we obtain lin+n (Sk+1(wy, we) — Sy, (wy, wy)) = 0 for any (wy, wy) € Q and con-
sequently

(12) v hm CH# 2i¥ = 0.
. 4k
But oo = UKD

(2K
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and it follows from Stirling’s formula that

( 4]6 ) '\/g__—k/ 24k' z{llx
(13)  lim Ciz" = lim 2% = lim 0
B 4o Tkt 2k Y (\/47 ' )2 Ko \fo k!

for a z; > 0, suitably choosen and near to 1. Comparison of (12) and (13) shows
that the assumption (11) is false. Therefore, the point (2,, —#;) (2; > 0, 2, near
to 1) satisfies

(14) flz, —21) # Z 2 alf) 2 (—2y)2.
/1— V2—
Choosing N(z) = N, (z) = ... = N, (2) = () (S Kronecker’s symbol), it is
easy to see that
m k + o
im X s 2 E afderi(—z)r= 2 all)zi(—z)"
m—> + 0 L=( , Ve = Vi, Ve =
my My kp
lim > omk1 2 ( E gy > (,,fv)z 1 (—21)"2)
M=+, My, o @ =0 = 2=0
=+

= 3 alen(-a

and hence it follows from (14):

(15) (21, —#1) ¢ ERe) (H())

(16) o @ m2) € R o, w0 (HQ)).
But on the other hand there holds:

(17 (21, —21) € g(w(N(+)); Q) = Q

(18) (21, —21) € gl(N, (+), ..., N, (4)); ) = 2

Combination of (15) and (17) proves (4), while combination of (16) and (18)
proves (5).
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6 - A modified form of Okada’s theorem in C*

Consider the family of sets
(@), = {Q open set in C"|0 e Q2 and for any z e 2, there is a simply connec-

ted polydomain D, =DV x ... X DI such that {0, z} cD,ccQ and 3D{? is
smooth (C*), j=1,2, ..., n}.

It is clear that if Q is a polydomain of C”, then Q € (@), . For w = w(N(-)),
(¥, (), ooy V5, (+)) and for Qe (@), set

w, = (@1, ooy Xy ) €C™[(®y,y vy By 21y ooy 2) Ew)}
G(w; Q) = {z e Q|there is a D, such that [bD,] ' cw,}

where we have used the notation [bD,]!= {(%—, s tl)|(t1, ooy ) € bD,}.
1 n

The following theorem can be regarded as a modified form of Okada’s theo-
rem. In fact, according to Okada’s classical theorem of the case n =1, if Q is a
domain of C (0 € 2), then the N(z)-transform of the sequence of the partial sums
of f, around 0, converges to f, compactly on

glw; Q) = {ze[)](%, 2)ew, for any LeC - Q} for any fe H(Q).

Our next theorem shows that we can obtain the compact convergence of the
same sequences into the new domain

Glw; Q) = {zem(%—, 2)ew, for any {<dD, and a D,}.

Theorem 2. If Qe (@), then there holds

i. G((N(+)); Q) c Efy,y (H(Q))
ii. G(O)(N)l ( . ), veey NAH ( . )); .Q) C E‘}’('])‘1 @), .ony NA#(Z) (H(Q)) .

In order to prove this theorem we use a lemma, which is a direct conse-
quence of Cauchy’s integral formula.
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Lemma 1. Let Qe (@), and let we Q.

a. Suppose that therve is a D,, such that the functions p,(x,z)
(m=0,1,2,..) are continuous in [bD,] ' x {w}. If fe H(Q), then there
holds

k

m
F0) = 2 o) S D AR I

vi=0 Va

= L(f7 Dw) sup !(1 _tlwl)”l-n(l_tnwn)——l'—pm(t’ Z)l
tE[bDw]_l

where L(f, D,,) is a constant which depends on f and D,, but is independent
of m.

b. Suppose that there is a D,, such that the functions qu,, .. m, (%, 2)
(m;=0,1,2,...) are continuous in [bD,] * x {w}. If fe H(Q), then there holds

my

ey My
!f(w)—kz Ty (W) EO(...(kZ ok, (W) Z a1, witwpr) )|
V1= "=

Vo =

< M(f, D,) sup 1 [(1=tw) ™ oo (1= 6 w0) ™ = Gy, e (£, )]
tE[bDw]—

where M(f, D,,) is a constant which depends on f and D,,, but is independent of
My, ooy Myp).

Proof. It suffices to note that

Fw) = I F)

(21?/) {ebDy, (Cl wl) (C'n, - w’n)

_ 1 f&
(27Ti)n§e[bpw]~1 (1- wlCl) (1 wn(:n)

dz,...ds,

21 8y 42y A2y,

m k k
2 ome ) 2 oo 2wl wit )
= vi= Yy =
_ 3 @ "
h kg()a.mjc (u))v1§=:0 VnE-; 0( (2‘7?/) fel‘!l.)w Cvl * 1 ;lzn+1 dzn)w
= G L FOCE e RN O A .12

-l—n I @ pn G w) ey ... 8, de ... dE,
(270)" 4 < (oD, 171
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ny My

2 Gﬁfkl(w) 2( 2 T, () 2 0wt ..)

vy = ky = Y =

1 -1
(C ) MYy -rey My ’ ’I/U)(: ...Z/,L dc dcn
@wuﬁwf Tom o (& W) 6y '

Proof of Theorem 2. In a first step we shall prove i. Let fe H(Q2) and
let 2%= (27, ..., 220) € G(w(N(-)); Q). By the definition of the set G(w(N(-)); Q),
it follows that there is D,o with [bD,0]™! ¢ (w(IN(-))),0. Consequently, the com-
pact set {(xy,..., 2, 20, ...,20) e C?" |(zy, ... ,”cn)e[bD 0]71} is contained in
the open set w(N( )2 Applylng Lemma 1, for w =z we obtain

k

m&—ﬁ%m%z S a6 G|

= vi=0 vy

SL(f,Dp) sup [(1=t2))7 (1= t,2z) ™ = p,(t, 2%)]
te[bD,0]7}
for m=10,1, 2, .... Since G(w(N(-)); Q) is open, there is_a compact neighbor-
hood of 2%, U,0 ¢ G(w(N(-)); 2) N D,o. Clearly, for any z € U,0, one can choose D,
equal to D,o. Repetition of the proof shows that

m k
@ = 5 ow@ 3 . 3l ep el

= vi=0 Yn

S L(f,D,) sup |(1—=tiz) oo (1= t,2,)"  — Dk, 2)]
te[bD,0]7!

for m=0,1,2, ... and for any z=(z1,...,zn)el720. Hence, for m=0,1,2, ...

m
sup If(Z) 2 G'mk(Z) 2 Z Ef) Vnzi‘l Z‘;""

ze U0 vi=0 Yn =

< sup (L(f, Do) sup ( sup  [(1—t2)7 (1 —t,2,)7  — pn(t, 2)]).
ze U0 zeU,0 te[bD0]?

By passing to the limit, when m — + ©, we see that

mn k k
im 2 o) 2 ... 2 &), 2z = f(2)
m—>+® k=0 vi=0  v,=0
uniformly on U,0, and the proof of part i follows. Similarly, we can prove
part ii.
In particular, we have
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Corollary 1. IfQ =0, X ...Q, is a polydomain of C* (0 € Q). Then there
holds

i G(w(NV(+)); Q) c E Ry, (H(Q))

. G5, (), oo Ny, 0 D CE, o, 0 (H@)).
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Sommario

Per un dato metodo di sommabilita, il teorema di Okada indica un dominio nel
quale una arbitraria serie di potenze pud essere olomorficamente prolungata. Il primo
obietiivo di questo lavoro & mostrare che il corrispondente risultato é falso se lo dimen-
sione e maggiore di uno. Il secondo obiettivo ¢ di ottenere una forma modificata del teo-
rema di Okada, indipendente dalla dimensione.
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