M. HASAN SHAHID (*)

On some semi-invariant submanifolds of a trans-Sasakian manifold (**)

0 - Introduction

Bejancu and Papaghiuc introduced and studied semi-invariant submanifolds of a Sasakian manifold [2], [3]. Roughly speaking, a semi-invariant submanifold of a Sasakian manifold is a notion corresponding to that of *CR*-submanifolds in a Kaehler manifold [1]. On the other hand semi-invariant submanifolds of a Kenmotsu manifold have been studied by Kobayashi [12].

More general, are the notions of α -Sasakian structure and β -Kenmotsu structure [9]. In [13] J. A. Oubina introduced a new class of almost contact Riemannian manifolds known as trans-Sasakian manifolds, which generalize both α -Sasakian and β -Kenmotsu structures.

The purpose of this note is to study the class of the semi-invariant submanifolds, normal to the structure vector field ξ of a trans-Sasakian manifold.

1 - Preliminaries

Let \overline{M} be an (2n+1)-dimensional almost contact metric manifold with almost contact metric structure (ϕ, ξ, η, g) . Then we have by definition [4]

(1.1)
$$\phi^2 = -I + \eta \otimes \xi \qquad \phi \xi = 0 \qquad \eta \circ \phi = 0 \qquad \eta(\xi) = 1$$

(1.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y) \qquad \eta(X) = g(X, \xi)$$

for any vector field X, Y on \overline{M} .

^(*) Dept. of Math., Fac. of Nat. Sci., Jamia Millia Islamia, 110 025 New Dehli, India.

^(**) Received December 4, 1992. AMS classification 53 B 25.

An almost contact structure (ϕ, ξ, η) is said to be *normal* if the almost complex structure J on $\overline{M} \times R$ given by

$$J(X, f\frac{\mathrm{d}}{\mathrm{d}t}) = (\phi X - f\xi, \, \eta(X)\,\frac{\mathrm{d}}{\mathrm{d}t})$$

where f is a C^{∞} function on $\overline{M} \times R$, is *integrable*, which is equivalent to the condition $[\phi, \phi] + 2 \, \mathrm{d} \eta \otimes \xi = 0$ where $[\phi, \phi]$ denotes the Nijenhuis tensor of ϕ .

Let M be an m-dimensional $Riemannian manifold isometrically immersed in <math>\overline{M}$. We say that the submanifold M is a ξ^{\perp} -submanifold, if the structure vector field ξ of \overline{M} is normal to the submanifold.

Definition. The ξ^{\perp} -submanifold M of \overline{M} is called a *semi-invariant* ξ^{\perp} -submanifold, if there exist on M two differentiable orthogonal distributions D and D^{\perp} such that the following conditions are satisfied.

- i. $TM = D \oplus D^{\perp}$
- ii. the distribution D is invariant under ϕ , i.e. $\phi D_x = D_x$ for each $x \in M$
- iii. the distribution D^{\perp} is anti-invariant under ϕ , i.e. $\phi D_x^{\perp} \subset T_x^{\perp} M$ for each $x \in M$ where $T_x^{\perp} M$ is the normal space of M.

D and D^{\perp} are called respectively the *invariant distribution* and the *anti-invariant distribution* of M.

A semi-invariant ξ^{\perp} -submanifold is said to be an *invariant* (resp. *anti-invariant*) ξ^{\perp} -submanifold, if we have $D_x^{\perp} = \{0\}$ (resp. $D_x = \{0\}$) for each $x \in M$. A semi-invariant ξ^{\perp} -submanifold is said to be *proper*, if it is neither an invariant nor an anti-invariant ξ^{\perp} -submanifold.

For a vector field X tangent to M, we put

$$(1.3) X = PX + QX$$

where PX and QX belong to the distributions D and D^{\perp} , respectively. Also for a vector field N normal to M, we put

$$\phi N = BN + CN$$

where $BN \in D^{\perp}$ and $CN \in T^{\perp}M$ (cf. [3], p. 166).

Let M be a semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \overline{M} . We denote by μ the complementary orthogonal vector bundle of ϕD^{\perp} i.e. $T^{\perp}M = \phi D^{\perp} \oplus \mu$. Then it is easy to see that μ is invariant by ϕ .

Now the formulas of Gauss and Weingarten are given respectively by

$$(1.5) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \overline{\nabla}_X N = -A_N X + \nabla_Y^{\perp} N$$

where $\overline{\nabla}$ is the Riemannian connection of \overline{M} , ∇ the Riemannian connection determined by the induced metric g on M, ∇_X^{\perp} the metric connection in the normal bundle of M, h is the second fundamental form and A is defined by

(1.6)
$$g(h(X, Y), N) = g(A_N X, Y).$$

M is called totally umbilical if h(X, Y) = g(X, Y)H, where H is the mean curvature vector. If H = 0 then M is said to be minimal. If h = 0 identically, then M is said totally geodesic.

In the classification of Gray and Harvella [8] of almost Hermitian manifolds, there appears a class of Hermitian manifold named W_4 which contains locally conformal Kaehler manifolds. An almost contact metric structure (ϕ, ξ, η, g) on \overline{M} is called trans-Sasakian if $(\overline{M} \times R, J, G)$ belongs to the class W_4 , where J is the almost complex structure on $\overline{M} \times R$ and G is the product metric on $\overline{M} \times R$. This may be expressed by condition ([5], p. 201)

$$(1.7) \qquad (\overline{\nabla}_X \phi)(Y) = \alpha \{ q(X, Y) \xi - \eta(Y) X \} + \beta \{ q(\phi X, Y) \xi - \eta(Y) \phi X \}$$

where α and β are functions on \overline{M} (trans-Sasakian structure of type (α, β)). In particular, \overline{M} is normal. From the formula, one easily obtain

(1.8)
$$\bar{\nabla}_X \xi = -\alpha \phi X + \beta (X - \eta(X) \xi).$$

2 - Integrability of distributions

First we prove

Lemma 1. Let M be a semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \overline{M} . Then

$$(2.1) P\nabla_X \phi PY - PA_{\phi QY}X = \phi P\nabla_X Y$$

(2.2)
$$Q\nabla_X \phi PY - QA_{\phi OY}X = Bh(X, Y)$$

(2.3)
$$h(X, \phi PY) + \nabla_X^{\perp} \phi QY = \phi Q \nabla_X Y + Ch(X, Y) + \alpha g(X, Y) \xi + \beta g(\phi PX, Y) \xi$$
 for any vector field $X, Y \in TM$.

Proof. Since $\xi \in T^{\perp}M$, so $\eta(Y)=0$ for any $Y \in TM$, and equation (1.7) reduces to

$$\overline{\nabla}_X \phi Y - \phi \overline{\nabla}_X Y = \alpha g(X, Y) \xi + \beta g(\phi X, Y) \xi.$$

Using (1.3) we have

$$\overline{\nabla}_X \, \phi(PY + QY) - \phi \, \overline{\nabla}_X Y = \alpha g(X, Y) \, \xi + \beta g(\phi X, Y) \, \xi \, .$$

As P (resp. Q) is a projection on D (resp. D^{\perp}), so $\phi PY \in TM$ and $\phi QY \in T^{\perp}M$ for any $Y \in TM$. Thus by virtue of Gauss and Weingarten equations we get

$$\nabla_X \phi PY + h(X, \phi PY) - A_{\phi QY}X + \nabla_X^{\perp} \phi QY - \phi(\nabla_X Y + h(X, Y))$$
$$= \alpha g(X, Y) \xi + \beta g(\phi X, Y) \xi$$

for any $X, Y \in TM$.

Again, using (1.3), (1.4) we get

(2.4)
$$\nabla_X PY + h(X, \phi PY) - A_{\phi QY}X + \nabla_X^{\perp} \phi QY - \phi P \nabla_X Y - \phi Q \nabla_X Y - Bh(X, Y) - Ch(X, Y) - \alpha g(X, Y) \xi - \beta g(\phi X, Y) \xi = 0.$$

Now $BN \in D^{\perp}$, $CN \in T^{\perp}M$ for any vector field N normal to M and $\phi QY \in T^{\perp}M$ for any vector field Y tangent to M. Thus, using (1.3) and comparing the component of D, D^{\perp} and $T^{\perp}M$ in (2.4), we complete the proof.

Lemma 2. Let M be a semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \bar{M} . Then

$$(2.5) \qquad \nabla_X BN - A_{CN}X - \phi P A_N X - B \nabla_X^{\perp} N + \alpha \eta(N) X + \beta \eta(N) \phi P X = 0$$

(2.6)
$$h(X, BN) - \phi Q A_N X - C \nabla_X^{\perp} N + \nabla_X^{\perp} CN - \beta g(\phi X, N) + \beta \eta(N) \phi Q X = 0$$
 for any vector field $X \in TM$ and $N \in T^{\perp} M$.

Proof. By using (1.4), (1.5) and (1.7) we obtain

(2.7)
$$\nabla_X BN + h(X, BN) - A_{CN}X + \nabla_X^{\perp} CN = \phi P A_N X + \phi Q A_N X + B \nabla_X^{\perp} N + C \nabla_X^{\perp} N - \alpha \eta(N) X + \beta g(\phi X, N) \xi - \beta \eta(N) \phi P X - \beta \eta(N) \phi Q X.$$

Thus the assertion of the lemma follows by taking the tangent and normal component in (2.7).

Now we study the integrability of the distributions D and D^\perp involved in the definition of a semi-invariant ξ^\perp -submanifold of a trans-Sasakian manifold.

Proposition 1. Let M be a semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \overline{M} . Then the invariant distribution D is integrable if and only if

$$h(X, \phi Y) - h(\phi X, Y) = 2\beta g(\phi X, Y) \xi$$

for any $X, Y \in D$.

Proof. From (2.3) and by the fact that $\phi Y = 0$ for $Y \in D$, we get

$$h(X, \phi Y) = \phi Q \nabla_x Y + Ch(X, Y) + \alpha g(X, Y) \xi + \beta g(\phi X, Y) \xi$$

for any $X, Y \in D$.

Thus interchanging X and Y and subtracting we get

$$h(X, \phi Y) - h(\phi X, Y) = \phi Q[X, Y] + 2\beta g(\phi X, Y) \xi$$

from which we have our assertion.

For the integrability of D^{\perp} , first we have

Lemma 3. Let M be a semi-invariant ξ^{\perp} -submanifold of trans-Sasakian manifold \bar{M} . Then

$$(2.8) A_{\pm X}Y = A_{\pm Y}X$$

for any $X, Y \in D^{\perp}$.

Proof. From (1.7) using (1.6) we get

$$g(A_{\diamond X}Y,Z) = h(h(Y,Z),\,\phi X) = g(\overline{\nabla}_ZY,\,\phi X) = -g(\overline{\nabla}_Z\phi Y,\,X) = g(A_{\diamond Y}X,\,Z)$$

for any $X, Y \in D^{\perp}$ and $Z \in TM$.

Now we have

Proposition 2. Let M be a semi-invariant ξ^{\perp} -submanifold of a trans-

Sasakian manifold \overline{M} . Then the anti-invariant distribution D^{\perp} is integrable.

Proof. Since P is a projection on D so PY=0 for $Y\in D^\perp$ and (2.1) gives $\phi P\nabla_X Y=-PA_{\phi QY}X$ for any $X,\ Y\in D^\perp$. Applying ϕ to the above equation and using the fact that $\xi\in T^\perp M$, we obtain $P\nabla_X Y=\phi PA_{\phi Y}X$ for any $X,\ Y\in D^\perp$. Thus we get $P[X,\ Y]=0$, for any $X,\ Y\in D^\perp$ by virtue of (2.8), which proves our assertion.

Further using Weingarten formula in (1.8) we easily have the following

Lemma 4. Let M be a semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \bar{M} . Then

(2.9)
$$A_{\xi}X = \alpha \phi PX - \beta X \qquad \nabla_{Y}^{\perp} \xi = -\alpha \phi QX$$

for any X tangent to M.

Next, suppose dim TM=m=2p+q where dim D=2p, dim $D^{\perp}=q$. Let $(e_1,\ldots,e_p,\phi e_1,\ldots,\phi e_p,e_{2p+1},\ldots,e_{2p+q})$ be the local field of orthogonal frames of M, where $e_i\in D$ $(i=1,\ldots,p)$ and $e_{2p+q}\in D^{\perp}$ $(a=1,\ldots,q)$. We have

Proposition 3. There do not exist minimal semi-invariant ξ^{\perp} -submanifolds of a trans-Sasakian manifold \overline{M} with $\beta \neq 0$.

Proof. For any $X, Y \in TM$ we have

$$\eta(h(X, Y)) = g(h(X, Y), \xi) = g(A_{\xi}X, Y)$$

using $(2.9)_1$, the above equation yields

$$\eta(h(X, Y)) = -\alpha g(\phi X, Y) + \beta g(X, Y).$$

Thus

$$\eta(H) = \frac{1}{m} \operatorname{trace} A_{\xi} = \beta$$

where H is the mean curvature vector of M.

3 - Totally umbilical semi-invariant ξ^{\perp} -submanifold

The aim of this section is to give a complete characterization of totally umbilical semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold.

First we have

Proposition 4. Let M be an invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \overline{M} . Then M is a totally unbilical ξ^{\perp} -submanifold of \overline{M} , if and only if we have

$$(3.1) h(X, Y) = -\beta g(X, Y) \xi$$

for any $X, Y \in TM$.

Proof. As M is totally umbilical we have

(3.2)
$$h(X, Y) = g(X, Y)H$$

for any $X, Y \in TM$.

From (1.7) we have

$$\bar{\nabla}_X \phi Y - \phi \bar{\nabla}_X Y = \alpha g(X, Y) + \beta g(\phi X, Y) \xi.$$

Using (1.5) in (1.7) we get

$$\nabla_X \phi Y + h(X, \phi Y) - \phi(\nabla_X Y + h(X, Y)) = \alpha g(X, Y) + \beta g(\phi X, Y) \xi.$$

Comparing normal component, we get

$$h(X, \phi Y) = \phi h(X, Y) + \alpha g(X, Y) \xi + \beta g(\phi X, Y) \xi$$

for any $X, Y \in TM$.

Since M is a totally umbilical invariant ξ^{\perp} -submanifold of \overline{M} , so for any $X, Y \in TM$, (3.2) yields

$$g(X, \phi Y)H = g(X, Y)\phi H + \alpha g(X, Y)\xi + \beta g(\phi X, Y)\xi$$

from which we obtain

(3.3)
$$g(X, \phi Y) \eta(H) = \alpha g(X, Y) \xi + \beta g(\phi X, Y).$$

Now by taking $Y = \phi X$ in (3.3) it follows that $\eta(H) = -\beta$. Thus we have $H = -\beta \xi$ and hence from (3.2) we get the (3.1).

Conversely, suppose $h(X, Y) = -\beta g(X, Y) \xi$. Then $H = -\beta \xi$ and M is a totally umbilical invariant ξ^{\perp} -submanifold of \overline{M} . This completes the proof.

Proposition 5. Let M be a proper semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \bar{M} such that dim $D^{\perp} = q > 1$. Then M is a totally umbilical submanifold of \bar{M} , if and only if (3.1) is satisfied for any $X, Y \in TM$.

Proof. From (2.2) and using (3.2) we get $g(X, X)BH = -QA_{\phi X}X$ for any $X \in D^{\perp}$, from which we get $g(X, X)g(BH, BH) = g^{2}(X, BH)$.

The above equation gives BH = 0, as dim $D^{\perp} > 1$. Thus from $\phi H = BH + CH$, we get $\phi H = CH$.

Next from (2.3) we obtain

(3.4)
$$h(X, Y) = h(X, \phi Y) - \phi Q \nabla_X Y - \alpha g(X, Y) \xi - \beta g(\phi X, Y) \xi$$

for any X tangent to M and $Y \in D$.

Taking $X = Y \in D$ in (3.4) and using (3.2) and BH = 0 we get $g(X, X) g(\phi H, \phi H) = 0$ for any $X \in D$, which gives $\phi H = 0$.

Now, since $CH = \phi H = 0$, using the fact that $\eta(H) = -\beta$, we get $H = -\beta \xi$. Thus (3.1) follows from (3.2).

Conversely, suppose (3.1) holds. Then $H = -\beta \xi$ and M is a totally umbilical semi-invariant ξ^{\perp} -submanifold of \overline{M} . This completes the proof.

Finally we prove

Proposition 6. Let M be a semi-invariant ξ^{\perp} -submanifold of a trans-Sasakian manifold \bar{M} . Then the curvature tensor $R^{\perp}(X,Y)$ of the normal bundle annihilates ξ for all $X, Y \in D^{\perp}$.

Proof. Using $\nabla_X^{\perp} \xi = -\alpha QX$ we have

$$\nabla_{Y}^{\perp}\left(\nabla_{X}^{\perp}\xi\right) = \nabla_{Y}^{\perp}\left(-\alpha QX\right) = -\alpha\nabla_{Y}^{\perp}\left(QX\right) \qquad \quad \forall X,\,Y\in D^{\perp}.$$

From (2.3) we have

$$\nabla_Y^{\perp}(\nabla_X^{\perp}\xi) = -\alpha(Q\nabla_YX + Ch(X, Y) + g(X, Y)\xi).$$

Now by definition

$$\begin{split} R^\perp(X,\,Y)\,\xi &= \nabla_X^\perp\,\nabla_Y^\perp\,\xi - \nabla_Y^\perp\,\nabla_X^\perp\,\xi - \nabla_{[X,\,Y]}^\perp\,\xi \\ &= -\,\alpha\,\nabla_X^\perp\,(\phi Y) + \alpha\,\nabla_Y^\perp\,(\phi X) + \alpha\phi(X,\,Y) \\ &= -\,\alpha(\nabla_X^\perp\,(\phi Y) - \nabla_Y^\perp\,(\phi X) - \phi[X,\,Y]) \\ &= -\,\alpha\{Q\nabla_XY + Ch(X,\,Y) + g(X,\,Y)\,\xi - \phi\nabla_YX - Ch(X,\,Y) - g(X,\,Y)\,\xi - \phi[X,\,Y]\} \\ &= -\,\alpha(\phi[X,\,Y] - \phi[X,\,Y]) = 0 \end{split}$$

which completes the proof.

References

- [1] A. Bejancu, CR-submanifolds of a Kaehlerian manifold. I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] A. Bejancu, On semi-invariant submanifolds of an almost contact metric manifold, An. Stiint. Univ. Al I. Cuza 27 (1981), 17-21.
- [3] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Stiint. Univ. Al I. Cuza 27 (1981), 163-170.
- [4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer, Berlin 1976.
- [5] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Mathematiques 34 (1990), 199-207.
- [6] B. Y. Chen, Geometry of submanifolds, Dekker, New York 1973.
- [7] M. Hasan Shahid, CR-submanifold of a trans-Sasakian manifold, Indian J. Pure Appl. Math. 22 (1991), 1007-1012.
- [8] A. GRAY and L. M. HERVELLA, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pure Appl. 123 (1980), 35-58.
- [9] D. Jansen and L. Vanhecke, Almost contact structure and curvature tensor, Kodai Math. J. 4 (1981), 1-27.
- [10] K. Kenmotsu, A class of almost contact Riemannian manifold, Tohoku Math. J. 24 (1972), 93-103.
- [11] M. Kobayashi, CR-submanifold of a Sasakian manifold, Tensor 35 (1981), 297-307.
- [12] M. Kobayashi, Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor 43 (1986), 28-36.
- [13] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187-193.

Sommario

Scopo del lavoro è lo studio delle condizioni di integrabilità delle distribuzioni D e D^{\perp} di una ξ^{\perp} -sottovarietà semi-invariante di una varietà trans-sasakiana. Sono anche caratterizzate le ξ^{\perp} -sottovarietà semi-invarianti totalmente ombelicali.

		·	