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On some semi-invariant submanifolds

of a trans-Sasakian manifold (**)

0 - Introduction

Bejancu and Papaghiuc introduced and studied semi-invariant submanifolds
of a Sasakian manifold [2], [3]. Roughly speaking, a semi-invariant submanifold
of a Sasakian manifold is a notion corresponding to that of CR-submanifolds in a
Kaehler manifold [1]. On the other hand semi-invariant submanifolds of a Ken-
motsu manifold have been studied by Kobayashi [12].

More general, are the notions of x-Sasakian structure and g-Kenmotsu strue-
ture [9]. In [13] J. A. Oubina introduced a new class of almost contact Rieman-
nian manifolds known as trans-Sasakian manifolds, which generalize both
a-Sasakian and p-Kenmotsu structures.

The purpose of this note is to study the class of the semi-invariant submani-
folds, normal to the structure vector field £ of a trans-Sasakian manifold.

1 - Preliminaries

Let M be an (2n+1)-dimensional almost contact metric manifold with al-
most contact metrie structure (¢, &, n, g). Then we have by definition [4]

(1.1) $2=—I+7nQ®@& ¢t=0 nop=0 =1
(1.2) 93X, ¢Y) = g(X, V) —n(Xn(Y)  nX) = g9(X, &)

for any veetor field X, ¥ on M.
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An almost contact structure (¢, £, #) is said to be normal if the almost com-
plex structure J on M X R given by

d._ oy 4
J(X,f-&t—)—(séX S& n(X) dt)

where fis a C* function on M X R, is integrable, which is equivalent to the con-
dition [¢, ¢]1+ 2dy ® £ =0 where [¢, 3] denotes the Nijenhuis tensor of ¢.

Let M be an m-dimensional Riemannian manifold isometrically immersed
in M. We say that the submanifold M is a £ ‘-submanifold, if the structure vee-
tor field £ of M is normal to the submanifold.

Definition. The &*-submanifold M of M is called a semi-invariant & *-sub-
manifold, if there exist on M two differentiable orthogonal distributions D and
D* such that the following conditions are satisfied.

i TM=D@®D"
il. the distribution D is invariant under ¢, ie. ¢D,=D, for each xeM
ii. the distribution D is anti-invariant under ¢, ie. ¢D; cT,"M for each
xeM where T, M is the normal space of M.

D and D™ are called respectively the invariant distribution and the anti-in-
varignt distribution of M.

A semi-invariant £*-submanifold is said to be an invariant (resp. anti-inva-
riant) £ *-submanifold, if we have D, = {0} (resp. D, = {0}) for each x e M. A
semi-invariant £ *-submanifold is said to be proper, if it is neither an invariant
nor an anti-invariant z*-submanifold.

For a vector field X tangent to M, we put

(1.3) X =PX+QX

where PX and QX belong to the distributions D and D *, respectively. Also for a
vector field N normal to M, we put

(14) ¢N = BN + CN
where BNeD* and CNe T* M (cf. [3], p. 166).

Let M be a semi-invariant ¢ *-submanifold of a trans-Sasakian manifold M.
We denote by p the complementary orthogonal vector bundle of ¢D* ie.
T*M=¢D* @yp. Then it is easy to see that u is invariant by ¢.
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Now the formulas of Gauss and Weingarten are given respectively by

(1.5) VxY =VyY + (X, Y) VyN=—-AyX+VzN

where V is the Riemannian connection of M, V the Riemannian connection de-
termined by the induced metric g on M, Vy the metric connection in the normal
bundle of M, k is the second fundamental form and A is defined by

(1.6) g(X, Y), N) = g(Ay X, T).

M is called totally wmbilical if WX, Y) = g(X, Y)H, where H is the mean
curvature vector. If H = 0 then M is said to be minimal. If k = 0 identically,
then M is said fotally geodesic.

In the classification of Gray and Harvella [8] of almost Hermitian manifolds,
there appears a class of Hermitian manifold named W, which contains locally
conformal Kaehler manifolds. An almost contact metric structure (¢, &, 5, g) on
M is called trans-Sasakian it (M X R, J , &) belongs to the class W,, where J is
the almost complex structure on M X R and G is the product metric on M x R.
This may be expressed by condition ([5], p. 201)

17 Vxd)M =a{gX, NE— (X} +B{gX, V) E— 7(V)¢X }

where « and 8 are functions on M (trans-Sasakian structure of typé (a, £)). In
particular, M is normal. From the formula, one easily obtain

(1.8) V&= —agX + X — n(X)?).

2 - Integrability of distributions

First we prove

Lemma 1. Let M be a semi-invariant & -submanifold of a trans-
Sasakian manifold M. Then

(2.1) PVX ¢PY - PA¢QyX = ¢PVXY
2.2) QVx ¢PY — QA.qv X = BW(X, Y)
@8) X, $PY) + Vi $QY = ¢QVxY + Ch(X, Y) + ag(X, Y) & + Bg(¢PX, V)¢

for any wvector field X, Ye TM.
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Proof. Since ée T* M, so n(Y) =0 for any Y e TM, and equation (1.7) re-
duces to

Vi ¢ — ¢VyY = ag(X, V)& + Bg(¢X, V) £.

Using (1.3) we have

Vx ¢(PY + QY) — ¢Vx ¥ = ag(X, )& + Bg(¢X, V)&,

As P (vesp. Q) is a projection on D (resp. D%), so ¢PYeTM and
¢$QY e T* M for any Y e TM. Thus by virtue of Gauss and Weingarten equa-
tions we get

Vx ¢PY + WX, $PY) — Ay X + Vi QY — $(Vx ¥ + (X, Y))

= ag(X, V)¢ + Bg(¢X, Y)¢

for any X, Ye TM.
Again, using (1.8), (1.4) we get

VxPY + WX, $PY) — Asqr X + Vi QY — ¢PVxY — ¢QVx Y

2.4)
—BWX,Y) - Ch(X, Y) = ag(X, )¢ — Bg(3X, Y)E=0.

Now BNeD*, CNeT*M for any vector field N normal to M and
¢QYe T M for any vector field ¥ tangent to M. Thus, using (1.3) and compar-
ing the component of D, D* and T* M in (24), we complete the proof.

Lemma 2. Let M be a semi-invariant &*-submanifold of o trams-
Sasakian manifold M. Then

(25) VxBN — Ay X — ¢PAyX — BV3 N + an(N) X + Bn(N) ¢PX = 0
(26) X, BN) - ¢QAyX — CV3 N + V5 CN — g(¢X, N) + pn(N) ¢QX = 0
for any vector field Xe TM and Ne T M.

Proof. By using (1.4), (1.5) and (1.7) we obtain

VxBN + (X, BN) — Acy X + V5 CN = ¢PAyX + ¢QAyX + BVx N

2.7
+CVy N — an(N) X + Bg(¢X, N) & — Bn(N) $PX — fr(N) $QX .
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Thus the assertion of the lemma follows by taking the tangent and normal com-
ponent in (2.7).

Now we study the integrability of the distributions D and D" involved in
the definition of a semi-invariant &'-submanifold of a trans-Sasakian mani-
fold.

Proposition 1. Let M be a semi-invariont & -submanifold of a trans-
Sasakian manifold M. Then the invariant distribution D is integrable if and

only if
X, ¢Y) — h(¢X, Y) = 2B9(¢X, Y)¢&
for any X, YeD.
Proof. From (2.3) and by the fact that ¢Y =0 for Ye D, we get
MX, ¢Y) = ¢QV, Y + Ch(X, Y) + ag(X, Y) £+ Bg(¢X, Y)¢

for any X, YeD.
Thus interchanging X and Y and subtracting we get

from which we have our assertion.

For the integrability of D*, first we have

Lemma 3. Let M be a semi-invariant &*-submanifold of trans-Sasakian
manifold M. Then

2.8) AxY =AyX
for any X,YeD™ .

Proof. From (1.7) using (1.6) we get

9AxY, Z) = MY, 2), $X) = g(V;Y, $X) = —g(V;4Y, X) = (A X, Z)
for any X,YeD™" and Ze TM.

Now we have

Proposition 2. Let M be a semi-invariant £*-submanifold of a trans-
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Sasakian manifold M. Then the anti-invariant distribution D* is inte-
grable.

Proof. Since P is a projection on D so PY =0 for Ye D* and (2.1) gives
¢PVyY = — PAoyX for any X, Ye D *. Applying ¢ to the above equation and
using the fact that Ze T* M, we obtain PVyY = ¢$PA.yX for any X, YeD .
Thus we get P[X, Y] =0, forany X, YeD* by virtue of (2.8), which proves our
assertion. :

Further using Weingarten formula in (1.8) we easily have the following

Lemma 4. Let M be a semi-invariant &*-submanifold of o trans-
Sasakian manifold M. Then

(2.9) A X =apPX — X  Vii= —ogQX
Jor any X tangent to M.

Next, suppose dim TM =m = 2p + ¢ where dim D =2p, dim D* = ¢. Let
(€15 -wvs €, $€1, ..vy $€p, €241, ..y €3p44) De the local field of orthogonal frames

of M, where ¢;eD (i=1,...,p) and eyp,eD* (a=1, ..., q). We have

Proposition 8. There do not exist minimal semi-invariant &*-submani-
folds of a trans-Sasakian manifold M with 8 = 0.

Proof. For any X, Ye TM we have
(X, Y)) = g(h(X, Y), &) = g(4: X, Y)
using (2.9);, the above equation yields
X, Y)) = —ag(¢X, ¥) + 89X, V).
Thus oH) = X traced, = p

where H is the mean curvature vector of M.

3 - Totally umbilical semi-invariant £*-submanifold

The aim of this section is to give a complete characterization of totally umbi-
lical semi-invariant £*-submanifold of a trans-Sasakian manifold.
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First we have

Proposition 4. Let M be an invariont & -submanifold of a trams-
Sasakian manifold M. Then M is a totally umbilical &*-submanifold of M, if
and only if we have

(3.1) MX,Y) = —pglX, Y)¢
for any X,YeTM.

Proof. As M is totally umbilical we have
(3.2) MX, Y)=gX, Y)H
for any X, Ye TM.

From (1.7) we have

VigY = ¢VxY = ag(X, V) + Bg(eX, V).
Using (1.5) in (1.7) we get
VY + WX, Y) — $(Vx ¥ + (X, ) = ag(X, ¥) + Bg(¢X, V)¢.
Comparing normal component, we get
WX, $Y) = $h(X, ¥) + ag(X, Y)& + Bg(¢X, V)£

for any X, Ye TM. _
Since M is a totally umbilical invariant £*-submanifold of M, so for any
X, YeTM, (8.2) yields

9(X, ¢Y)H = g(X, Y)¢H + ag(X, Y) & + Bg(¢X, Y)¢&
from which we obtain
33) 9X, $V)n(H) = ag(X, V)& + fg(eX, V).

Now by taking Y = ¢X in (8.3) it follows that (H) = — 8. Thus we have
H = —p¢ and hence from (3.2) we get the (3.1).

Conversely, suppose (X, Y) = —Bg(X, Y) & Then H = — £ and M is a total-
ly umbilical invariant £*-submanifold of M. This completes the proof.

Proposition 5. Let M be a proper semi-invariant &*-submanifold of a
trans-Sasakian manifold M such that dim D* =q > 1. Then M is a totally
wmbilical submomifold of M, if and only if (8.1) is satisfied for any
X, YeTM.
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Proof. From (2.2) and using (3.2) we get g(X, X) BH = — QA.xX for any
XeD*, from which we get g(X, X)g(BH, BH) = g?(X, BH).

The above equation gives BH =0, as dim D * > 1. Thus from ¢H = BH + CH,
we get ¢H = CH.

Next from (2.3) we obtain

3.4) WX, ¥) = X, Y) — ¢QVy Y — ag(X, V)£ - Bg(¢X, V)&

for any X tangent to M and YeD.

Taking X=YeD in (84) and using (3.2) and BH=0 we get
9(X, X)g(¢H, ¢H) =0 for any X e D, which gives ¢H = 0.

Now, since CH = ¢H = 0, using the fact that n(H) = — 3, we get H = — &,
Thus (3.1) follows from (3.2).

Conversely, suppose (3.1) holds. Then H = — g% and M is a totally umbilical
semi-invariant &*-submanifold of M. This completes the proof.

Finally we prove

Proposition 6. Let M be a semi-invariant &*-submanifold of a trans-
Sasakion manifold M. Then the curvature tensor RY(X, V) of the mormal
bundle annihilates £ for all X,YeD™ .

Proof. Using Vy#= —aQX we have
Vi (V3 &) = Vs (= aQX) = — aVy (QX) VX,YeD"'.
From (2.3) we have
Vi (V& = —a(QVyX + Ci(X, Y) + g(X, 1) 9.
Now by definition

R'(X,V)e=VyVy&—Vy Vi~V né

i

—aVi (8Y) + aVy (6X) + ad(X, V)

]

—a(Vy ($7) = V5 (3X) — ¢[X, YD)
= —a{QVxY+Ch(X, Y) +¢(X, Y)& - ¢V, X - Ch(X, Y) - g(X, V)& — X, Y]}

= —a(¢lX, Y] - 4[X, YD =0

which completes the proof.
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Sommario

Scopo del lavoro ¢ lo studio delle condizioni di integrabilita delle distribuzioni D e
Dt di una £ *-sottovarieta semi-invariante di una varieta trans-sasakiona. Sono anche
caratterizzate le &*-sottovarietd semi-invarionti totalmente ombelicali.
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