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Newlander-Nirenberg theorem
on supermanifolds with boundary (**)

Introduction

Recall that in the classical context the Newlander-Nirenberg theorem states
that on a sufficiently smooth integrable almost complex manifold, there exists
local holomorphic coordinates. This is a statement about interior points on the
manifold. For the case of a boundary point on an integrable almost complex ma-
nifold, such a result is not always true as was pointed out by one of the authors
[5], [6], [7]. The up to the boundary analogue of the theorem is however true in
the presence of pseudoconvexity. A simple proof in the strongly pseudoconvex
case was given by N. Hanges and H. Jacobowitz [4] and a proof for the weakly
pseudoconvex case was obtained by D. Catlin [2].

The super analogue for interior points was proved by A. McHugh [13].
Although our proof is based in part on his ideas for interior points, we have re-
cast the argument in a more geometric language which is closer in spirit to the
previous results. In fact, this article has two main goals: one is to prove the exi-
stence of supercoordinates up to the boundary, in the weakly pseudoconvex
case, for a super integrable almost complex manifold. The other is to develop a
geometric point of view, which clarifies the situation and makes it natural to
consider the eoncept of a super CR-manifold. The authors hope to pursue gene-
ralizations along these lines in a future publication. It should be noted that in
our proof we make essential use of analytical results of Catlin [2] and Kohn [9].

We would like to thank C. LeBrun for helpful discussions.
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1 - Preliminaries

First we recall the notion of a real C* supermanifold [3], [10], [11], [12].
This consists of a triple (X, @, «) where X is a C® manifold, @ is a sheaf
over X of Z, graded-commutative algebras over R and the augmentation map
a: @— C® is a sheaf homomorphism of algebras. The following axiom must be
satisfied, which gives a local splitting: there exists a basis {V} for the open sets
of X such that for every V there is an isomorphism By which makes the
diagram

an 5 o AR
AN
c* (V)

commutative. Here and in what follows we use the notation S(U) for the space
of continuous sections over U of a sheaf S over X. In the diagram above, = is the
natural projection. Such a supermanifold will be said to be of dimension (%, m)
if the dimension of X is x.

A Z, grading of @ means that two subspaces d, and @; are fixed, the even
and odd part respectively, such that

A=GCyDd,.

The elements of @, commute with all elements in ¢, while the elements in @, an-
ticommute with all elements in ;. Let N be the subsheaf of nilpotent elements
of d. It follows from the above diagram that for any open set U in X there is a
map tilde induced by «

@ a(l) — C=(U) S a/NU)

f=f
Sections 7, ..., 7, € @4 (U) are called an even coordinate system if the functions
Tiyeeey Tpe C*(U) form a coordinate system in U in the usual sense. Sections
Syy ...y 8 Of A3 (U) are algebraically independent if the product s;- s, -+ s = 0.
The odd dimension m is defined as the smallest integer 7 such that NV *1=0.
Then m algebraically independent sections s, ..., 8, € @; (U) are said to form

an odd coordinate system. Therefore a section f of A(U), called a C*® super-

function, can be written as f=, fu(r)s* where f,(r)e a/N(U). Here
"

po= (1, .o fhp) is 2 multi-index with u; =0 or 1, and s* = sf1-sf2--- shm». By

(1.1) in a sufficiently small open set U, we can think of a superfunction as an
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expression of the form

f=3 his*
with f, € C” (U). The grading is thus determined by fe A(U)y < f = > Jus®

while fe U),f= 2 f,s*. The collection {r;, s;} will be calfegi Iae super-
coordinate system. liufodd

The algebra of derivations Der @ has a natural Z, grading. Namely a deriva-
tion D has degree j iff D(fg) = (Df)g + (—1Y%&f(Dg) for all homogeneous f,
g € A. Given D e (Der a(U) ), the nilpotent set N is stable under D and therefo-
re, it generates a derivation D of the quotient @/N(U). Thus, D can be thought

as a vector field over U. The correspondence
(Der a(U) )y — Der (C= (1))

D—D

is a Lie algebra epimorphism and we have DF = Df for all fe a(U). In a super-
coordinate system {r;, s;} we have the partial derivations 3/3r; and 3/3s; defi-
ned by

(1.2)

%
'é“TS

K2

“58;;(];3“)= ’ aisi(ﬁ‘s") =y (= 1P fus®

where p=p;+us+ ...ty and s* =sfi-sp2e s shm, The even
{8/3r;} commute and can be thought of as classical partial derivatives; whereas
the odd {3/3s;} anticommute. Locally Der @ is a free A(U)-module with basis
{8/ar;, 3/3s;}, ie., linear combinations of these basis elements with C* super-
funetion coefficients.

A C~ hypersurface in the supermanifold (X, @, «) is defined by an ideal J in
@ which is locally generated by a superfunction r such that exterior derivative
of ¥ is nonzero on the nonvoid zero locus of 7.

The case of a complex supermanifold is entirely analogous. It is a triple
(X, 8, o) where X is a complex manifold, 3 is a sheaf over X of Z, graded-com-
mutative algebras over C, and the augmentation map «: 8 — O is a sheaf homo-
morphism of algebras. Here © denotes the structure sheaf of holomorphie fun-
ctions on X. The local splitting axiom now takes the form of an isomorphism 8y
and a commutative diagram

3V B emearem
aN r

o)
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Such a complex supermanifold will be said to be of complex dimension (n, m) if
the complex dimension of X is #. A local section of B(U), called a holomorphic
superfunction, can be thought of as

g=§%#

where g, =g,(21, ..., 2,) € OU) and 74, ..., 1, are algebraically independent
sections of B (U). The complex supercoordinates {z;, n;} are as before split in
two groups, the even {z;} and the odd {#;} ones. Now the locally free B(U)-mo-
dule Der B(U) has a basis {3/8%;, 3/8n;} with holomorphic superfunction coeffi-
cients. Note that in this context the superfunctions g satisfy the super Cauchy-
Riemann equations % =0, 59 =

9z; an;

From now on we consider a C* supermanifold (X, @, «) of real dimension
(2n, 2m). We proceed next to define the notion of a super integrable almost
complex structure on (X, @, «). First we use extension by real linearity to com-
plexify both the superalgebra @ and the algebra of derivations Der ; let Q¢ and
Der . d¢ denote the respective complexifications. We also use real linearity to

extend the supercommutator defined by
[X, Y] = XY — (-1)!®iDyx,

for homogeneous derivations X, Y, where d(X) denotes the degree of X. If we
have a real supercoordinate system

1 1 1 1 m
{*, ..., 2", y' .., y", st .., 8™t L )

and set 2% = &* +\/—1y*, y, =s*+V/~1t*, we may use the usual formulas
from complex analysis:

8 _ 1,9 3 8 _ 1,0

o _Lce 79 2 =2 (2 4=
2k 2 ok ay" oz 2 dxk

8 _1,8 5 _ 1.8

st — Tl — ) _—— = e e
G Vo h 2 g VT T

Then a super almost complex structure on the C“supermanifold (X, d, «)
consists in the prescription of a loecally direct subsheaf 3C of the sheaf Dery Q¢
of @c-modules over X, of rank » 4+ m, which satisfies

1.3) HNIH=0.
It is called an integrable super almost complex structure if

(1.4) [a¢, H]cac.
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Locally in U the prescription of X is equivalent to prescribing a basis
{Py, Py, ..., P, .}, for 3(T), of sections of Der¢ A¢(U); the requirements abo-
ve are equivalent to

(1.3) PP, ﬁl, e ]Sn+m are linearly independent
n+m
(14) [P;, Pl = 2:1 fi P

where the f ]-’,k are sections of Ag(U). We may futher choose our basis of the
form {Py,..., Posm}=4{Ly,..., Ly, M;,...,M,,}, where L,,..., L, are of
degree 0 and My, ..., M,, are of degree 1, and further rewrite the conditions
above as

(8" Lyy ey Loy Lyy ooy Ly, My, ooy My, My, ..., M,
are linearly independent

[Li, Lj] =ajL,+B5M,
14y (M, Myl = vy Lin + 5 M
[Li7 Mq] zkqur_l_luz%qu

using summation convention, for appropriate sections «f;, 83, vpgs Spg> Aigs H3g-
Note that the first and last equations in (1.4)" involve classical commutators;
whereas the middle one involves the anticommutator. From the grading it follo-
ws that the o, v, i, contain no odd terms and the g3, ¢;,, A%, contain no even
terms; hence the later are nilpotent.

We can associate to the even derivations Ly, ..., L, € Der¢ A¢(U) the C*
complex vector fields £ = Ej as well as their complex conjugates. By (1.3)"
Liyery £yy £, ..., £, are linearly independent in U. Using (1.1) and the fact
that the g8} are nilpotent, we obtain that there are functions a/; = @], such
that

n
(15) (&, &= 2 af .
r=
We summarize this discussion with the following
Proposition 1. A super integrable almost complex structure 3 on the su-

permanifold (X, A, «) induces, via the augmentation map «, a classical inte-
grable almost complex structure 3 on its reduced space X.
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Finally we consider the situation up to the boundary. Let (X', @, «) be a
real C* (2n, 2m) dimensional supermanifold. Consider an open domain X c X'
with a smooth boundary 8X and closure X. Assume we have an ideal & which lo-
cally, in. U c X', is generated by some C* real superfunction r such that d7 = 0
in U and {#=0} N U =03X N U. Here we think of X' as a neighborhood of X,
and (X, @lz, «, ) as being a supermanifold with a smooth boundary. By an in-
tegrable super almost complex structure on it, which is smooth up to the boun-
dary, we mean a super almost complex structure 9 on (X', d, «) which is given
to be integrable only on (X, @, «). Suppose that U is a neighborhood of a point
pedX with XN U= {F<0} N U. Then the situation we are in is that (1.3)"
holds in U but that (1.4)" is valid only for {F<0}NU.

Note that it follows from Proposition 1 that the induced structure ¢ gives a
classical integrable almost complex structure on X that is smooth up to the
boundary 38X.

We may define the Levi form of the super CR boundary structure in terms
of the classical Levi form for the induced CR structure on 9X; we can assume
without loss of generality that &7 =0 for j=1,...,n —1 and that £,¥=1. If
N =1Img, then £,..., £, 1, £,..., & -1, N forms a basis for the complexi-
fied tangent space of the submanifold {7 = 0}. We thus can define smooth fun-
ctions by, the Levi form of our supermanifold, by the usual expression

1.6) %[,ej, ] =0b;N mod {L, ..., L, 1, L1, .., L4 1}

The supermanifold with boundary is said to be strictly (weakly) pseudoconvex if
the matrix (b;) is positive definite (positive semidefinite) on 8X.

2 - Statements of results

Theorem 1. Let (X, Alz, @, 9) be a C® supermanifold of real dimension
(2n, 2m), with a smooth boundary. Let it be equipped with an integrable super
almost complex structure that is smooth up to the boundary and weakly pseu-
doconvex. Then to each point p e X there corresponds a neighborhood V and
super coordinates z; = x; + 1y;. i = 8, + i, smooth on VN {¥ <0} such that
3/8z; and 8/d,, form a basis for the structure 9C on V N {7 < 0}.

Theorem 2. Form = 0 and n = 2 there are counterexamples to the above
statement, in which the boundary has nondegenerate Levi form with exactly one
degree of pseudo-concavity.
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Our proof of Theorem 1 can be read also thinking of p as an interior point of
X; then it merely gives a rephrasing of A. McHugh'’s result [13]. But the goal of
this paper is to concentrate on the local question at a boundary point p € 8X. It
should be pointed out that our result means that for weakly pseudoconvex boun-
daries, the super Cauchy-Riemann equations can be written as

¥ o,

R ank
up to the boundary, instead of merely as

Lif=0, M,f=0.

3 - Initial step in the proof

In order to prove Theorem 1, we shall need first of all to recall the classical
result.

Theorem 3. Assume that n =2 and let Zy, ..., Z, define at pe R™ o C*
integrable almost complex structure on {r < 0} which is C* up to the boundary
{r = 0}. If the structure is weakly pseudoconvex, then there exists a meighbor-
hood U of p and functions z',...,2"eC*(U) such that Z;z*=0 1in
{r<0}NU, for j,k=1,...,n and dz', ..., dz™ are linearly independent.

A simple proof of this theorem in the strictly pseudoconvex case was given
by N. Hanges and H. Jacobowitz {4]; a proof for the weakly pseudoconvex case
was given by D. Catlin [2].

Applying this theorem to the almost complex structure defined by the vector
fields £; above, we can find complex coordinates Z, ..., 2" in a neighborhood U
of p, so that afther replacing the L; by suitable linear combinations, we
have

a .
L= 2 forall i=1,...,n,
& 7"

on U_ = UN {7¥<0}. Choose complex even coordinates z!, ..., 2" such that z°
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corresponds to Zz° via (1.1). It then follows that

Li:: ‘Q“‘ +A,

Jz*

where A is in the kernel of (1.2) on U_. On the other hand, we can select an odd

coordinate system s', ..., s*™ such that, for some real even sections f}, and gy,
we have
a m . a .
M;= —é—s—j-+k§1(];-k+zgjk) Py +B J=1,...,m

for some derivation B which is in the span of N - Deres d¢(U). The condition
(1.8)" on the M/’s implies that the matrix (g;,) is invertible on U_. If we perform
the linear change s; —t;, 8j.,—>fijte + b+ m, 1 <7 < m, we see that f can be
assumed to be identically zero. Let (k) be the inverse transpose of the matrix
(g#) and define new odd coordinates by taking the real and imaginary part of 7,
where 27/ = s7 — i%hjks’”m. It follows readily that on U_

M;= 9 4B,
O’

where B is a derivation in the span of N - Derg dg(U).
With this choice of supercoordinates made, we have

L= 2 44302 4802y 0oy pao o

6 dz? 927 9%/ 9 T
M= yapr & 4 pit &y et O L pur O

oy’ 9zt I It a9

for some sections A", B}»", C#" and D{" in the complexified nilpotent ideal
Ne¢. In order not to burden the notation, we shall use N for N¢. We now use in-
duction and the filtration

0 = N2+ 1) — NE(U) — ... = N(U) = &)

of ideals in d¢(U) to improve our guess of supercoordinates, and eliminate the
coefficients A", C#", above. Indeed, assume that (3.7) holds with these coeffi-
cients in N?. The sections A7 ° and cs ! are even, while the sections Af' and
C#? are odd. So by changing our derivations to

L= AL+ CFM) M= (AP L+ CPM)
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we obtain a new family generating the same super integrable almost complex
structure for which (3.7) will hold with the coefficients A}" and C/"" of 9,: and
9,0 In N?* 1. Iterating the procedure m + 1 times we obtain supercoodinates, the
real and imaginary part of (27, »9), such that on U_

g0 2 4 pet -2 1pnl p 2

8 =
o5 an Toay T a7t ErL

38) L=

for some other choice of coefficients B ", D" in N. The question now is how to
eliminate them. The analysis for this has to be finer because to get to this point,
we have only used (1.5), which is not a sufficient condition to prove the
theorem.

4 - The second step of the proof

Consider the coefficients in (8.8). Since they are nilpotent and of degree 0,
the sections B % and Dy ! must vanish modulo N2. Furthermore, modulo N we
have

DY’ =aln* +bL7* B]-i’1=c;t77t+dji7;t

for some functions a, b, c and d} in U. Therefore, neglecting higher order
nilpotent terms, we have

[L;, Mj]1= ~[a} + (chn' + Jmt)azp(a r;’ﬂ+b1kn’°)]——
o

+[8,:(chn' + di 1Y) + (af 0" + b0 d”] .

Since this bracket must be in the span of L;, M,, it follows that the sections af]’-
must vanish identically, for all 4, j, ¢. But then looking at the bracket [L;, L;],
we obtain

[Li, L) = [8,165 — 9bf + (S bb) = qubr)]nga— mod N? Derg dg(U).
Nr

Once again, since this bracket must be in the span of L;, M;, we conclude
that

(49) azib]t az’ + (2 bz% b;;l - 2 b]% b;) =0
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It is now convenient to switch our viewpoint to superforms which behave co-
variantly under coordinate transformations. Recall that if 7, s are supercoordi-
nates, the super exterior derivative is computed by

d=dri & +ast 2
ort ds
In the coordinates found so far the forms 6%, o* dual to L;, M, can be expressed

on U_ as
(4.10) 0t =dzi+ dp*Ci oFf = dn* — dz" 9’ bk mod N2QE(U)

where bj, is the conjugate of the coefficient above, and C] is some nilpotent sec-
tion over U, which when expanded as »' f}, + 7'gj;, implies that f}, = —d}; and
gl = —c. Here Q(U) denote the space of C® complexified super one-forms
in U.

In term of the superforms 6 and ¢f, the integrability condition (1.4)" is
equivalent to the fact that their super exterior derivative is in the ideal genera-
ted by them. Using this condition on 6% = dz' + dn®»' £, + dn*7' gi;, we con-
clude that g/, + g, = 0. Consequently, if we take as our new even set of coordi-
nates the real and imaginary parts of w’ =27 + %' fi, + 755 gf,, we obtain
that on U_

R L mod N2QL(U).

If we change the form 6%, to 0* + 3*¢' £, we do not change the super almost
complex structure and we get

6 = daw? mod N2QL(U).

We rename the w"s as z”s. Thus we have the desired result for the forms 6,
namely on U_

6t = dzt mod N2QL(U).

In order to make an analogous simplification in the ¢/, we consider U x C™
with the coordinates z!, ..., 2" we have found in U, and the standard coordi-
nates w!, ..., w™ in €™ On U X C™ we introduce the complex vector fields

4.11) Wi= 2. Zzi=

The brackets of the W?’s are clearly zero, as well as the brackets of the W's
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with the Z%s. That the brachets of the Z"s are all zero in U_ X C™ follows from
(4.9). Thus in U_ X C™ we have a classical integrable almost complex struc-
ture.

Proposition 2. There exists a neighborhood G of (p, 0) in U X C™, such
that the holomorphic coordinates z*, ..., 2" can be completed to a holomorphic
coordinate system z', ..., 2", v, ..., o™ in G_ = G N (U_ X C™) with respect to
the structure defined by (4.11).

This proposition follows from Theorem 3 by observing that the Levi form of
dU_ x C™is positive semidefinite in a neighborhood of (p, 0), because of the po-
sitive semidefiniteness of the Levi form of 3U._.

The functions v’ are annihilated by W*and thus »' admits an expansion of the
form

vt = b+ hlw’ + o(|w]).
Since this function must be annihilated by Z* it follows that
3zihl = —bihE.

The linear independence of the forms dz¢, dv/ implies that the matrix (k) has
maximal rank. By a suitable shrinking of U_, the statements about % hold
on U_. This provides us with an up to the boundary version of a lemma of
McHugh [13], which will suffice to continue the proof.

Indeed, on U_ mod N2Q&(U_), we have

hEol = hEdn? — hFdztbin' = hfdn! + dz' 0z hfn' = d(Rfn?) = 6'8.hf 4" .

Hence by changing the forms ¢* to hfe’ + 6'8,1h¥n® and leaving the 6”s the
same, we do not change the given structure on U_ . Setting hf 7’ as our new su-
percoordinate n*, we obtain that on U_

oi=det of =dp mod N2QL(U_).

We remark that this suffices to show that N/N?2is a sheaf of sections of a
holomorphic vector bundle over U_ . Indeed, if we have a change of odd coordi-
nates that preserves the super almost complex structure, which mod N 2 we can
write as

= phnt + ali
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then ¢’ = pln* with p} holomorphic. This follows by using the exterior deriva-
tive and the fact that the conjugates of L;, M; would have to be in the annihila-
tor of d¢', which implies

&2 97 ply* + d7'gf =0 mod N*Q¢(U).
Here ¢f =0 and 3;p}=0.

5 - Last step in the proof

In order to finish the proof we shall need the theorem below, which uses the
work of Kohn [9] and which is essentially in Amar [1]. We prefer to give our
own proof. ;

Consider a C* weakly pseudoconvex hypersurface =.in C”, and a point p e X.
Near this point we represent X as {o = 0} with do = 0 and the surface weakly
pseudoconvex from the side {¢ < 0}. If U is a neighborhood of p in C”, we indi-
cate by U_ the set UnN {p < 0}.

Theorem 4. Given a fundamental sequence {U} of neighborhoods of p,
there exists a corresponding fundamental sequence {V} of neighborhoods of p
n U-; ie, each VcU._ with the following properties:

1. The {VNZ} form a fundamental sequence of neighborhoods of p in Z.
2. Each V'is a compact domain having a C* weakly pseudoconver boundary.

8. Given a C* d-closed (0, 1)-form fin U_, there exists a corresponding C*
Junction u on V such that du=fon V

Note that this theorem gives a solution % which is C* up to the boundary
near p. In order not to interrupt the flow of ideas, we proceed with the proof of
Theorem 1, and postpone the proof of Theorem 4 until after that.

We use an induction argument. Indeed we now have coordinates such that
for some sections B}, C{, Df and EF in N', on U_ the following relation
holds

. 0° = dz* + dz' B + dn?C;}
(5.12) . mod N!*1QL(U)
of = dp* + dz’ D} + dpeE}
with [ = 2. Given that (5.12) is true on U_ we want to prove that such result
holds for [ replaced ! + 1. We assume that [ is even, as the case where [ is odd
follows by the same argument.
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If we expand the superforms 67, ¢* modulo nilpotent terms of degree [ + 1,
we get

60" = dz' + A&7 0" by, + d;“;qW]ﬁJcé,z,J
of =dn* + d& 0" df 1, + dninTylel 1,

where in each sum, I, J are multi indices such that |7| + |J| = l. The integra-
bility condition readily inplies that the only nontrivial contributions in the ex-
pression above correspond to the cases where the multi index J is 0. So we actu-
ally have:

0° =dz + dz0nlb} ;o + dpinicl

‘ Lo RN L0 N L (D).

o' =dn*+ d&ndf 10+ dnnef 10
Since d7?%” is odd while dz7 5’ is even, we also conclude that ¢! ; o and d};  are
both zero, and we have

60 =dz’ + d27n'b} 10 oF=dnpF+dpinlef mod N**1Q¢(U).

If we now compute d¢® from this expression, we conclude from the integra-
bility condition that the superform dz/ A dz*9b}; /82" must be zero on U_.
Thus the (0, 1)form dz7b; ; o is 3 closed on U_ . Using Theorem 4 we obtain func-
tions kf on some neighborhood of p such that 9hf = dz'b}; on U_. We switch
our super coordinates to z®+ kin’ and n* + 7'n’ef; . Then we have that

Y| 5. . o
dzt = 0"+ 6/ —= 9l + (=171 oy b
o2 P ned WD)
dn' =o' = (=1Y"e0797n ¢y 1 o

for some new neighborhood U. possibly smaller than the one in (5.12). Here,
81, = =1 and P’ =7n'. If we now replace the superforms 6¢, o' by the linear
combinations on the right in the above expression, we do not modify the given
integrable super almost complex structure, and (5.12) holds with [ replaced by
1+ 1. This completes the induction and the proof of Theorem 1.

Proof of Theorem 4. We can assume that the full complex Hessian
of o is positive semidefinite on X, by replacing o by e’ — 1 for some 1> 0
sufficiently large. We can choose p to be the origin and assume that
o = h(xy, 29, ..., 2,) — Y1, where k vanishes to second order at 0. Now we have
that 33 = 0 in a full neighborhood of p.

Given the set U, we choose a sufficiently small ball B centered about the ori-
gin which we write as {o <0} for ¢ = |z[} — <.
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For some ¢ suitably fixed with respect to ¢, we shall use a nonnegative even
cutoff function x(¢) e C;° (R), with support in [ —24¢, 28] such that:

1. x(#)=1 on [, d].
2. y0) =0 [—-24, 0]

3. x(t) has only one inflection point at (— %, %) in the interval [—2¢, 0]
36

and on [— 5 0] we have —M < %(f) <0 for some M = M(3).

Our V will be constructed as a domain of the form V= {¢ <1} where

o= (x(p)e™ + x(qp)e”?)%, for some n sufficiently large which will be chosen
later.

It is clear that = o when ¢ < ~2dand —é<p<0,and ¢ =p whenp < —2¢
and —4¢ < ¢ < 0. Choosing » large enough we can make dy # 0 when ¢ = 1, and
also ¢ < 1 when p < —¢ and ¢ < —4. Observe that what this accomplishes is to
round the corners near the intersection of ¥ with 9B.

We proceed to study the Levi form of the boundary of V. In order to show
that the boundary of V is weakly pseudoconvex, it will suffice to show that the
Levi form of ¢ =1log ¢ is positive semidefinite on the boundary of V. If
A =x(p)e™ + x(p)e™, then

= 1 - L —
08¢ = ————nAzaA/\aA-i-nAaSA.

The first term in the right side of the expression above does not contribute to
the Levi form, because on ¢ =1 the (1, 0)-vectors annihilated by dA are pre-
cisely the (1, 0)-vectors tangent to the bondary. Thus it suffices to show that
30A=0 at ¢=1.

Obviously we need only consider the corners where ¢ = 1 concides neither
with ¥ nor 8B. In the region where —é<p <0 and —4¢ < ¢ <0 we have that
80A = 33(e™) + 93(e™), which is positive definite in all directions. In the region
where ~¢<o<0 and ¢ < —4, we obtain that

90A = 33(e™) + (ny + )€™ 8¢ + (n2y + 2ny + ¥)e™ dp A Jo

where y = y(¢). We can make the above positive semidefinite in all directions by
choosing % > \/2M. In the remaining region —é < ¢ <0 and p € —¢ the same
argument with the roles of p and ¢ interchanged shows that 834 is positive defi-
nite in all directions.

We now have produced a compact domain V¢ U_ having a C” weakly pseu-
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doconvex bondary, which coincides with X in a neighborhood of p. Given a -
closed (0, 1)-form f that is C® on U_, we may use the result of Kohn [9] to
write its restriction to V as du for some function » which is C* in V. This com-
pletes the proof of Theorem 4.

6 - Proof of Theorem 2

Suppose we have a real 2n dimensional manifold X with smooth boundary,
and that Ly, ..., L, are complex vector fields on X which define a classical inte-
grable almost complex structure smooth up to the boundary. Given m consider
the supermanifold (X, @, «) where @ = C* (X) ® A*R?*™ and « is the natural
projection onto C®(X). Choose real coordinates (s,t) for R?®" and let
M, = %
bra. The family {L,, ..., L,, My, ..., M, } defines an integrable super almost
complex structure on our supermanifold which is smooth up to the boundary.

Suppose that in some neighborhood of a boundary point there exist superco-

(% - i%) be the odd derivations of the complexified exterior alge-
3

ordinates (z, ) so that a—a; ) % generate the super almost complex structure.
2 ]
Then coordinates 27, ..., 2" corresponding to z!,..., 2™ via the augmentation

map give classical holomorphic coordinates up to the boundary point in X. Thus
we have a counterexample to Theorem 1 whenever we can produce a counterex-
ample to the existence to these 2’s.

For Levi signature of the form —0+ +...+ such counterexamples were
found in [5], [6], [7]. By a refinement of these results, which involves a bending
in the fiber direction, similar counterexamples can be constructed having Levi
signature — + +... +. The reader is referred to the paper of Hill and Naci-
novich [8].
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Sommario

St ottiene una versione del teorema di Newlander e Nirenberg per supervarietd
complesse a contorno debolmente pseudoconvesso. Si mostra inoltre che esistono con-
troesempi net quali si ha esattamente un grado di pseudoconcavitd.
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