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Introduction

The main object of this paper is to obtain various equivalent expressions for
the variational capacity relative to Dirichlet forms and give an integral repre-
sentation for the correspondent equilibrium potential.

Section 1 is devoted to expose the essential notions and properties of the
variational capacity relative to Dirichlet forms. It summarizes some important
results obtained on this subject by M. Fukushima [4].

Along classical lines (cfr. V. G. Maz'ja [7]), in Section 2 equivalent expres-
sions for the variational capacity are showed.

Section 3 treats the integral representation for the potentials of measures of
finite energy integrals, in terms of the Green’s function. Additional hypotheses
are required in this section to make use of some results proved on this subject
by M. Biroli and U. Mosco [1].

Finally the concern of Section 4 is with another expression for the variation-
al capacity in the particular case of square Hormander’s operators.

1 - Preliminary hypotheses and properties

Let X be a locally compact, Hausdorff topological vector space and let m
be a positive Radon measure with suppm = X. Consider the Hilbert space
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H=L2(X, m) and let a be a Dirichlet form on H, that is a(u, v) is a form defined
on a dense subspace D[a] of H, which satisfies the properties:

(1.1)  alu, v) is bilinear, symmetric and positive definite,
(1.2)  alu, v) is closed, that is Dla] is complete with respect to the intrinsic
1 1
norm a;(u, u)? = (alu, u) + (u, w))? , where (-, -) denotes the inner
product of H,

(1.3) alu, v) is markovian, according to [4].

The structure (Dlal, @) is said a Dirichlet space.

Let Cy(X) be the space of all continuous functions % on X, with

supp % ¢ X.

A core of o is by definition, a subset C; of D{a] N Cy(X), dense in Dfa]
with @; norm and dense in Cy(X) with uniform norm. A further assumption
on a is

(14) alu, v) is «regular», i.e. a possesses a core Cy.

In this case we say (D[al, a) to be a regular Dirichlet space.
Now we expound some consequence of (1.1), (1.2), (1.3), (1.4), proved in [4].

To make exposition easier we put < = Dfa], so we deal with the Hilbert
space (3, a;). Let O be the family of all open subsets of X. We define, for A € 6
the set Ay ={ueJ|u=1 m-ae on A} and

cap;(4) =inf a; (u, ) for ueA ,and A, =0,

(1.5) .
cap;(A) = + fA,=0.

For any set @ c X, we put
(1.6 cap; (@) = Aeg,lgcA cap; (4).

The capacity defined by (1.5), (1.6) is a Choquet capacity (see [4], Theorem
3.1.1).

The notions of property quasi-everywhere (q.e.) valid and of quasi-continu-
ous (g.c.) function are standard. Given two functions % and v defined on X, we
say that v is a quasi-continuous modification (q.c.m.) of u, if v is q.c. and u = v
m-a.e. Every u e I admits a q.cm. on X (see [4], p. 65, Theorem 3.1.3) and, if
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two q.c. functions u, v coincide m-a.e. on X, then they coincide also q.e. ([4],
Lemma 3.1.4).
For any Borel set B

cap} (B)=infa,(u,u), for ueAy if AY={ueI|a=1 q.e. on B} =0

1.7
D cap}(B)=+ o if A}=0

and the unique element e € § such that a, (ef, el) = cap}(B) verifies also the
properties (cfr. [4], p. 75)

(1.8) el=1 qe.onB dl(eg, )20 foranyveS, v20 qe. on B

where v denotes a g.cm. of v.
Moreover ([4], Theorem 3.3.1)

1.9 cap; (B) = cap(B) for any Borel set B.

A positive Radon measure x on X is said to be of finite energy integral if
(1.10) S v@) | du(x) < eVay(v,v) for any ve I N Cy(X)
x

where ¢ is a positive constant. Let S; be the set of all measures of finite energy
integrals. Then (cfr. [4], Lemma 3.2.2 and Theorem 3.2.2)

(1.11)  for any p e S; there exists a unique function Ui e such that

a (U, v) = [3(x)pu(dz) for any ve .
x

The function U{ is called the (1-)potential of the measure u. If weS;, then

(1.12) o1 (@) = a; (UT, UY) =Xf Ut () w(de)

and we call a;(u) the (1-)energy integral of w.

For any Borel set B c X, there exists a unique measure v e S; supported on
B , such that eg is the (1-)potential of vg. vp is called the (1-)equilibrium measure
of B and el = U} is called the (1-)equilibrium potential of B (cf. (1.8) and [4],
Lemma 3.3.1). Therefore

(1.13) cap; (B) = a,(e3, e8) = a; (U}*, Uy®) =Xf U2 () vg(dw) = vp(B).

A Dirichlet space (3, a) relative to L2(X, m) is said to be transient, if there
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exists a bounded m-integrable function g, that is strictly positive m-a.e. on X
and such that

(1.14) [u]|gm(de) < Valu, w) for any ueS.
x

The function g is called a reference function of the transient Dirichlet space
(3, a).

It is worth remarking that (3, a,) is a Hilbert space, whereas usually (3, a)
is not even a pre-Hilbert space. However, if (3, a) is transient with reference
measure m, it is possible to extend (S, a) to a Dirichlet space (S,, a) relative to
L2(X, m), taking the completion of (3, a) with respect to a. (3., a) is a Hilbert
space transient with reference m. A careful definition of extended (transient)
Dirichlet space with reference measure m can be found in [4], p. 35.

If (S, @) is a transient space we can define the capacity cap; with respect to
(3, a;) and, moreover, a capacity cap, (capacity of order zero) with respect to
(., @), simply denoted by cap. The properties and notions relative to cap,, we
mentioned before, hold for cap as well (cf. [4], p. 73).

With regard to cap, Sy will be the set of all positive Radon measures of finite
(0-)energy integrals, as well as U" will be the (0-)potential of the measure
weSy, and alw) = a(U*, U*) =Xf U*u(dx) will be the (0-)energy integral of u.

Here ¥ denotes a (0-)q.c.m. of v € ,. Moreover, to any Borel set B ¢ X we asso-
ciate the relative (0-)equilibrium potential and measure.

To complete our speech we want to mention Example 1.5.2 of [3], where cap
is the variational capacity.

From now on we consider only tramsient spaces and their (order zero)
capacities.

Let X; be an open subset of X such that (D[a] N Cy(Xy), a) is a transient
space. Then the extended transient space of (D[a] N Cy(Xy), a) will be denoted
by (D[ Xy], @) or simple by Dy[X;]. Later on, cap will denote the (order zero)
capacity relative to Dg[X,], and S;, U", ... will be referred to Do[X;] as
well.

Let Do[ap]* be the topological dual space of Dy[X,]. The usual Hilbert tech-
niques assure the existence, for any T e Dylx,]*, of a unique solution v € Dy[x,]
to the problem

(1.15) a(u, v) ={T,v) ue Dylw,] for any v e Dy[x,]

where (-, -) denotes the duality between Dy[xo]* and D,[X,]. If % is the solution
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of (1.15) we will say that w solves the formal equation Lu =T and
G: Dylxe]* — Dylay] will be the Green operator, which to any T e Dy[ap]* asso-
ciates the relative solution u e Dy[x,] of (1.15).

We shall say that a positive Radon measure on X, belongs to Dylxy]*, if
there exists a constant ¢ > 0 such that

I fq'}'#(dx)] = C”’U“DQ[IQ] for any v EDO[:BO]'
If we8y, then g e Dyl[xy]* and G(u) = U*. In fact

[ Jou(dn)] = |a(U*, v)| < U*|pyizer |91 pptzey  for any v e Dylw,].

2 - Equivalent capacities

Because of the capacitability of cap, we shall devote ourselves to find equiva-
lent expressions for cap (K), where K is a compact subset of X;. We shall deal
mainly with classical techniques.

From now on ug and ug = U#¥ will be the equilibrium measure and, respec-
tively, the equilibrium potential of K, whereas Sy (K) will be the set of all mea-
sures u €8y such that suppu ¢ K.

Proposition 1. Define cap (K)=sup {u(K)|u € So (K), U*(w)<1q.e.on K}.
Then cap (K) = cap (K).

Proof. We have uge Sy(K) and U**(x) <1 q.e. on K. Therefore cap (K)
= ug(K) < cap (K). Vice-versa, if u e Sy(K), T“x) <1 qe. on K, if ¢ & Dylx,]
and =1 qe. on K, then w(K) < [3u(dx) < |lo|lp,ix, ¢ pyix,s- On the other
hand :

lelBycxore < &G, G() = (1, G(w)) = [ T*p(de) < w(K).

1
2

Proposition 2. Define cap (K) = sup {u(K) |z € So(K), a(p)® < 1}. Then
L jrm—
cap (K) = cap (K)*
T 1
Proof. If ue Sy(K), CL(‘u)z 1, pe Dy[Xp] and ¢ =1 g.e. on K, then the

same method of the second part of the proof of Proposmon 1 gives
1
2

(K) < |||l pyx, henee cap (K) 2 = cap (K) Vlce—vel sa cap (K) 2 MK(K) =vx(K),

1
2

where vg=pug/ux(K) and a(vg) —a,(/.LK) /‘uK(K) < 1. Then cap (K)2 < cap (K).
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Proposition 8. Define cap* (K) = (inf {a(u) | € Sy (K), w(K)=1}"*
= sup {a(u) | u e Sy (K), w(K) =1}. Then cap* (K) = cap (K).

Proof. If peSy(K), u(K)=1, pe Dy[X;] and ¢ =1 q.e. on K, then

1
1 < [pu(de) < [lollpyx el ooy < Nl byt () 2

(see the second part of Proposition 1), hence cap(K) = cap*(K). Vice-ver-
sa, if cap(K) >0, then vx=cap(K) luge Sy(K) and vg(K) = 1. Therefore
cap* (K) ™! < a(ug)(eap (K)) ™! < (eap (K))™!. If cap (K) = 0, then the first part of
this proof gives a(u) = + © for any p e Sy(K), u(X) = 1.

Proposition 4. Define cap (K) = inf { w(K)|u € Sy(K), U* =1 q.e. on K}.
Then cap (K) = cap (K).

Proof. We have cap(K) < ux(K) = cap (K). Vice-versa, given A e S (K)
such that U* = 1 q.e. on K, then

cap (K) < [ U ug(de) = a(UPx, U) = a(U?, U#X) = [ U< x(dz) < MK)

hence cap (K) < cap (K).

3 - Representation of potentials

Assume the form a has the strong local property (i.e. a is of diffusion type),
that is, aceording to our notations in 1

B.1) alu,v)=0 for any u, ve I with v constant on supp u.
1 1

If the norms a, (u, w)% and a(u, u)? are equivalent (and S is transient) then
(8.1) assure that the support of the equilibrium measure (of order zero) of a Borel
set B is contained in 9B.

In fact let vz and ep be the equilibrium respectively measure and potential
of B. If the sequence u,, belonging to the core C;, approximates u in the
a-norm and u, = 1 on B, then, for any v e J with supp v ¢ B, a(u,, v) =0. So
o, v) =0, or [Vvg(dx) = 0.

If b is a regular Dirichlet form, then b(u,v) = Xf wy (u, v)(dx), for any
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u, v € D[a] where p;, is a Radon-measure-valued, positive semidefinite, bilinear
form on D[b], uniquely associated to b, called the energy measure of b ([4],
p. 152).

A regular Dirichlet form b has the separation property if (C; being the core of
Db]):

Ve, yeX, x #y, o e C; such that uy(e, o) <m on X and o(x) = o(y).
Assume
(8.2) a has the separation property.
This enable us to define an (intrinsic) distance d =d,: X X X — [0, + «] as
d(x, y) = sup {o(x) — o(¢)|p € C1, my(p, o) Sm on X}

and the related intrinsic balls B(x, r) = {y e X|d(x, ¥) <r}.
We assume also:

(8.3) the topology generated on X by the metric d is equivalent to the initial
topology

(8.4) the measure m has the doubling property with respect to the intrinsic
balls.

(8.3) and (8.4) give to X the structure of homogeneous space according to [2].

Finally we assume Poincaré’s and Poincaré-Sobolev’s inequalities for all
functions locally belonging to D[al.

Let X, be an open, connected, relatively compact subset of X. There exist
some constants ¢’, ¢" > 0, s > 2 and an integer k = 1 such that, for any x € X,
and r > 0 with B(z, r) c X, the following inequalities hold:

8.5) [ Ju—u]’m(dz)<c'r [ po(u,u)dx
Bz, %) B(x, 7)

for any % e Dy, [Xy], where u = —-1—,r [ um(dx)
m(B(z, %)) Bz, T)

1

N S s R 1
B o, 1A SO [ wa(u, u)(dx)

1
2

3.6) (

for any u e Dy, [X,], where supp % c B(zx, 7).
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A function » belongs to D, [X,] if it is measurable on X, and there exists
w e Dy.[a] such that ¢u = gw m-a.e. for every ¢ e C;, supp o cX,.

D, [a] denotes the space of all measurable functions w on X such that for
every open, relatively compact subset A of X there exists a function v € Dy, [a]
such that w =v m-a.e. on A. Moreover the measure p(w, w) is defined as
1; w(w, w) = 1, ulv, v).

From now on £ will be an open set and X; = B(x,, Bp) will be an intrinsic

- R
ball of center x, and radius R, such that Q c B(z,, TO)’ B(ay, By) cX.
1 1

From (8.6) for s = 2 we have a; (4, u)® = a(u, u)? for any u e Dy[X,]. Here
(Dy[X,], @) or simply Dy[X,], is a transient space. As in 2, Dy[X,]* denotes the
topological dual space of Dy[X,] and we are interesting again to the solutions of
the problem

3.7 a(u, v) =(T,v) ue Dylx,] for any ve Dy[x,]

where (-, -) denotes the duality between D,[X,]* and Dy[X,].
On account of (1.1)-(1.4) and (3.1)-(8.6) M. Biroli and U. Mosco [1] proved
that the solution % to the problem

(3.8) alu, v) = [ fom(dz) u e Dylz,] for any v e Dylay]
Xo

fe L?(Xy, m), p > po, Py suitable structural constant, is locally Holder-continu-
ous in X, with respect to the intrinsic distance, and » has a representation
formula

(3.9 w(@x) = [ G"(y) f(y)m(dy) m-ae..

Xo
The function G*(y) € LI(X,, m), % + % =1, is the Green function relative to
X, with singularity at =x.
~ Our purpose is now to extend the representation formula (3.9) to the so-
Iution u e Dy X;] to the problem

3.10) a(u,v) = [vu(dx) uweDy[X,] forany ve Dy[X,], e Sy, suppuc.
Xo

To this end we shall follow the classic method of [6]. It lies in proving that u is
the weak solution vanishing on 3X; of Lu = u according to the definition below,
and proving afterwards the representation formula for every such solution.

We continue to denote by G: Dy[Xy]* — Dy[X,] the Green operator, relative
to (3.7).
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Definition 1. For peS, we shall say that u e L'(Xy, m) is a weak sol-
ution vanishing on 08X, of Lu = u, if and only if

8.11) Xf wym(dw) =Xf G() u(dw)

for every ¢ e C(X,). (There is at most one solution to this problem).

Remark 1. If u solves (8.10) for a certain u € Cy, then u is the weak so-
lution vanishing on 8X; of Lu = u, according to Definition 1. In fact, if ¢ € C(Xp)
and o = G(¢), then alg, v) = [Yvm(dx), for every ve Do[X,]. If v =wu, then
ao, ) = [Yum(dx). Moreover a(u, w) = [wu(dx), for energy w e Dy [Xol If
w = ¢ then a(u, p) = [¢u(dx). Therefore Xf uym(der) =Xf G(¢) w(d).

0 0

Theorem 1. If pe Sy, suppu cf, then
(8.12) ww)= [ G*(y)pldy)

% & supp p
is finite m-a.e. and it is the weak solution vanishing on 30X, of Lu = .

Proof (see [6], Theorem 6.1). Take o = G({), ¢ e C(X,). From (3.8) and the
symmetry of the Green function

(3.13) o(y) = J G (y) $(w) m(de) .

Because of the local Holder-continuity of ¢ proved in [1], we have ¢ = ¢ q.e. on
supp ¢ Then

Joulde)= [ ou(dx)+ [ opudr)= pfp pu(dx).
suppu

Supp X — suppu

Hence, from Fubini’s theorem, [ G®(y)u(dy) exists m-a.e., and

¥ e suppg
Jou(de) = {{ G (y) ¢(x) m(de) u(dy) = [ ¢(x) ulx) m(dz) .
Y & suppe

4 - The case of Hormander’s vector fields

In this case we assume m being the Lebesgue’s measure, and D[ X,]=H}(Xy
will be the closure of Cy° (X,) with respect to the norm coming from the form

q

a(u, v) = 2 Xf X; (w) X; (v)

1=
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Xi;, i=1, ..., q are vector fields satisfying Hormander’s condition [4] and
Xy = B(x,, Ry) is an intrinsic ball contained in an open subset X of RY.

The topological dual space of H{ (X,) will be denoted by H ~!(Xj). Formally
a(u, v) = (Lu, v), where the operator L: H} (X,) — H ~1(X,) is defined as

q
L= 2 X#X)
and X denotes the formal adjoint of X;, for any i=1, ..., q.

Let’s now suppose

(4.1)  the Green’s function of X, has integrable «first order partial derivatives»
XiG¥, 1=1, .., q in X,.

Then any function ¢ e C5” (X;) admits a representation formula in terms of the
gradient of G® and the gradient of ¢ too. In fact, from the representation formula
(3.9) we have

q
4.2) o(x) = [G*(y) Lo(y) dy = gl JX:G* () X;p(y) dy .

In this way we associate to any function ¢ € Cy° (X;) a unique vector

q
(w1 = X;0)-1e(Cy (X))i-, such that go(x)=421 [ X,G%w; .

=

This application can be inverted. Given w = (w;){-; e (C5° (Xp)){~1, put
q
4.3) G'w)@) = 2 [X;G*w;.
i=1

We prove G'(w) e C5° (X,). Let T'e H '(X;) be the divergence of w, that is
g

T= 2 X#(w;) and let u be the unique element % e Hg (X;) such that Lu=T.
i=1

This means that

q q
_21 TXi(w) X, (v) =(T, v) = 21 Jw;X;(v) for any ve H} (X,).

q
Then w; = X;(u) + ¢;, i =1, ..., q, where >, X/ (¢;) = 0.
=1
In particular, because of T e Cy (X;) and L is hyphoelliptic, we have
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U e C’()°° (XQ), then Sb'i € C()w (Xo), 7= 1, . g and
q q
G'(w)(x) = _21Xi(G”)Xi(u) + -21 [ X (G®)y;
where
q q q
3 X(G)Xw e Cf (%) and 3 [X(GIyi= ]G 2 X# () =0.

Hence G'(w) e Cy5° (X;) and G'(w) = . Moreover
”u”H&(XD) = “T”H“(Xo) s C”w“(LZ(Xo»q—

R
Therefore, for K compact subset of £2 c B5(xp, :ﬁo) all the solutions of the fol-
lowing extremal problems are equivalent (to the variational capacity
cap (K)):

inf {||el|}3 ey |9 €Cr (X)) and ¢ =1 on K}

inf {|w|fZ.2ceyy 1w e (G5 (Xp)? and G'(w) =1 on K}

inf {3, |%eH}(X) and %=1 qe. on K}

inf {|F|Zey |Fe(L2(X)) and G'(F) =1 weakly on K}

where G'(F)=1 weakly on K means that there exists a sequence

g

w’ e (Cg° (Xy)? such that G'(w”)x) = > [Xi(GHw!=1on K and w’— F in
i=1

(L2 (Xp))*.
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Sommario

St dimostra Uequivalenza tra diverse definizioni della capacita variazionale associata
a forme di Dirichlet. Si stabilisce una rappresentazione integrale per i potenziali di
misura ad integrale dell'energia finito.



