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1 - Introduction

The present paper deals with the problem of equilibrium states in the kinetic
theory of gases, and of their stability. In such a basic and classical investigation,
the Boltzmann equation plays undoubtedly an essential role [4], [10]. On the
other hand, because of its peculiar features, the Boltzmann equation has resi-
sted solution for very long time.

The first significant nonequilibrium analytical solutions were discovered in
1976 in the isotropic and space homogeneous case [3], [7], and the first global
existence proof is very recent [5]. Also quite recent is the appearance in the li-
terature of the so called extended kinetic theory, in which gas particles are allo-
wed to undergo other kinds of binary interactions, in addition to elastic scatter-
ing between themselves. In this nonconservative frame several physical phe-
nomena of practical interest, like the presence of a background medium and of
external sources, absorption collisions, chemieal or nuclear reactions, can be de-
scribed. The interested reader is referred to [8], where also previous work is
reviewed.

Of course, solving the extended Boltzmann equation is a much harder task
than solving the corresponding standard equation, which is known to be quite
cumbersome to attack even from a numerical point of view [2], because of its
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five dimensional integral over an unbounded domain. The role of the Boltzmann
models in the study of kinetic theory is widely recognized [6], since they have
allowed significant analytical investigations, and have correctly predicted im-
portant effects.

In the frame deseribed above, aim of the present article is the determination
of exact solutions of the extended Tjon-Wu model, which is probably the sim-
plest model retaining the most important features of the Boltzmann equation
[9]. It is a maxwellian isotropic stochastic model in two dimensions [6], and the
extended version examined here allows for the presence of a fixed background
of field particles, and for the oceurrence of elastic scattering and removal colli-
sions. The idea is not new, since very recently Zanette [11] considered the li-
near version of the Tjon-Wu model to describe a gas of noninteracting test parti-
cles diffusing elastically in a host medium, and provided a stationary analytical
solution.

It is shown here that his result can be generalized to the nonlinear conserva-
tive problem in which also t.p.-t.p. collisions take place, and that in the linear
case also the time dependent nonconservative problem with removal and exter-
nal source can be dealt with analytically.

2 - Extended Tjon-Wu equation

Let f denote the t.p. distribution function, depending on the energy and
time variables x and £, both ranging from 0 to + o . The regular function fis as-
sumed to have finite energy moments at least up to order one, in order to give
physical meaning to the main macroscopic observables, ie. number density

(1) o(t) = 0ff(ao, t)de
and temperature (in energy units)

@) T(t) = = [wf(w, ) do.

e(t) o
The symbol C will denote the (constant) collision frequencies, and subscripts S
and R will be used to label scattering and removal interactions, respectively,
with C = Cs + Cy. All quantities relevant to fp. are labeled by a star. Then the
Tjon-Wu model equation for the extended problem described in Section 1 reads
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as [9], [8]

?a_fg = — (Colt) + C*o*) flz, £)
(3) ©

f ff(@/ Y, t(Csfly', )+ CEf*(y' )N dy’

x

with initial condition f(«, 0) = fy(x). The maxwellian distribution (equilibrium
for the unextended case) corresponds to the exponential function

(4) F@) = £ exp(— ).
T T

Direct integrations of equation (8) lead to the continuily equation

(5) +°*CRP+CRP

dt

(a selfcontained Bernoulli equation for p), and to the linear energy equation
for T

ar , 1 . *Y =
(6) a 2. Cs(T-T%=

which are not in conservation form, but express decay to zero of t.p. population
(unless p* C# = Cr = 0) and relaxation of T to the background temperature at

an exponential rate %p*CS* (unless p*C§ = 0).

It is known [6] that a very convenient tool for the analysis of equation (3) is
the Laplace transform, in spite of nonlinearity. Setting

@ fe =5 cfmf(z tye™ de f(z,t)=ff(x,t)e”“dw

with ¢ in the half plane of absolute convergence, and denoting any Laplace
transform by a superimposed tilde, one gets after some algebra the nonlinear
equation with a single integral for f

of = I ~ ~
(8) 5{ + (Co(t) + C*p*) flz, t) = %Of (Csf2(', 1) + C f* (&) f(', ) d2’
with f(z, 0) = fy(2). Now f is at least once differentiable at z = 0 with

L (o,
74

(9) ot)=F0,t) T@)= ok
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and the maxwellian corresponds to the rational function

(10) F(z) =51 + T2)™!

with only a simple pole at z= — T L

In the sequel we will focus our attention on the solution to equation (8). Sec-
tion 3 is devoted to the stationary conservative problem (Cr = C§ = 0) in order
to study equilibrium under t.p.-fp. and t.p.-t.p. elastic collisions. Zanette result
is recovered as a particular case. Section 4 deals with relaxation to equilibrium
for the same problem. Finally, in Section 5 the general time dependent solution
to the linear problem (Cg= Cp =0) is derived and briefly discussed.

3 - Steady state solutions

In stationary conditions, with Cr = C# = 0, macroscopic equations yield at
once o = constant, and T = T* = constant, and, upon introducing

(11) o(2) = %f(z) o= Csp(Csp + C p*)?

with 0 < « < 1, equation (8) can be converted into a homogeneous Riccati equa-
tion with coefficients singular (simple pole) at z = 0, namely

do 1—9%(2) 1—o(z)
(12) —C—l;+(l—a)———~—g——-———go(z)+a————£-———
where also ¢*(0) = 1. Of course the singularity disappears in the linear case
o =0, in which the result of [11]

o(2) =0 9(0) =1

] — o¥(2'
(13) ga(z):exp(—of———-z,—(f—ldz')

is immediately recovered.

For a general « > 0, existence or uniqueness of solution could be compro-
mised, and one should also bear in mind the additional physical requirement of
existence of ¢'(0) = — T, or, more precisely, ¢'(0) = ¢*'(0)= —T* for a <1

(as it occurs in equation (18) for « = 0). The further substitutions ¢ = %~ and
%=1+ v lead to the singular linear equation
1 — g 1—op*
a9y g nlTf® ey 22@ gy =0
dz 1 z 4

In the unextended case « = 1 (absence of background), the problem (14) has
! solutions v(z) = Az, A arbitrary constant, to be identified with the tempera-
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ture, so that equilibrium distribution is, as well known, any maxwellian

(15) o(z) = (1 + Tz)"L.

For 0 < o <1, the additional physical requirement reads as

V()= —-o*'(0)=T*, and the ansatz

(16) wz) =(1 —a)f(%)“—l—fg:—,ﬂﬁ exp (1~ )fl—_?i(—Z a2y dz’ + w(z)
0 z

yields for w

{— gk
(17) & _@- 08D 2y =0 W)=
which again admits ! solutions

— ¢*(z )

(18) w(z) = Az* exp ((1 —oc)f—-——_ 2').

But, if the physical condition about temperature (reading as w'(0) = 0) has
to be satisfied, the integration constant is uniquely determined as A = 0, and we
are left with the unique admissible equilibrium distribution

1—o™(2y)

1 1 __.§D*(zy’)
'y 7

Yy exp((l—a)yf dy’)dyl™!

(19) ¢ =[1+(1-a )f
holding for any 0 < « < 1 (it collapses to (13) for « = 0). The equilibrium distri-
bution function is then determined analytically in terms of the fp. distribu-

tion.
If in particular the latter is a maxwellian, one gets after some algebra

T* 1+T%2z - 1 1
20 2)=[1+(1— e ( “d2' 1 =(1+T*2)"
(20) () = [1+( a)f T*’(’) T T =
namely again a maxwellian at the same temperature as field particles, indepen-
dent of «. However, the expression of ¢ becomes easily very complicated even
for very simple fp. distributions. For instance, for a superposition of
maxwellians at temperature T, and T, ie.

(21) o*(2) =1+ Ty2) '+ (1 - B + Tp2)™? 0<p<1
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with T'=T*=8T, + (1 - B8)T,, it is obtained, after some lengthy manipula-
tions,

o(z) = {1+ (1 —a)2(1 + Ty2)"9F(1 + Tpz)t " 90-B 4} 1
(22) A=1 T, T, )+ 1 (2, Ty, T;,1-p)
Ifx(z, Tl: T2’ 18) =,BT1 ((T1 - Tz)z)“—lBE(]. &, ﬂ + o — aﬁ)

~ where B denotes incomplete beta function [1], and &= (T, — Tp)2(Tyz + 1)L

It is easily seen that if ¢*(z) is analytic at z = 0, the same oceurs for ¢(z),
since the Cauchy-Riemann conditions are satisfied. This implies, in particular,
the existence of all energy moments of the equilibrium distribution fune-
tion.

4 - Trend to equilibrium

In the same conservative situation of Section 3, macroscopic quantities, in
time dependent conditions, may still be determined independently of f, and read
as

(23) p=constant T =T%*+ (To— T*) exp(— % Co*1).

Setting f(z, t) = olp(z) + ¢(2, 1)], With ¢ given by (19), equation (8) yields
for ¢

@) S 440, )= 1 a0+ 2ap6) + (1= 5" @NG, )02
in terms of the dimensionless time variable (Cgp + C§e*)t, labeled again
by t.

We can prove now that ¢ tends to zero for £ — o, at least under the hypo-
thesis that f(x, ) admits moments of any order, namely that f(z, t) is analytic at
2 = 0. If yy(z) denotes the initial condition to be associated to equation (24), we
may write

(25), o= 5 a® @)= 3 b
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with ag = by = 0, and analogously

(25), 2ap(2) + (1 — @) p*(2) = G(z) = ZO cy”

with ¢ =1+ a.

We have to determine the unknown coefficients a,, subject to initial condi-
tions a,(0) = b,. Plugging (25) into (24) leads to the hierarchy of first order
linear ODE’s ~

da,
dt

n—a o1 ! _
(26) + 1 a,(t) = 1 kglak(t)[cn_k-l—aan_k(t)] n=12, ..

which shares with other sets in extended kinetic theory the nice feature of sol-

vability in cascade [8], starting from

da; | 1-o das | 2—-a 1
(27) dt+ 5 a; =0 dt+ 3 a,2—3a1(01+aa1).

Since a, = b, exp [— =(1~a)t], the mhomogeneous term in the second equation
is the sum of two exponentlals, and exp[— = (1 - a)t] is the most persistent in

time. The equation being linear, and (n — a)(n — 1)~! being monotonically in-
creasing with n, g, is in turn a sum of exponential terms (or possibly exponen-
tials times a pover of ), among which the dominant one for ¢t — « is again

expf— % (1 — «)t]. This fact can be proved by induction at any step. Assuming
that all a;(¢) are finite sums of exponentials or exponentials times powers, and
are O{exp[—%(l —«)t]} for t— o, up to k =n — 1, the n-th equation pro-

vides the same structure and the same asymptotic behaviour for a, (t). Thus ex-
ponential asymptotic stability follows for the equﬂibrium (19) with « < 1: the

perturbation ¢ vanishes for £—> « at a rate exp[— = (1 — «)t], whatever the
initial condition.

In the unextended case « = 1, temperature is also conserved, and relaxation
to the Maxwellian at the initial density o and temperature T; has to be expeec-
ted. Proceeding in the same way as before, now with a; =5, =0 and
C, =2(—1)"T¢, one readily realizes that again all expansion coefficients a,,,

n 2 2, vanish for { —» o at an exponential rate exp(— %).

An analytical solution is indeed possible for the linearized equation which is
obtained from equation (24) by dropping the quadratic term under the integral
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Sommario

Si generalizza Uequazione di Tjon-Wu spazialmente omogenea, tenendo conto anche
della presenza di un mezzo ospite, al caso in cui effetti non conservativi come lassorbi-
mento hanno rilevanza fisica. St determina lo distribuzione di equilibrio, nel caso con-
servativo, come soluzione di un problema singolare, in cui lunicita seque dall’imposi-
zione delle naturali condizioni fisiche, che sarebbero sovrabbondanti in un problema re-
golare. Viene analizzata, poi, anche la tendenza all’equilibrio. Infine si esamina il caso
lineare non conservativo e non stazionario, che viene risolto analiticamente in termini
di funzioni di Bessel.
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