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1 - Introduction

Penetrative convection is a phenomenon whereby a convectively unstable
layer of fluid is bounded by one (or more) stable layers. The motions in the un-
stable layer can penetrate deeply into the stable layer, and as such, the subject
is of much importance in fields such as cloud physics, or studies of the structure
of the interior of a star.

Various models of penetrative convection are reviewed in [18] and one of
these consists of a layer of thermally conducting viscous fluid with a buoyancy
law in which the density p is a nonlinear function of temperature 0. Since there
are a variety of choices for the ¢(0) behaviour, see [18], one wonders what effect
the change in model has on the solution, since the same physical process is being
described.

In this paper, therefore, we address the problem of examining the difference in so-
lution behaviour between that for a model of convection employing a linear buoyancy
law and that for a quadratic law. It will be clear how to treat the analogous problem of
comparing quadratic against cubie, and various other models.
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The question of continuous dependence of the solution on changes in the
model itself is one which has been receiving much recent attention. For
example, such modelling questions are studied in a variety of contexts in Adel-
son [1], [2], Ames [3], [4], Bennett [5], Payne [8], [9], [10], Payne and Sather
[12], Payne and Straughan [13], [14], [15], [16] and Song [17].

In this paper we show that a solution to the Navier-Stokes equations coupled
with the convective heat equation, on a bounded domain, for the improperly
posed backward in time problem, depends continuously on changes in the mo-
delling of the buoyancy law, under the weak requirements that the perturbed
velocity and temperature fields remain bounded, while the gradients of base
velocity and temperature likewise remain bounded.

The proof we employ is based on a logarithmic convexity argument, cf.
Payne [6], [7]; however, we here adapt a new variant developed by Payne [11]
which enables us to obtain continuous dependence under the assumption of rela-
tively weak bounds.

2 - The modelling problem

Without loss of generality, the equations for a heat conducting viscous fluid
with a linear buoyancy law, backward in time, may be taken to be

(21) vi,t=vjvi,j+p,i—-d’ui—bi8 ’l)i,i=0 @,t=’vj@’j“é‘@

where v;, p, 8, b; are veloeity, pressure, temperature, and gravity. Equations
(2.1) are defined on a bounded spatial domain Q c R?, and the time domain is
(0, T'], for some T < . On the boundary, I', we assume

2.2) vi(x, 1) =7;(x, ) O(x, t) = 0(x, t)
where 7;, O are prescribed. The initial data are also given
(2.3) v (x, 0) =hi(x)  Ox, 0) = D(x)

for prescribed functions #;, ©.
The equivalent problem for a heat conducting viscous fluid, but with a
quadratic buoyancy law is

2.4) ’U{kt = ‘Z)j* ’Uia,kj + pﬁ - A’Ui* - bIO* - Ebia*z ’U{’ki =0 y*t = ’Uj* @’*] — AO*

where ¢ is a measure of deviation of (2.4) from (2.1). Equations (2.4) are also de-
fined on Q X (0, T'].
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Since we wish to study continuous dependence on changes in the model itself
we suppose (v;, 0, p) and (v, OF, p*) satisfy the same boundary data (2.2) and
the same initial data (2.3). Our aim is to show the difference in the solutions of
(24) and (2.1) depends continuously on e.

Define the difference variables u;, = and 6 by u; = —v;, = =p* — p,
6= 0% — 0. The solution (u;, 0, =) may then be shown to satisfy the system of
equations

Ui ¢ = ’Uj*’u/i’j + ujvi,j + T‘?,i - Aui - bi - Ebi@s:z Ui, i = 0

(2.5) )
0,t = 'Uj*e’j +u]0’]“‘/j6

on the domain (x,%)eQ X (0, T'], together with the boundary and initial
conditions

u;(x,t) =0 6x, 1) =0 xel', tel0, T]
u;(x, 0) =0 (x,0)=0 xel.

(2.6)
We further assume the solutions v;, 0, v, 6% satisfy the bounds

2.7 Vo], |VO|, |v*|, |0*|*’sM

for a known constant M. The restriction (2.7) defines the constraint set which is
typically necessary in an improperly posed problem, see Payne [7]. We also sup-
pose, without loss of generality, |b(x, t)| < 1.

3 - Continuous dependence on the buoyancy law

To apply the method of logarithmic convexity we define the functional F(t)
by

t
3.1) F(t) =0f(llull2 +l6]%) ds + <2,

where ||-|| denotes the norm on L2(Q). We also denote integration over Q
by (-).
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Differentiate F' to see that

t
F(6) = lul® + 0]* = 2 Cus, ) + (60, ) ds
t t 4
(3.2) =2 [{uyu;v; ;) ds — 2 [(u; ;0)ds + 2 [ || Vu|®ds
0 0 0

t t t
+2 [{6u;0, ;) ds — 2¢ [{u;0;0%%)ds + 2 [ || Vo||>ds
0 0 0

where in obtaining (3.2) we have used (2.5) and (2.6). Next, differentiate again,
integrate by parts and use the boundary conditions (2.6); to derive

F" = 2<uiujvi,j> - 2(2&11)10) - 2€<bi0*2ui> + 2<6ui9,i>
i 12
—4 [{u; Au;)ds ~ 4 (0, ,46) ds
0 0
(3.3) = 2(’1161"1/!,]"1){"7') - 2(%2 b10> - 2€<bi@*2u’i> + 2(0’%10’ i)

t
+4f<ui,s(ui’s - 'Uj* ui,j - uj'vi,j + bZO + €bi8*2)> ds
0

{
+4f<0’s(6,s - vj*Glj - Z@'@J)ds .
0
We next introduce the variables, cf. Payne [6]

1 1
(3.4) ai=ui,t-—Evj*ui,j ¢=0,t—§vj*0,j

so that equation (3.3) may be rewritten

F" = 2(%1'7/(1]‘7).5,]') - 2(ulb16) - 2€<bi@*2ui> + 2(71/1"0’1‘6)

! t
—4 [ (u;, su;v; ;) ds — 4 (0, u;0 ;) ds
0 0
(8.5)
¢ t
+4 [ (u; ;b;0)ds + de [{u; ;b;0%2)ds
0 0

13 t t
+46f(”az”2 + “¢“2)d8 _6[<’Uj*ui’j’l)];kui, k)dS —6[<(,Ui* ei)2>d8 .
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To employ the method of logarithmic convexity it is necessary to form the
expression FF" — (F')?, and so we derive

i 8 4
(3.6) FF" — (F'Y? = 48% + 4<% [([|a|® + ||¢]|*) ds + 211a + 21J1
0 a= a=
in which S% has been defined by
i t t
@7 §° =0f(l|u||2 +[l6]®) dsof(llall2 +lg*) ds — (of«uiai> +(0g)) ds)?

and is a non-negative quantity by virtue of the Cauchy-Schwarz inequality. The
I, and J, terms are given below:

Il = 2F<uiujvi,j) 12 = - 2F(uzb16> I3 = - 2€F<b10y2%1>
t t
I,=2F{(0u;0;) Iy=—F[(wfu viu,n)ds Ig=—F[|v#6 ;|*ds
0 0
¢ ¢
Jy = —AF [{u; sujvy yds Jo= —4F [{6,,u;0 ;) ds
0 0

i t
J3 = 4F [(b;0u;, ;) ds Iy = 4eF [(b;0*u;, ) ds.
0 0

A useful inequality which we have recourse to employ later may be obtained
from (3.2) and (3.7), namely

The I, terms are estimated with the aid of the bounds (2.7) as follows
L= —2MF|ult= —2MFF' L= —F(|u|?+|6]? = - FF'
Iy = —2:MF{|ul) = — MF(V + ||ul®) = — MVF? — MFF'

where V is the volume of Q

¢ i
I —-MFF'  Iy= -M?F[|Vu|?ds Ig= —M*F[|Vo|*ds.
0 0
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For later use we employ (2.7) in (8.2) to derive
t
(3.9) — [(|IVae])? + ||V6||?) ds = ——;—F’ — I F
0

where h; = max {2M + —;—, %MVT}

‘The lower bounds for I, are now used in (3.6) and (3.9) is further employed
to find

t
FF" — (F'Y = 482 + 4¢ [ (a? + | ¢]2) ds
(3.10) ’ \
~MV+ L MDFE — (L M2 a4 P+ 3,
1

o=

We now estimate the J, terms. This involves use of the Cauchy-Schwarz and
arithmetic-geometric mean inequalities, together with the constraint set (2.7)

t
811 J, = - 4MF\/ft”ul|2f lla|l?ds — MZF(f|[Vu||2ds + fl{u||2ds)
0 0 0 0

t ¢
J2= “4Ff<¢ui9’i>d8'“2Ff<’l)k*6’kui0,i>d3
0 0

3.12)
t
> —4MF\/ftHol]2dsftllu]|2ds _ MER(S |Vo|ds + [ u]2ds)
0 0 [} 0

t t
(3.13) ’ -

> -4F\/f ol ds f llal?ds — MFC S ol2ds + f | Vae|2ds)
0 0 0 0

t t
Jy = 4eF [(b;0*2 a;)ds + 2¢F [(b;0% v u, ;) ds
0 0

3.14)
t t
> — 4MF1/Vssz lal2ds — M2VTF:2 — M2F [ |Vu|?ds.
0 0

The estimates (3.11)-(3.14) are now employed simultaneously and with fur-
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ther use of the arithmetic-geometric mean inequality and (3.9) we may de-
duce

4 t
S J.= —c F?—c,FF — 4<% [ |al®ds
=1

(8.15) °

t t
~aEar o fdul + Il ds flal? + [¢1) s

where ¢ =2ME(VT +h + 1)+ M(1+h) ¢ =M+ _21—).
The last term in (3.15) is now bounded with the aid of (3.8) to derive

4 t
(3.16) S J. > — ¢ F? = ¢, FF' — ¢, FS — 4% [ [la]|?ds
a=1 0

where s=cFV2M+1)  c=4V2AM+1).

Inequality (3.16) is next employed in (3.10), where we observe that we have
deliberately arranged that the ||a|? term in (3.16) is balanced by that in (3.10),
and we obtain

3.17 FF" — (F'Y? =2 48% — ¢y F% — ¢ FF' — ¢, F'S
where =+ MV+HIM) o= o+ & MPHAM +1.
We complete the square in (3.17) to finally arrive at

(3.18) FF"— (F'¥ 2 — Iy FF' — ky F®

2
where ky, ksare given by ki =¢; ke=c¢; + % .
Inequality (8.18) is integrated, cf. Payne [7], by putting ¢ = e Mt to find

ko >0

dZ
(3.19) ‘ '(-i‘o:‘z‘ (log F(G)) + L

7o?

or, alternatively

2 _2
(3.20) % {log [F(s) **°1} = 0.
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We now identify the time interval [0, T'] with [¢,, 1], so that o, =1,
g =¢ T and the basic convexity inequality (3.20) allows us to deduce

(3.21) F(t) < [F(0)]¢c ~ o)1~ og)1 [F(T)e+T 1 -oX1~ o) 7! g —ut

k
where u = —.
ky

To use (3.21) to establish continuous dependence on the modelling, ie. on ¢,
we suppose a bound is known for F(T'), for example, we assume F(T)e*T < K.

Then, from (8.21) we see that
i
(3.22) a2 + [6]2) ds < e KO -0 -7 2o epi= et
1]

Inequality (3.22) clearly establishes Hélder continuous dependence of the
solution on compact subintervals of [0, T'), and continuous dependence on the
buoyancy is achieved.

Remark. We have here only considered the question of changes in the
buoyancy from a linear to a quadratic law. In [18] various buoyancy laws which
have been used in the literature are reviewed, such as cubie, fifth and sixth or-
der ones, and others. We could, for example, consider the equivalent modelling
problem of comparing the quadratic and cubic models. The details are easily de-
rived following the lines presented here.
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Sommario

Viene analizzato Pandamento della soluzione di un problema di convenzione termica

in wn flwido viscoso conduttore del calore, al variare della legge di forza.
Per il problema (mal posto) «all’indietro» si mostra che lo soluzione dipende con
continwito, (nel senso di Holder) dai cambiamenti del modello.

¥ % K






