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The necessity of the Wiener test
for some nonlinear elliptic equations

with quadratic growth in the gradient (**)

A Bianco Manfredi con amicizia e stima

1 - Introduction

Let © be a bounded open set in RY and let a;;(x) be bounded measurable
function on Q such that a;; = a; and

N
(11) AelPs X agsig; < AlEl®

ij=
for every £eR” and ae. in Q. The bilinear form a(u, v) on H'(Q) is defined by

N
alu, v) = 2 [a;0,udvde.
Q

ij=1

Moreover let f(x, 2, q) be a function on Q X R x RY continuous in (2, q) for each
fixed 2 and measurable in x for each fixed (2, q), such that f(z, z, ¢) < a + b|g|?
for ge R", ze R and for ae. xe.

We say that « is a bounded weak solution of the problem

N
1.2) - 2,8,,(ay;8,u) = f(x, u, Du)
ij
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(Du denotes the gadient of u) if we H*(Q) N L~ (Q) and

(1.8) a(u, $) = [ f(x, u, Du) de
0

for every ¢ e H}(Q).

Let now @ be a funetion in H'(Q) N L * (Q) we say that « is a bounded weak
solution of (1.3) with boundary value @ if (u — @) e H} (Q).

Consider now a point %, e 3Q we say that @ is continuous at x, with respect
to 8Q if cap (B(w,, B) N 3Q) > 0 for some R > 0 (cap (E, O) denotes the usual ca-
pacity associated to the bilinear form a and to the open set O, we don’t write O
if 0 =RY) and q.€.-08Cp(y,, 1y nao P converges to 0 as r— 0. In this case we can
take as value of @ at x, the q.e-limit of & when x € 3Q converges to .

We say that x, is a regular (local) point for 9Q with respect to (1.2) if for
every open set Q' ¢ Q2 with zy € 32 N 3Q" and every bounded weak solution % of
(1.2) with boundary data PeH*(Q')NL™(Q') on 8Q’ continuous at x, we have

Iim u=d(xy).

x—x, xeld

We recall that there is a well known criterion, namely the Wiener criterion,
[7] [5], for the regularity of x, in the case f=0.
We recall here the above criterion

Theorem 1. Let f=0 and

cap (2° N B(xy, 1), Blxg, 27))
cap (B(xy, v), Bz, 21))

(1.4) &(r) =

Then a necessary and sufficient condition for the regularity of x, with respect to
o s that

Ro d .
(15) [o(r)SF = + o
0

where Ry is positive and fixed.

The result in Theorem 1 was proved in the case of the Laplace operator by N.
Wiener in 1924 [8], and after different extension the complete result of the above
Theorem was proved in 1963 by Littman-Stampacchia-Weinberg [5]. For the non-
linear problem (1.2) it has been proved in [3] (in a more general framework) that
(1.4) is again a sufficient for the regularity of x,.

In a recent paper Adams and Heard [1] have proved that (1.4) is necessary for
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the regularity of w; also in the nonlinear case under the additional assumption of
Dini-continuity of the coefficients a;; (see also [7] where the monotone case with
irregular coefficient is studied).

The purpose of this paper is remove this last assumption and extend the
necessary part of Theorem 1 in full generality.

Theorem 2. Let xye 9Q; (1.5) is a necessary and sufficient condition for
the regularity of x,.

We recall that the sufficient part of Theorem 2 has been proved in [3]; then it
is enough to prove the necessary part of Theorem 2. This extension is founded,
roughly speaking, on a reduction to a linear case. This method work also in other
cases and in particular in the case of nonlinear elliptic problems with a weight in
the A, Muckenhoupt’s class.

2 - Reduction to a linear problem

In this section we denote by O a bounded open set in RY such that, denoted
by 2;(0) the first eigenvalue of the Laplace operator in Hg(0), we have

22 < 2,(0).
22

Proposition 1. Let u be a bounded weak solution of (1.3) in O with bound-

ary data @. Then the functions exp (% —g u) are subsolutions of the problem

@.1) 2 J;0,,V* 3, vde — f———V vdz=0 VYveH} ()

=10

with boundary value exp(ig 9).

Proof. The proof follows by easy computations. Let v be in H¢ (0) N L= (0)
with v = 0, we have

N
S fayo, (exp(+-—u))a vde=x2 2 (=2)4,0, 48, vdx
ifm1g Yo A i 3 7 Yid O™ O
N
i% > fawaxluax](exp(**—u)v)dx (-)22 fexp(+—u)va1]8 wd, vdw
=10 ij=1
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< D fexp (L wyvde + [ | Dulexp (= Luyw) o
P A 0 A

(ke S 5 van ab b
(A) zElofexp(t 5 U) V0350, U D v Ay < S Ofexp(t n w)vde.

Denote now by V™ the solutions of (2.1) with boundary data exp (+ g @) and
define u* = i% log V*; then if % is a bounded weak solution of (1.8) with

boundary data @ we have

2.2) u-<u<sut.

Proposition 2. The problem (1.3) with boundary data © has at least one
solution u and .~ <u<u”.

Proof. We only give the sketch of the different steps of the proof.

1. We regularize f by f. = where ¢ = % and we denote by P and P,

f
1+¢f
the boundary problems relative to f and f,. It is easy to see that

fi@, 2z, @) <f(x, 2,9).

The existence of a bounded weak solution on P, can be proved using a fixed
point method in H}.(O) taking into account the local C* estimate for the linear
problem and the global L * estimate for the global problem.

From (2.2) we obtain u- Sy su’

a.e. in O; then the sequence %, is uniformly bounded with respect to «.

2. From [4] we obtain easily that the sequence u, is bounded in Cf, uniformly
in e.

3. At least after extraction of subsequences we that u, — @ is weakly conver-
gent in H§ (0) and strongly convergent in L?(0), 1 < p < =« to u. Moreover from
the CE. estimate we can assume that u, converges to u in L, (O); then u, con-
verges to u strongly in H, (0). The convergences in 8 prove that % is a solution of
(1.3) in O with boundary value 9.

Now we recall the well known results on the estimates for the Green function,
see for example [5] in the uniformly elliptic case (ab = 0), which can be ea-
sily adapted to our framework using the methods in [2].
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Proposition 3. For every x e O there exists a Green function for (2.1) with
singularity at x denoted by G§. Moreover choosing O = B(x, B) we have

Giwmy=1""  on 3B(z, 7)

forr < % . Moreover if we denote by G7 p, p) the regularized Green function (the

definition is analogous to the one in [6] for the case ab=0) we have also

Gipam=r:""  on 8B(x,r) for 20 <r<R
and im G g, ) = Ghee,
in Ciy(B(x, R) — {x}) N L= (B(z, B) — {x)).

Taking into account Propositions 1 and 2 the result will be proved if, in the
case of convergence of the Wiener integral, we construct a solution V* of (2.2)
relative to a boundary data ¥ e H'(R¥Y) N L~ (RY), ¥ >¢>0 and to the set
Q,=0 N B(xg, r) with

lim ¥=1=%(z)

z—>xg, e,

such that liminf V' <1.

r—2y, vefl,

In fact if u is the solution of (1.3) in Q, with boundary data

= —2— log ¥'e H'(RY) N L= (RV)

then liminf < liminf ¥ <0=&(xp)

x>y, xeld, x—2g,xefl,

where u " = % log V*.

3 - Proof of Theorem 2

In this section all the potentials and Green functions are taken with respect to
the form in (2.1) and we can assume without loss of generality x, = 0. We recall

also that we assume again %g < X1(0).
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Proposition 4. Let u be o bounded positive measure in H 1(B(2R),
O = B(2R), with support in B(R). Let vy be the potential of u in B(2R).
Assume

o? de
mBG) ¢

3.1 f u(B(e))

Denote by G the Green function with singularity at 0 with respect to B(2R).
Then G(x, 0) is integrable with respect to the measure u. and the value

vp(0) = [ G(z, 0)u(dw)
BER)

18 well defined.

[ vp(x)de

Moreover the limit vp(0) = h
#(0) = lim 2 s

exists finite and

de
(B( ) e

8.2 v(0) = vp(0) < C f w(B(e))

The proof is analogous to the proof of the same result in the usual uniformly el-
liptic case given in [6].

Proposition 5. Let E,, o >0, be subsets of RY such that
E, N B(o) cE,cB(p) cB(r)cO

Jor every 0 < o <. Let 1, be the capacitary measure of E, in B(20); then for every
r>0 and 0 <p<7r we have

1, (B(e)) < 1, Be)) -

Proof. Let w, be the potential of E, in B(20). We have
N
%Ofaua W, 0, w, dic = 2 azjaxiwp 3, w, A

where 0 <p < 7.
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We can rewrite the above relation using the capacitary measure and we

obtain Oprﬂp(dx) = u,(B)) = Opryr(dw) = u, (Be)).

The result is so proved.

Consider now the set (s, =0 N B(2r). We observe that for 0, r< R, R

suitable, we have ab <)1(2s,) so we can use all the above results with
0=0 2%
=slgp

Proof of Theorem 2. Let us suppose
R
3.3) fa‘(p)f‘—l‘:fi < 4o,
0

To prove Theorem 2 it is enough to prove that for a suitable r with
0 <r<R there exists w, solution of (2.1) in Q, with boundary data
ve HY(RYYNL"RY), ¥< >0, such that

3.4) im iglf w,(x) < 1.
X
If we prove that, denoted by v, the potential of Q°N B(r) in B(2R), we

have

3.5) lim ig1f ,(x) <1

the maximum principles gives that (8.4) also holds for w, = v, + ¢ with ¢ small
enough.
To prove (8.5) it is enough to prove that for r suitable we have

1 J v,de=2.(0)<1.

3.6 lim
(3.6) e—0 m(B(e)) Bl

Let u, be the capacitary measure of Q, with respect to B(27).
For every v > 0 we have supp (¢,) ¢ B(r) then form (3.3) and from Proposition
5 we obtain

2

2r o ii__p_ ©
Of.ur(B(p)) (B <+
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By Proposition 4 with u = ¢, we obtain

2

2r
2.(0) < Cofpr(B@»——ﬁ-——-‘—iﬁ.

m(B(e)) ¢
2r
Then from Proposition 5 we have v,.(0)< C [ o“(.o)d?p-.
0

By letting »— 0, we obtain from (8.3)

[8]

3.7 lin}) 2,(0) = 0.

(1]
(2]

fs]

[4]
(5]

(6]
(7]
(8]

D.

G.

From (3.7) the relation (8.6) follows for suitable fixed .
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Sommario

St dimostra che la condizione di Wiener per la regolarite di un punto del contorno é

necessaria. anche nel caso di problemi quasi ellittici con crescita quadratica mel
gradiente.
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