MARCO BIROLI(*)

The necessity of the Wiener test for some nonlinear elliptic equations with quadratic growth in the gradient (**)

A Bianca Manfredi con amicizia e stima

1 - Introduction

Let Ω be a bounded open set in \mathbb{R}^N and let $a_{ij}(x)$ be bounded measurable function on Ω such that $a_{ij} = a_{ji}$ and

(1.1)
$$\lambda |\xi|^2 \leq \sum_{ij=1}^N a_{ij} \xi_i \xi_j \leq \Lambda |\xi|^2$$

for every $\xi \in \mathbb{R}^n$ and a.e. in Ω . The bilinear form a(u, v) on $H^1(\Omega)$ is defined by

$$a(u, v) = \sum_{ij=1}^{N} \int_{\Omega} a_{ij} \partial_{x_i} u \partial_{x_j} v \, \mathrm{d}x.$$

Moreover let f(x, z, q) be a function on $\Omega \times \mathbf{R} \times \mathbf{R}^N$ continuous in (z, q) for each fixed x and measurable in x for each fixed (z, q), such that $f(x, z, q) \leq a + b|q|^2$ for $q \in \mathbf{R}^n$, $z \in \mathbf{R}$ and for a.e. $x \in \Omega$.

We say that u is a bounded weak solution of the problem

$$(1.2) -\sum_{ij}^{N} \partial_{x_j} (a_{ij} \partial_{x_i} u) = f(x, u, Du)$$

^(*) Dip. di Matem., Politecnico Milano, Via Bonardi 9, 20133 Milano, Italia.

^(**) Received May 24, 1993. AMS classification 35 J 60. The present paper has been supported by a CNR contribution (Research project: Problemi variazionali irregolari).

(Du denotes the gadient of u) if $u \in H^1(\Omega) \cap L^{\infty}(\Omega)$ and

(1.3)
$$a(u, \psi) = \int_{\Omega} f(x, u, Du) \psi \, \mathrm{d}x$$

for every $\psi \in H_0^1(\Omega)$.

Let now Φ be a function in $H^1(\Omega) \cap L^{\infty}(\Omega)$ we say that u is a bounded weak solution of (1.3) with boundary value Φ if $(u - \Phi) \in H_0^1(\Omega)$.

Consider now a point $x_0 \in \partial \Omega$ we say that Φ is continuous at x_0 with respect to $\partial \Omega$ if $\operatorname{cap}(B(x_0,R)\cap \partial \Omega)>0$ for some R>0 ($\operatorname{cap}(E,O)$ denotes the usual capacity associated to the bilinear form a and to the open set O, we don't write O if $O=\mathbf{R}^N$) and q.e.- $\operatorname{osc}_{B(x_0,r)\cap\partial\Omega}\Phi$ converges to 0 as $r\to 0$. In this case we can take as value of Φ at x_0 the q.e.-limit of Φ when $x\in\partial\Omega$ converges to x_0 .

We say that x_0 is a regular (local) point for $\partial\Omega$ with respect to (1.2) if for every open set $\Omega' \subseteq \Omega$ with $x_0 \in \partial\Omega \cap \partial\Omega'$ and every bounded weak solution u of (1.2) with boundary data $\Phi \in H^1(\Omega') \cap L^{\infty}(\Omega')$ on $\partial\Omega'$ continuous at x_0 we have

$$\lim_{x \to x_0, x \in \Omega'} u = \Phi(x_0).$$

We recall that there is a well known criterion, namely the Wiener criterion, [7] [5], for the regularity of x_0 in the case f = 0.

We recall here the above criterion

Theorem 1. Let f = 0 and

(1.4)
$$\delta(r) = \frac{\operatorname{cap}(\Omega^c \cap B(x_0, r), B(x_0, 2r))}{\operatorname{cap}(B(x_0, r), B(x_0, 2r))}.$$

Then a necessary and sufficient condition for the regularity of x_0 with respect to $\partial \Omega$ is that

(1.5)
$$\int_{0}^{R_{0}} \delta(r) \, \frac{\mathrm{d}r}{r} = +\infty$$

where R_0 is positive and fixed.

The result in Theorem 1 was proved in the case of the Laplace operator by N. Wiener in 1924 [8], and after different extension the complete result of the above Theorem was proved in 1963 by Littman-Stampacchia-Weinberg [5]. For the nonlinear problem (1.2) it has been proved in [3] (in a more general framework) that (1.4) is again a sufficient for the regularity of x_0 .

In a recent paper Adams and Heard [1] have proved that (1.4) is necessary for

the regularity of x_0 also in the nonlinear case under the additional assumption of Dini-continuity of the coefficients a_{ij} (see also [7] where the monotone case with irregular coefficient is studied).

The purpose of this paper is remove this last assumption and extend the necessary part of Theorem 1 in full generality.

Theorem 2. Let $x_0 \in \partial\Omega$; (1.5) is a necessary and sufficient condition for the regularity of x_0 .

We recall that the sufficient part of Theorem 2 has been proved in [3]; then it is enough to prove the necessary part of Theorem 2. This extension is founded, roughly speaking, on a reduction to a linear case. This method work also in other cases and in particular in the case of nonlinear elliptic problems with a weight in the A_2 Muckenhoupt's class.

2 - Reduction to a linear problem

In this section we denote by O a bounded open set in \mathbb{R}^N such that, denoted by $\lambda_1(O)$ the first eigenvalue of the Laplace operator in $H^1_0(O)$, we have $\frac{ab}{\lambda^2} < \lambda_1(O)$.

Proposition 1. Let u be a bounded weak solution of (1.3) in O with boundary data Φ . Then the functions $\exp\left(\pm\frac{b}{\lambda}u\right)$ are subsolutions of the problem

(2.1)
$$\sum_{ij=1}^{N} \int_{O} a_{ij} \partial_{x_i} V^{\pm} \partial_{x_j} v \, \mathrm{d}x - \int_{O} \frac{ab}{\lambda} V^{\pm} v \, \mathrm{d}x = 0 \qquad \forall v \in H_0^1(O)$$

with boundary value $\exp(\pm \frac{b}{\lambda} \Phi)$.

Proof. The proof follows by easy computations. Let v be in $H_0^1(O) \cap L^{\infty}(O)$ with $v \ge 0$, we have

$$\sum_{ij=1}^N \int\limits_O a_{ij} \partial_{x_i} (\exp{(\pm \frac{b}{\lambda} u)}) \, \partial_{x_j} v \, \mathrm{d}x = \pm \frac{b}{\lambda} \sum_{ij=1}^N \int\limits_O \exp{(\pm \frac{b}{\lambda})} \, a_{ij} \partial_{x_i} u \, \partial_{x_j} v \, \mathrm{d}x$$

$$\pm \frac{b}{\lambda} \sum_{ij=1}^{N} \int_{O} a_{ij} \partial_{x_{i}} u \partial_{x_{j}} (\exp(\pm \frac{b}{\lambda} u) v) dx - (\frac{b}{\lambda})^{2} \sum_{ij=1}^{N} \int_{O} \exp(\pm \frac{b}{\lambda} u) v a_{ij} \partial_{x_{i}} u \partial_{x_{j}} v dx$$

$$\leq \frac{ab}{\lambda} \int_{0}^{\infty} (\exp(\pm \frac{b}{\lambda} u) v dx + \int_{0}^{\infty} |Du|^{2} (\exp(\pm \frac{b}{\lambda} u) v) dx$$

$$-\left(\frac{b}{\lambda}\right)^{2} \sum_{ij=1}^{N} \int_{0} \exp\left(\pm \frac{b}{\lambda} u\right) v a_{ij} \partial_{x_{i}} u \partial_{x_{j}} v dx \leq \frac{ab}{\lambda} \int_{0} \exp\left(\pm \frac{b}{\lambda} u\right) v dx.$$

Denote now by V^{\pm} the solutions of (2.1) with boundary data $\exp\left(\pm\frac{b}{\lambda}\Phi\right)$ and define $u^{\pm}=\pm\frac{\lambda}{b}\log V^{\pm}$; then if u is a bounded weak solution of (1.3) with boundary data Φ we have

$$(2.2) u^- \leq u \leq u^+.$$

Proposition 2. The problem (1.3) with boundary data Φ has at least one solution u and $u^- \leq u \leq u^+$.

Proof. We only give the sketch of the different steps of the proof.

1. We regularize f by $f_{\varepsilon} = \frac{f}{1+\varepsilon f}$ where $\varepsilon = \frac{1}{n}$ and we denote by P and P_{ε} the boundary problems relative to f and f_{ε} . It is easy to see that

$$f_{\varepsilon}(x, z, q) \leq f(x, z, q)$$
.

The existence of a bounded weak solution on P_{ε} can be proved using a fixed point method in $H^1_{loc}(O)$ taking into account the local C^{α} estimate for the linear problem and the global L^{∞} estimate for the global problem.

From (2.2) we obtain
$$u^- \le u_s \le u^+$$

a.e. in O; then the sequence u_{ε} is uniformly bounded with respect to ε .

- 2. From [4] we obtain easily that the sequence u_{ε} is bounded in C^{α}_{loc} uniformly in ε .
- 3. At least after extraction of subsequences we that $u_{\varepsilon} \Phi$ is weakly convergent in $H_0^1(O)$ and strongly convergent in $L^p(O)$, 1 to <math>u. Moreover from the C_{loc}^{α} estimate we can assume that u_{ε} converges to u in $L_{\text{loc}}^{\infty}(O)$; then u_{ε} converges to u strongly in $H_{\text{loc}}^1(O)$. The convergences in 3 prove that u is a solution of (1.3) in O with boundary value Φ .

Now we recall the well known results on the estimates for the Green function, see for example [5] in the uniformly elliptic case (ab = 0), which can be easily adapted to our framework using the methods in [2].

Proposition 3. For every $x \in O$ there exists a Green function for (2.1) with singularity at x denoted by G_0^x . Moreover choosing O = B(x, R) we have

$$G_{R(x,R)}^x \approx r^{2-N}$$
 on $\partial B(x,r)$

for $r \leq \frac{R}{2}$. Moreover if we denote by $G_{p, B(x, R)}^x$ the regularized Green function (the definition is analogous to the one in [6] for the case ab = 0) we have also

$$G_{\varrho, B(x, R)}^x \approx r^{2-N}$$
 on $\partial B(x, r)$ for $2\varrho < r < R$

and

$$\lim_{\rho \to 0} G_{\rho, B(x, R)}^x = G_{B(x, r)}^x$$

in
$$C_{loc}^{\alpha}(B(x,R)-\{x\})\cap L^{\infty}(B(x,R)-\{x\}).$$

Taking into account Propositions 1 and 2 the result will be proved if, in the case of convergence of the Wiener integral, we construct a solution V^+ of (2.2) relative to a boundary data $\Psi \in H^1(\mathbf{R}^N) \cap L^{\infty}(\mathbf{R}^N)$, $\Psi > \varepsilon > 0$ and to the set $\Omega_r = \Omega \cap B(x_0, r)$ with

$$\lim_{x \to x_0, x \in \Omega_r} \Psi = 1 = \Psi(x_0)$$

such that

$$\lim_{x \to x_0, \inf_{x \in \Omega_r} V^+ < 1.$$

In fact if u is the solution of (1.3) in Ω_r with boundary data

$$\Phi = \frac{\lambda}{h} \log \Psi \in H^1(\mathbf{R}^N) \cap L^{\infty}(\mathbf{R}^N)$$

then

$$\lim_{x \to x_0, x \in \Omega_r} \inf_{u \le \lim_{x \to x_0, x \in \Omega_r} u^+ < 0 = \Phi(x_0)$$

where $u^+ = \frac{\lambda}{b} \log V^+$.

3 - Proof of Theorem 2

In this section all the potentials and Green functions are taken with respect to the form in (2.1) and we can assume without loss of generality $x_0 = 0$. We recall also that we assume again $\frac{ab}{\lambda^2} < \lambda_1(O)$.

Proposition 4. Let μ be a bounded positive measure in $H^{-1}(B(2R), O = B(2R), with support in <math>B(R)$. Let v_R be the potential of μ in B(2R). Assume

(3.1)
$$\int_{0}^{2R} \mu(B(\rho)) \frac{\rho^{2}}{m(B(\rho))} \frac{\mathrm{d}\rho}{\rho} < +\infty.$$

Denote by G the Green function with singularity at 0 with respect to B(2R). Then G(x, 0) is integrable with respect to the measure μ and the value

$$\widehat{v}_R(0) = \int\limits_{B(2R)} G(x, 0) \mu(\mathrm{d}x)$$

is well defined.

Moreover the limit $v_R(0) = \lim_{\epsilon \to 0} \frac{1}{m(B(\epsilon))} \int_{B(\epsilon)} v_R(x) dx$

exists finite and

(3.2)
$$v_R(0) = \widehat{v}_R(0) \le C \int_0^{2R} \mu(B(\rho)) \frac{\rho^2}{m(B(\rho))} \frac{\mathrm{d}\rho}{\rho}.$$

The proof is analogous to the proof of the same result in the usual uniformly elliptic case given in [6].

Proposition 5. Let E_{ρ} , $\rho > 0$, be subsets of \mathbb{R}^{N} such that

$$E_r\cap B(\rho)\subseteq E_\rho\subseteq B(\rho)\subseteq B(r)\subseteq O$$

for every $0 < \rho < r$. Let μ_{ρ} be the capacitary measure of E_{ρ} in $B(2\rho)$; then for every r > 0 and $0 < \rho < r$ we have

$$\mu_r(B(\rho)) \leq \mu_{\rho}(\overline{B(\rho)})$$
.

Proof. Let w_{ρ} be the potential of E_{ρ} in $B(2\rho)$. We have

$$\textstyle\sum\limits_{ij}^{N}\int\limits_{O}a_{ij}\,\partial_{x_{i}}w_{\rho}\,\partial_{x_{j}}w_{\rho}\,\mathrm{d}x\geqslant\textstyle\sum\limits_{ij}^{N}\int\limits_{O}a_{ij}\,\partial_{x_{i}}w_{\rho}\,\partial_{x_{j}}w_{r}\,\mathrm{d}x$$

where $0 < \rho < r$.

We can rewrite the above relation using the capacitary measure and we

obtain $\int\limits_{O} w_{\rho} \mu_{\rho}(\mathrm{d}x) = \mu_{\rho}(\overline{B(\rho)}) \geqslant \int\limits_{O} w_{\rho} \mu_{r}(\mathrm{d}x) \geqslant \mu_{r}(B(\rho)).$

The result is so proved.

Consider now the set $\Omega_{2r} = \Omega \cap B(2r)$. We observe that for 0, r < R, R suitable, we have $\frac{ab}{\lambda^2} < \lambda_1(\Omega_{2r})$ so we can use all the above results with $O = \Omega_{2r}$.

Proof of Theorem 2. Let us suppose

(3.3)
$$\int_{0}^{R} \delta(\rho) \frac{\mathrm{d}\rho}{\rho} < +\infty.$$

To prove Theorem 2 it is enough to prove that for a suitable r with 0 < r < R there exists w_r solution of (2.1) in Ω_{2r} with boundary data $\Psi \in H^1(\mathbf{R}^N) \cap L^{\infty}(\mathbf{R}^N)$, $\Psi < \varepsilon > 0$, such that

$$\lim_{x \to 0} \inf w_r(x) < 1.$$

If we prove that, denoted by v_r the potential of $\Omega^c \cap B(r)$ in B(2R), we have

$$\lim_{x \to 0} \inf v_r(x) < 1$$

the maximum principles gives that (3.4) also holds for $w_r = v_r + \varepsilon$ with ε small enough.

To prove (3.5) it is enough to prove that for r suitable we have

(3.6)
$$\lim_{\rho \to 0} \frac{1}{m(B(\rho))} \int_{B(\rho)} v_r dx = v_r(0) < 1.$$

Let μ_r be the capacitary measure of Ω_r with respect to B(2r).

For every r > 0 we have supp $(\mu_r) \subseteq \overline{B(r)}$ then form (3.3) and from Proposition 5 we obtain

$$\int_{0}^{2r} \mu_{r}(B(\rho)) \frac{\rho^{2}}{m(B(\rho))} \frac{\mathrm{d}\rho}{\rho} < + \infty.$$

By Proposition 4 with $\mu = \mu_r$ we obtain

$$v_r(0) \le C \int_0^{2r} \mu_r(B(\rho)) \frac{\rho^2}{m(B(\rho))} \frac{\mathrm{d}\rho}{\rho}.$$

Then from Proposition 5 we have $v_r(0) \leqslant C \int\limits_0^{2r} \delta(\rho) \, \frac{\mathrm{d}\rho}{\rho}$.

By letting $r \rightarrow 0$, we obtain from (3.3)

(3.7)
$$\lim_{r \to 0} v_r(0) = 0.$$

From (3.7) the relation (3.6) follows for suitable fixed r.

References

- [1] D. R. Adams and A. Heard, The necessity of Wiener test for some semilinear elliptic equations, Indiana Univ. Math. J. 41 (1992), 109-123.
- [2] G. CHIARENZA, E. FABES and N. GAROFALO, Harnack's inequality for Schrödinger operators and the continuity of the solutions, Trans. Amer. Math. Soc. 98 (1986), 415-425.
- [3] R. Gariepy and W. P. Ziemer, A regularity condition on the boundary for solutions of quasilinear elliptic equations, Arch. Rational Mech. Anal. 67 (1977), 25-39.
- [4] D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order, Springer, Berlin 1983.
- [5] W. LITTMAN, G. STAMPACCHIA and H. WEINBERGER, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa 17 (1963), 45-79.
- [6] U. Mosco, Wiener criterion and potential estimates for the obstacle problem, Indiana Univ. Math. J. 36 (1987).
- [7] I. V. Skrypnik, Nonlinear elliptic boundary value problems, Teubner, Leipzig 1986.
- [8] N. WIENER, The Dirichlet problem, J. Math. Phys. 3 (1924).

Sommario

Si dimostra che la condizione di Wiener per la regolarità di un punto del contorno è necessaria anche nel caso di problemi quasi ellittici con crescita quadratica nel gradiente.