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and for the advection-diffusion equation (**)
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1 - Statement of the problem

Let Q be a bounded open set of R? with boundary I'" (piecewise C'); we define
for T>0

QTz‘QX]O) T[ ET:PX]O; T[

and consider the following problem: given the functions zy: Q — R (25 e L%(Q)),
and f: Qr— R, (fe L2(Qp), find a function z: (x, t) € Qp — 2(x, t) € R solution
of the equations

8,z +div(bGz) +az —a 42 =f in Qp

11
(1 Bz=0 onZXy, 2=2 mnQfort=0

where a, a; e R*, b = (b, by)¥ is a given vector field, b e L™ (Q) X L= (Q) such
that

[b-Vod2=0 VeeC ().
0
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Bz=zon I} and fz = %% o X2 with £+ U 2% = X1 (n denotes the unit outer
normal vector to I'),
(1.2) G=1I or G=L"!

related to the advection-diffusion and to the linear barotropic vorticity equation
respectively ([2], [12], [16]). L ! is the inverse of the operator L = — A with do-
main DL) = {4e H (Q)|¢ = ¢y on I'}.

Let V be the completion in the Sobolev space H*(Q) of all smooth functions
satisfying the boundary condition gv = 0 (H¢(Q) c Vc H*(Q)). The semidiscrete
analogue of (1.1) will be based on the following weak formulation:

find a function z: t [0, T 2z(t) such that

ze L%(0, T; V)N C°(0, T; L*(Q)) 2(0) = 2,

13
(1.3) Ii%(z(t), )+ (div (bG2), v) +alz, v) +a,(Vz, Vo) = (£, ) VoeV

where (,) stands for the usual scalar product in L2(Q) and —(% is taken in the

sense of distributions on ]0, T'[. Now let V,, be a subspace of V, which consists of
continuous piecewise bilinear functions in a quasiuniform rectangular mesh 2,
Q=UQ;, Q;NQ;=0), (1.3) becomes:

find z,: t [0, T']— 2, (1) such that
1.4) %(zh(t), ) + (div (bGzy,), vy) + alz,, v,) + 0, (Vzy,, Vo) = (f, v,) Vu,eV,

2, (0) = 2gp, .

In particular, if 2 = (0, [;) X (0, ), by introducing an uniform grid with

n

1 {
steps kb, = . and h, = n—y, finite approximation spaces V* can be constructed
t4 ¥

by means of bilinear splines functions ¢;(z, %), 1=1, ..., n(n,, n,) so that
V* = span (g1, @2, .., Pu)
By means of suitable quadrature formulas from (1.4) we have the o.d.e.
system
du

(1.5) ry +A+BQOu=fFf
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where A, B, C are n X n real matrices, where % is the dimension of V,,

A=al + a4, A =AT20 Ge z74,2=0VeecR"), B=-BT

1.6)
Be=0 withe=(1,1,...,1)7, C=1 orC=A"'.

However, the results obtained in the following are valid for more general
choices of C than (1.6); in the following we will assume that

(17) . C=CT>0 CA1=A1C’

Equation (1.5) may be reduced to an equation with C=1; in fact let
C=LLT, @=L"u, f=L"f then equation (1.5) becomes
L5 W\ F+Ba=F

dt

where A = LTAL T=L"'AL and B =LTBL is a skew-symmetric matrix.

We note that the use of the Galerkin method, together with suitable quadra-
ture formulas, preserves the basic properties of the differential operators in
(1.1). In particular, when 4 > 0 from (1.6) and (1.7) it follows that the real part
of the eigenvalues of A + BC is positive; thus, when the forcing term f is time
independent, a unique steady state solution exists and it is asymptotically stable
(in the sense of Lyapunov). However, in solving the advection-diffusion equa-
tion, in the presence of a boundary layer, the cell Peclet number Pe must be
chosen so that

bih
2011

(1.8) Pe = max ( )<1
in order to avoid spurius oscillations. If condition (1.8) is satisfied and A > 0, it
follows that the entries of (4 + B)~! are positive. Thus, when the source is non-
negative, the steady state solution is positive and spurious oscillations or wiggles
do not occur. Note that the classical upwind schemes and streamline upwind
methods lead to matrices for which some basic properties of matrices A and B
are not satisfied, and consequently the maximum principle property is not
necessary preserved [6]. More recent Petrov-Galerkin formulations overcome
most of the limitations found in Galerkin and upwind methods [1], [3], [7]. Re-
views of the numerical methods for solving the advection-diffusion equation and
of the development of the upwind techniques are presented in [1], [6], [10].

In the next Sections 2 and 3 we will consider time discretization schemes of
equation (1.5) which lead to two-level and three-level difference equations re-
spectively. In Section 4 we make some remarks on numerical calculations.
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2 - Two-level difference equation

We integrate equation (1.5) by using the standard schemes ([8], [11], [15]).
The algorithm is written in the following way

2.1) Mu;, = Nu; +4&Ff j=1,2,..
where
22 M=I+ —é—(l — a) At(A + BC) N=1I- %(1 + o) 4t(A + BC)

and —1 < « < 1; this choice assures that det A/ > 0; here M — N is a splitting of
the matrix 4¢ (A + BC). The following theorem can be proved.

Theorem 1. Let M and N be given by (2.2) and let g, (4, «) be the spectral
radius o(M "1N) of the matric M ~'N. Then

@ g4, a) <1 for an aﬂ)itmry A and o < 0;
.. ., 2Re(}y
() go(dt,1)<1 for A& < m_m(W)
1 .
1
where A; are the eigenvalues of A + BC.
_1 L
Proof. (i) From (2.2) by direct calculation we obtain M !N =C 22C?%,
where
1

Z=U+%u—amunﬂu—%u+amun D=C%(A+BCC

0O s

From (1.6) and (1.7) it follows that
1

-C 2AC

1 1

= —(C®BC?);

1

C?AC

-4 1 1
2 2 2

1
C®BC
thus, D > 0. The eigenvalues v(Z) of Z can be expressed in terms of the eigen-

values u(D)

1
2

L+%u—@mmpf

1- <1+ )dtu(D)

wZ) =

From « <0 it follows that |w(Z)| < 1; then we have the thesis.
(i) See [15], Theorem 8.5.
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3 - Three-level difference equation

The scheme described here is essentially related to commonly used implicit
methods for solving special (linear and nonlinear) parabolic equations ([2], [4],
[5], [9], [11]). We integrate equation (1.5) using a leap frog scheme for the ad-
vection term and standard schemes like (2.1)-(2.2) for the frictional and disper-
sion terms. The algorithm is written in the following way

(31) Muj+1=Nu]_1—Ku]+2Atf ]’:1,2,
B2 M=Q+adt)I+(-a)Ma Ay N=(1—-ad)]-QA+a)dtmA; K=24BC

and —1 < « < 1; this choice assures that M > 0; here M — N is a splitting of the
matrix 2 Af(al + a,4;). To start (8.1) we could use the previous scheme (2.1) in
order to compute u,, using a finer time step.

The scheme (3.1) can be reduced to the two-level iteration process

(8.3) Wy = L4, a)u,j +f
where

u/j=(u]‘_.1,u]')T F=24t(f,f)T

84) M 0N -K
st =(p ) (0 W)

The basic properties of the spectrum of £(4t, «) when M > 0 are shown in the
following theorems.

Lemmal Lt M—N=M~-NI>0, M=MT>0 and CK=— (CK)".
Let the matrix £ be defined by (8.4) and A be its eigenvalues. Then

(a) the real eigenvalues A are less than 1
(b) the moduli of the complex eigenvalues A are less than 1.

Proof. The eigenvalue equation for the matrix (3.4) is given by
uy _
(3.5) , £(,) =2()-

If A is also an eigenvalue of M ~! N we have (M — N)u = (1 — A) Mu, and it fol-
lows that 2 is real and less then 1. If X is not an eigenvalue of M ~! N, then from
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(3.5) we obtain
(3.6) u=T?(M)u with TO)=VIOM - N)"'K.

(8.6) is equivalent to the two equations

37 VAM - %\N)w= ¥ Kw.

.\/_
£+j

) W(E +40)
Let X = re*; we have \/X =re ? ,J =0, 1. The real and imaginary parts of
3.7) are

3.8) Qrwr — Qrw; = ¥ Kwp, Qrwg + Qrw; = ¥ Kw;

where wp and w; are the real and imaginary parts of the vector w and

_1 _1
(3.9) Qp=1 2 cos(% +jr)YrM - N)  Qr=7r 2 sin(% + jz)(rM + N).

Since CK is skew-simmetrie, from (8.8) we obtain
(3.10) (wg CQrwg) + (W] CQrw;) =0.

The matrix Qr in (3.9) may be written in the form

_i
8.11) Q=7 * cos(3 +jmlr~ DM + M~ M.

If r=1 then
(3.12) Cllr—1)M+(M—-N)]>0.

Therefore from (8.10)-(8.12) it follows that cos(-% +jm) =0, 5 =0, 1; thus,

o= F = and the eigenvalues A = r¢” = cos (Fx) = —r are real and negative;
then (a) and (b) are true.

Theorem 2. Assume (1.6), (1.7, B2) and (B4) with «<0. Let
94, a) = p(L). Then, g(it, a) <1 if

0 @d;>0 4t <4) a*<a<0
(i A >0 arbitrary & o<oa*
(i) 0, 4,20 4t <|BC|™
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where

a* = = Vu* () + | BCI* (@A) ™
(8.13) (o) = [aay p(4y) + V2 (4) + || BC|P1

u(A) = minimum eigenvalue of the matrix A.

Proof. Because of Lemma 1 we consider only the case of real and negative
eigenvalues of £.

i) Let A= —7», r>0; (3.7 gives
(3.14) ("M + N)z= FirKz.

Suppose 7 = 1, then we have M + N = (r — 1) M + (M — N) > 0. Thus, from
(8.14) it follows

00 s

15 r* Kl _ % zadBel

' = w(rM + N) rp+q
and then
(3.16) r2p? + 2r[ pg — 2 A2 BC|21+ ¢* < 0
where

p=1+ Mo+ (1—a)ap(4)) g=1-4ta + (1+ ) au(4)).
From (3.16), if 4t*||BC|? — pg < 0, that is when
3.17) (a*? — a®)(aq (AP 42 + 20, (A M~ 1< 0

then A = — 7 is not an eigenvalue of £(4t, ). The inequality (3.17) is satisfied
when a*<a <0 and 0 < 4t < 7(a). Hence the thesis.
The statements (i) and (iii) follow by inspection from (3.17).

4 - Relaxation process

Now we show that the matrix (8.4) may be reduced to a relaxation matrix
for a special choice of « = a(4t). Let us assume a >0 and let

3.18) w=2aM(1+al)!  a=—(adt)- 2

© "
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From (3.2) and (3.18) it follows that
38.19) M=24w""4, N=2M#1l-w)w 1A.

Thus, the matrix (3.4) is the two block successive relaxation matrix associated
to the 2-cyclic matrix

M—-N 0 _ A BC
(3.20) (" ¢ =225 )
and equation (3.1) becomes
3.21) o A, =(1 —w)w 'Au; — BCu; +f.

It is easy to prove the following [15].
Theorem 3. Assume (3.18) and (3.19) with a > 0 and
c=V1+ .24 BO).
Then we have n}én oldt, —(adt)™1) = (c - 1)e¢ + 1)!

and the minimum is obtained for At = (ac)™1. Thus (3.3) is an underrelaxation
process with optimum underrelaxation factor w =2(1 + ¢)~1.

At last we note that equation (3.21) can be regarded as a generalized coniu-
gate gradient process [17] when o is chosen in the following way

w1 =1+ s )~! i=1,2
j+1 710 y Ly one

where n=vjAv; v;=A"'(f-(A+BOu) w;=1.

5 - Remarks on numerical calculations

As sample problems, we studied the wind-driven circulation (related to the
classical Stommel problem [13]) and dispersion processes in the ocean and in
(semi-)enclosed seas using depth-averaged models in two space dimensions.

Circulation, problems

In equation (1.1), with G=L !, b,=0, fz=z, 2z is the vorticity. The veloci-
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ty field is determined by the stream function ¢ given by & =2in Q and ¢ =0 on
I'. The region {2 is the unit square, the data are b; = 1, a = 0.05, ¢, = 0.00005 and
the driving force f, the curl of the wind stress, is given by

f==sin(zy) or f=2= sin(2=y)

corresponding to a single-gyre or a double-gyre field respectively. The number
of grid points is of order 50 X 50 or 100 X 100.

The two-level scheme (2.1)-(2.2) have been applied to equation (1.5)', in
which A and B are band-matrices as A and B. The system (2.1) may be solved

either by an LU decomposition of the matrix M =T + —21—(1 — «) Mt(A + B) or by

means of a generalized coniugate gradient method [17].

The three-level scheme (3.1)-(3.2) can be easily applied to equation (1.5). The
system (8.1) may be solved either by an LLT decomposition of the matrix
M=0+adt)]+ (1 —-a)ita, A; or by means of fast Helmoltz operator solver
[14].

The spectral radius g(4t, «) of £(4t, «), defined in (3.4), has been computed
for different values of &, At and « in the range — ¢ < « < 0, where c is defined as
in Theorem 3. g(4¢, «) and the bound () for At defined in (3.13) are weakly de-
pendent on k. The trend of g(4t, ) versus At is similar to that of the spectral
radius versus the relaxation parameter for the relaxation processes. g(4t, «) has
a minimum for a 4t = 7, («) decreasing with «. The upper bound () for 4t is
lightly less than <, («). Numerical computations of the steady state solution,
starting from the state of rest, have been performed. Let J(4t, &) be the num-
ber of time iterations necessary to reach the steady state, assuming a suitable
stopping criterion; values of At smaller than t,, («) must be used to have conver-
gence of J(4t, «) At.

Dispersion problems

Numerical simulations of dispersion processes of a passive pollutant released
in a closed sea have been performed by using the steady velocity fields comput-
ed as described above and suitably normalized. In equation (1.1), with G =1,

oz

Bz an ? is the concentration of the pollutant dissolved in water. These

boundary conditions imply the conservation of the total mass of the pollutant
and the corresponding steady state problem is singular. However, it is possible
to show the stability of the iteration processes which converges to the meaning-
ful steady state.
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Given the numerieal viscosity a, (102 m?s™%, 10? m*s~!) and of the maximum
velocity VbZ+bf (1 ms™!) in the basins considered (surface = 10" m?,
10® m?), the maximum size of the grid mesh % (10° m, 10* m) is determined by
the inequality (1.8) Pe < 1; it follows that the number of grid points is 50 X 50,
100 x 100.

In this case, the two-level (2.1)-(2.2) and three-level (3.1)-(3.2) schemes can
be directly applied to equation (1.5); the systems (2.1) and (3.1) can be solved as
described above. By assuming « = 0, the two schemes have the same order of
approximation equal to 2 and produce very similar results.

Steady state circulation problem

We have stated in Section 4 that the block successive under-relaxation pro-
cess (3.21) may be regarded as a Widlund algorithm [17]. We considered the fol-
lowing elliptic boundary value problem (a special time independent problem of
(1.1) with 2 =4, a; =0, b, =0, Bz =2z also used in [17])

)
&y + By Z—; = ¢ sin(zyL 1)

in the square of side I=10°m and ¢ =0 on the boundary; the parameter
by=b;a~!, in the range 107 m™!, 107" m™?, is the ratio between the gra-
dient of the planetary vorticity and the size of the bottom friction [13] and
c= %10~6 s~!. Calculations were performed for different values of b, to com-
pare the two methods. For a case with 50 X 50 grid points, we found that the
number of iterations required is approximately 15 X 10°b, for the process (3.21),
while it is 3 X 10°6$" for the Widlund process.
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Sommario

Si propone un metodo semidiscreto di Galerkin per Uequazione lineare della vorticita
e per lequazione avvezione-diffusione.
Si effettua una analisi della stabilit per schemi numerici iterativi a due e itre

livelli.

Alcuni risultati numerici sono confrontati e discussi.
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