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On near-rings in which the ideals are annihilators (*¥)

A Bianca Manfredi con amicizie e stima

Introduction

Rings R in which all (left or right) ideals are (left or right) annihilators of
subsets of R are studied in [4], [5], [6], [8]. The purpose of this paper is to ex-
tend the above situation to near-rings and to establish the structure theory for
R-near-rings: namely the near-rings N in which every non-trivial ideal is a right
annihilator of a subset of N.

Using [2], we characterize the R-near-rings which contain an ideal I such
that its left annihilator is without nonzero nilpotent elements, and we prove, in
particular, that such near-rings are subdirectly reducible and thus they have the
right annihilator that equals {0}.

Moreover, we show that, by adding some little stronger conditions, we find
integral near-rings in which all ideals are prime, linearly ordered and with inte-
gral factors. Thus such near-rings result special cases of near-rings studied
in [3].

1 - Definitions and preliminary results

In this paper N stands for a left near-ring and in particular the additive
group and the multiplicative semigroup of N are denoted by N* and N °
respectively.

(*) Dip. di Matem., Univ. Parma, Via D’Azeglio 85, 43100 Parma, Italia. Facolta di
Ingegneria, Univ. Brescia, Via Valotti 9, 25133 Brescia, Italia.
(**) Received July 28, 1992. AMS classification 16 Y 30. Work carried out on behalf of
MURST.
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Moreover, if M cN we put
R(M)={xeN: Mx =0}, L(M)={xeN: M = 0} and A(M) = R(M) N L(M).

Finally if S, @ are ideals of N° we set S?={ay: 2, yeS} and
SQ={sq: se8, qeQ}.

For fundamental notations and elementary results, we refer to [8].

The present section is devoted to establishing some results which will be of
importance later. Most of these are obtained in an analogous manner to the cor-
responding results in ring theory.

Proposition 1. Let N be a near-ring and let S, T be not-empty subsets of
N. Then:

a) ScT implies R(T)c R(S) and L(T) c L(S)

b) L(S) = L(R(L(8))) and R(S) = R(L(R(S)))

¢) L(R(S)) = L(R(T)) implies R(S) = R(T') and R(L(S)) = R(L(T)) implies
L(S) = L(T)

d) R(SUT)=R(S)NR(T) and L(SUT) = L(S) N L(T)

e) If S, T are normal subgroups of N7, then L(S + T)= L(S) N L(T).

Immediate consequences of Proposition 1 are

Proposition 2. Let N be a zero-symmetric near-ring. If N has a non-tri-
vial ideal I such that I = L(R(I)) and I N L(I) =0, then LU + R(D)) =0 and
L(N) =0.

Proposition 8. Let N be a zero-symmetric near-ring. If S is an ideal Aof
N°® without nonzero nilpotent elements, then R(S)= R(S2).

In fact S2¢ S, so immediately we have R(S) c R(S?). Now if a e R(S?), then
s2a =0, for all s e S, and by Oss. 2 of [2] sasa = 0 (because S is an ideal of N ).
It follows that sa = 0, because S has no nonzero nilpotent elements and hence
a € R(S).

We start to study near-rings satisfying the following condition.

Definition A. A near-ring N is called R-near-ring if N satisfies the right
annihilator condition: i.e. for each ideal I of N, (I = 0), there exists a non-empty
subset S of N such that I = R(S).

Using Definition A and Proposition 1, we now have
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Proposition 4. Let N be an R-near-ring. Then

1) N is zero-symmetric

2) If I, J are non-trivial ideals of N such that L(I)c L{J), then JcI
3) R(N)cl, for any non-trivial ideal I of N

4) If R(N) =0, then N is subdirectly irreducible.

Proposition 5. Let N be a near-ring.

1) If N is simple, N is an R-near-ring iff N is zero-symmetric.

2) If N is a zevo-near-ring, N is an R-near-ring iff N is simple.

3) If N is integral, N is an R-near-ring iff N is simple and zero-sym-
metric.

Proposition 6. Let N be an R-near-ving. If I is a non-trivial ideal of N,
then I = R(L(I)) and L(I) is a non-trivial ideal of N°®, ¢f I = N.

By Proposition 1 and Definition A, I = R(L(I)). Moreover, if L(I) =0 then
I =R(L(I))=R(0) =N, hence I =N, which is absurd.
The above propositions suggest a first characterization of R-near-rings.

Proposition 7. A near-ring N is an R-near-ring if and only if the proper
tdeals of N and the right annihilators of proper ideals of N° coincide.

By Definition A it follows that every nonzero element of an R-near-ring is a
right zero divisor. Now we give an example showing that this property does not
characterize the R-near-rings.

We consider the Klein’s four group (G, +) with the following multiplication
table

oo R o
[ e R I ]
QRO Qe ©
St O o O
! O ©

Now N = (G, +,*) is a near-ring and it can be verified that every element
of N is a right zero divisor, but for the ideal I = {0, b} there exists no non-empty
subset S of N such that R(S) =I. Therefore N is not an R-near-ring.
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2 - R-near-rings with a reduced ideal

We note that in general the R-near-rings are not closed under homomor-
phisms, but we can show the following theorem.

Theorem 1. Let N be an R-near-ring such that R(S) = R(S?), for all ide-
als S of N°. Then each homomorphic image of N is an R-near-ring.

Let I be a proper ideal of N and N' = N/I. If J' is a proper ideal of N', then
there exists a proper ideal J of N such that /cJ and J' =J/I.

Firstly we observe that L(I) and L(J) are not trivial by Proposition 6. Then
we prove J' = R(L(J"). Obviously, J' cR(L(J")). Let [z]e R(L(J')): thus
L(J")[z] =1 and hence tz e l, for all ¢t e L(J); namely tz e R(L(I)) = I. Hence
it follows t'tz =0 for all ¢’ e L{I) and z e R(L(I)L(J)). Since IcJ implies
L(J) ¢ L(I), we have L(J)? ¢ L(I) L(J). So R(L(I) L(J)) c RUA(J)*) = RUL(J)) =J
and zeJ. Finally [z]eJ’ and RL(J"))cJ' .

Moreover, if J' = R(L{(J')) and J' # N' then L(J') must be different from
zero, because obviously the right annihilator of zero is N'.

We recall that a near-ring N is said completely reducible if it is a direct sum
of simple ideal (see [8]) and N is called reduced if it has no nonzero nilpotent
elements.

We have

Theorem 2. Let N be an R-near-ring and let I be an ideal of N such that
L(1) is reduced. Then either N/I is integral and simple or N/I is completely re-
ducible in integral near-rings.

To make easier the discussion of the proof of Theorem 2, we first prove a
lemma which is of interest in its own right.

Lemma 1. Let N be an R-near-ring, and let I be an ideal of N such that
L(I) is reduced. Then N/I is a veduced R-near-ring.

Since N is an R-near-ring, I and R(L(I)) coincide and I contains every nilpo-
tent elements of N (Oss. 3 of [2]). Put N’ = N/I. Let J’ be an ideal of N’ differ-
ent from I and let J be the ideal of N such that IcJ and J' =J/I.

Now N’ has no nonzero nilpotent elements because if [y]" = I, for some
nelN, then y"el and xy™ =0, for all x e L(I). So it follows (xy)" =0, by
Oss. 2 of [2] and xy = 0 (because xy € L(J) and L(I) is reduced) and finally
ye R(LU)=1.
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Moreover, since I cJ, we have L(J) ¢ L(I) and also R(L(J)?) = R(I(J)) =J
(by Proposition 3).

Using techniques of the proof of Theorem 1, we can prove that J' = R(L(J"))
and so we have the result.

We may now complete the proof of Theorem 2.

Put N' = N/I; from Lemma 1, N’ is a reduced R-near-ring. If N’ is integral,
then N' is simple (Proposition 5), otherwise N’ has the IFP-property (see Lem-
ma 1, [1]); hence N’ contains a family & of completely prime ideals with trivial
intersection (see Lemma 3 of [1]).

Let M be an element of &. Thus N'/M is an R-near-ring; in fact N' is a re-
duced R-near-ring, and therefore every non-trivial ideal S of N'® has no nonzero
nilpotent elements and, from Proposition 3, it follows R(S) = R(S?), and finally,
by Theorem 1, each homomorphic image of N' is an R-near-ring. Since N'/M is
integral, it is simple and hence M is a maximal ideal of N’; moreover
M = R(L(M)) and L(M) is not void and different from zero.

Now we can consider M as in ideal of N'® and we can note that it has no
nilpotent elements. From Oss. 8 of [2], R(M) = L(M) = A(M) holds and A(M) is
an ideal of N' such that M N A(M) = 0 (because N’ is reduced). It follows that
N' =M ® AM), where A(M) is integral and simple because it is isomorphic to
N'/M. To prove that N’ is completely reducible, it is sufficient to show that
every proper ideal of N’ is a direct summand of N’ (see [8], p. 55).

To this purpose, let J be a proper ideal of N'. If J e &, then J is a direct
summand of N', by above observations.

Otherwise, there exists M' € & such that J is not contained in M’ (because
& has trivial intersection). Suppose K =J NM'. If K =0 then J is a direct
summand of N’ because M’ is maximal in N'. If K # 0, then L(J) = R(J) because
J is an ideal of N'® without nonzero nilpotent elements and J N A(J) = 0. So we
have L(J ® A(J)) = L(J) N L(R(J)), by Proposition le. Since J = B(A(J)), it fol-
lows A(J)J = 0, and hence JA(J) = 0 (see [2], Oss. 2), and, indeed, J = L(A(J)).
It follows that L(J & A(J)) = 0 by Proposition 2 and therefore by Proposition 6,
J @ A(J) = N'. This completes the proof.

Corollary 1. A reduced near-ring N is a non-integral R-near-ring if and
only if N is completely reducible in integral and zero-symmetric near-
rings.

In fact if N is a reduced and non-integral R-near-ring, N is completely re-
ducible in integral near-rings, by Theorem 2. On the other hand, let N be re-
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duced and completely reducible. If I is an ideal of N different from {0}, then I is
a direct summand of N, namely N =1 @® J. Now it is obvious that I and R(J)
coincide because N is reduced, so the result follows.

The following theorem gives another characterization of R-near-rings.

Theorem 3. Let N be a near-ring in which N° has no nonzero nilpotent
ideals. Then N is an R-near-ring if and only if N is zero-symmetric and com-
pletely reducible.

Let N be an R-near-ring and let I be a non-trivial ideal of N. Then
I = R(L(I)), and also (IL(I))? = 0. Since IL(I) is an ideal of N°, by hypothesis
we have IL(I) =0 and L(I)c R(I); thus R(I]) is different from zero because
L(I) # 0. On the other hand, (R(I)I)* = 0 and hence R(I) c L(I), so it follows
R() = L) = A(I). Thus A(]) is an ideal of N and, moreover, I N A(J) = 0 be-
cause N° has no nonzero nilpotent elements.

Now we consider L(I @ A(D) = L{I) N LIA()). It equals zero because
LLI) N L) is a nilpotent ideal of N°®. By Proposition 6, it follows
N =1& A(), and so [ is a direct summand of N. Now we can conclude that N is
completely reducible (see [8] Th. 2.48). Since N°® has no nonzero nilpotent ele-
ment, the converse is obvious.

From now on, if N = A @ B, we shall denote by =, =5, the first, the second
projection map, respectively,
We come now to the main result of this section.

Theorem 4. Let N be a near-ring. The following are equivalent:

1) N is an R-near-ring with an ideal I such that L(I) is reduced
2) N equals TO S, where T, S are near-rings such that:
a) T is either integral and simple, or completely reducible in integral
near-rings
b) S is an R-mear-ring with L(S) =10
¢) Each ideal I of N, I not contained in S or T, is the direct sum of =, (I)
and 7o (I).

Let N be an R-near-ring. Let I be a proper ideal of N such that L(J) is re-
duced. First of all, we prove that N = I ® L(I). By Theorem 2, either N/I is
simple or N/I is completely reducible.

In the first case the result is obvious.
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In the other case, we observe that L(L(I)) = R(L(I)), because L(I) is an
ideal of N ® without nonzero nilpotent elements (see [2], Oss. 2), and so it follows
that L(L(I)) =1 by hypothesis. Using Proposition le, we obtain that
LUBLI)=LIHNLLI)=LI)NI=0 and consequently N=I1& L)
(Proposition 6). Since L(I) is now isomorphic to N/I, L(I) is zero-symmetric
(Theorem 2) and either integral and simple or completely reducble in integral
near-rings.

Now we show that I is an R-near-ring in any case. Let J be a proper ideal of
I, then J is an ideal of N because I is a direct summand of N. Hence in N
J = R(L(J)) and thus L) c L(J), since J cI. Moreover, L(J) N I # 0: in fact,
otherwise we should have I ¢J which is excluded. Now, put H = L(J) N 1. We
have L(J) = H X L(I): in fact obviously H X L(I) is contained in L(J), and
moreover, if (a, b)e L(J) then (a, b)(j, 1) = (aj, 0)=(0,0) for all jed,
b e L({I), hence aj = 0; this implies a e L(J) NI =H and be L{).

Now we consider an element z in I N R(H). Then, for all h e H, y e L(I) we
have (k, ¥) = (x, 0) = (0, 0), and thus (x, 0) e R(L(J)NI=JNI=J: hence
A(H) cJ. Obviously J ¢ R(H), so J = A(H) and H ¢ . Thus [ is an E-near-ring
with L(I) = 0. Let K be an ideal of N =1® L), K' = n,;(K) and K" = =,(K).
Since Kc K' ® K", it follows L(K' & K") c L(K). Moreover, L{(K)c L(K' ® K").
In fact if (@, b) € L(K), then (a, b)(x, ) = (ax, by) = (0, 0) for all (x, y) € K and
so ax=0 and by=0, for all xen,;(K), yeny(K). From this it follows
that (a, b) is in L(K' @ K"). Hence L(K) = L(K' ® K") and, since K and K’ © K"
are ideals of N, which is an R-near-ring, K= K' @ K" follows by Proposi-
tion le.

Conversely, let N =T S, where T is either an integral, simple and zero-
symmetric near-ring or a completely reducible near-ring in integral near-
rings and S is an R-near-ring with L(S) = 0. We have S = R(T): in fact,
obviously ScR(T) and if (v, 0)(a, b) = (0, 0), for all re T, then ra = 0, witha e T
and this implies a = 0, because T has no nonzero nilpotent elements in any
case.

In the same way, we can prove that in N L(S) = T, because S contains no
nonzero left annihilators of S.

Let I be a nonzero ideal of N. If I ¢ S then in S, I = R(L(I)) with L(I)c S,
because S is an R-near-ring. In this case we show that in N, I = R(T X L(I)).
In fact, obviously I ¢ R(T x L(I)), and moreover, if (a, b) e R(T X L(I)), then,
for all zeT, yeL({) (x, y)a, b) = (xa, yb) = (0, 0). From this it follows xza=0,
yb = 0. Thus o = 0, because T has no nilpotent elements and b e S, b e R(L(])),
namely bel. Hence (a,b)el.
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Now let I be not contained in S. Then I N T = 0, because otherwise it would
be IT=TI=0, and I cR(T) =S which is excluded.

IfINS =0then I ¢ T, and hence either I = T or [ is a direct summand of 7.
In the first case I = R(H), in the second one T' = I @ H, with H ideal of T and in
T we have I = R(H), by Corollary 1. Thus in N we have I = R(H % S) and so
the result follows.

Finally, if INS =0, we put I' = =, (I) and 1" = =, (I). By hypothesis we
have I =I' @ I". Moreover, since T, S are R-near-rings, we have I' = R(L(I"))
in T and I" = R(I(I")) in S. Obviously L(I') X L(I") is an ideal of N°, and so
I'®I1"=R(L(I'y x L(I")). This is sufficient to prove the result.

3 - On strongly R-near-rings

Definition B. A near-ring N is said strongly R-near-ring if for each non-
trivial ideal 7 of N there exists an ideal A of N° such that I = R(x), for all
reAN{0}.

Obviously a strongly R-near-ring is an R-near-ring.
We recall that a near-ring ideal 7 is called completely prime (see [1]) if xy e I
implies x e/ or y e I. Now we can show

Proposition 8. Let N be a strongly R-near-ring. The non-trivial ideals of
N are completely prime.

Let I be a proper ideal of N, I 20, and xy e I. Let A be the ideal of N°
such that I = R(z), for each ze A\{0}. Since Axy =0, if Ax =0 we have
yeR(Ax)=1 (because AxcA), hence yel. Otherwise Ax=0 and xeR(A)=1. This
proves the Proposition 8.

Proposition 9. Let N be a strongly R-near-ring. If N is subdivectly ve-
ducible, then N 1is reduced. '

In fact, let « be a nonzero nilpotent element of N. Then there exists &k = 2
such that * = 0 and «* ! 0. Let & denote the family of nonzero ideals of N.
Since in & every ideal I is completely prime, it follows that x*~! e I, and thus
z¥~ ! is an element of the intersection of &, but such intersection equals {0} by
hypothesis, so ¥~ =0 and this implies « = 0, and hence the result.

Now we obtain a characterization concerning strongly R-near-rings.



[9] ON NEAR-RINGS IN WHICH THE IDEALS ARE ANNIHILATORS 9

Theorem 5. A mear-ring N is subdirectly reducible strongly E-near-ring
if and only if N is dirvect sum of two integral, simple and zero-symmetric
near-rings.

Let N be a subdirectly reducible strongly R-near-ring. Then N is reduced
(Proposition 9) and hence N is completely reducible in integral, zero-symmetric
near-rings (Corollary 1).

Moreover, the non-trivial ideals of N are completely prime and N satisfies
condition 2 of Th. 1 of [3], therefore N is completely reducible in two integral
zero-symmetric ideals. The converse is obvious.

Proposition 10. Let N be o non-simple subdirectly irreducible strongly
R-near-ring. Then the set Q(N) of nilpotent elements of N is not trivial and it is
contained in the minimal ideal I of N. Moreover, if N/I is not simple, it is not
an R-near-ring.

Since N is a non-simple subdirectly irredueible near-ring, N contains a mini-
mum ideal I, I = 0.

Moreover, N has nonzero nilpotent elements. In fact, if N is reduced, N is a
direct sum of integral near-rings (cfr. [1]), and hence N is integral and simple
(Proposition 5), which is excluded by hypothesis. Yet N/I is integral, because /
is completely prime (Proposition 8), and thus Q(N)c/l.

Suppose that N/I is not simple. Let J' be a proper ideal of N/I and J the
ideal of N such that J' = J/I. Since L(J') = {[x]e N/I:[x]J' =1}, it follows
that xj eI, for all jedJ, x e L(J'), and hence x € [ because J \I contains (at
least) one element j. Thus L(J') = I and J' equals the right annihilator of zero,
but this result is excluded in an R-near-ring if J' # N/I.

Recall that the set 9 of all ideals of N is linearly ordered if, for any
A, Be 9,AcBor BcA and N is said irreducible if nN = 0 or nN = N, for all
neN.

Proposition 11. Let N be an irreducible strongly R-near-ring. Then all
proper ideals of N are modular.

Let I be a proper ideal of N. Then there exists A ¢ N ° such that I = R(x), for
any © € A\{0}. It follows «I = 0 and xN = N (because N = 0 implies N ¢ R(x),
which is a contradiction). Thus I is modular by Th. 3.23, p. 84 of [8].
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We conclude with a result, which follows easily from Propositions 8, 10 and
Th. 1 of [3].

Theorem 6. Let N be a non-simple subdirectly irreducible strongly
R-near-ring. Then all ideals of N are linearly ordered, and N is a non-integral
near-ring, all whose proper factors are integral.
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