METIN BAŞARIR (*)

On some new sequence spaces (**)

1 - Introduction

Let l_{∞} be the set of all real or complex sequences $x = (x_n)$ with the norm $||x|| = \sup_{n} |x_n| < \infty$. A linear functional L on l_{∞} is said to be a *Banach limit* [1], if it has the properties,

- (i) $L(x) \ge 0$ if $x \ge 0$ (i.e., $x_n \ge 0$ for all n)
- (ii) L(e) = 1, where e = (1, 1, ...)
- (iii) L(Sx) = L(x), where the shift operator S is defined by $(Sx)_n = x_{n+1}$.

If p is any sublinear functional on l_{∞} , then we write $\{l_{\infty}, p\}$ to denote the set of all linear functionals φ on l_{∞} , such that $p > \varphi$ i.e., $p(x) \geqslant \varphi(x)$, $\forall x \in l_{\infty}$. A sublinear functional p is said to generate Banach limits if $\varphi \in \{l_{\infty}, p\}$ implies that φ is a Banach limit; p is said to dominate Banach limits if φ is a Banach limit implies that $\varphi \in \{l_{\infty}, p\}$. Then, if p both generates and dominates Banach limits, then $\{l_{\infty}, p\}$ is the set of all Banach limits. It is known [1] that $\{l_{\infty}, q\}$ is the set of all Banach limits, where

$$q(x) = \inf_{n_1, n_2, \dots, n_r} \overline{\lim}_{k} \frac{1}{r} \sum_{i=1}^{r} x_{k+n_i}.$$

It is well known that $q(x) = t(x), x \in l_{\infty}$, where

$$t(x) = \overline{\lim}_{n} \sup_{i} \frac{1}{n} \sum_{k=0}^{n-1} x_{k+1}.$$

^(*) Dept. of Math., Firat Univ., Elaziğ, Turkey.

^(**) Received November 18, 1992. AMS classification 46 A 45.

Let B be the set of all Banach limits on l_{∞} . A sequence $x \in l_{\infty}$ is said to be almost convergent to a number s if L(x) = s for all $L \in B$. Lorentz [6] has shown that x is almost convergent to s if and only if

$$t_{ki} = t_{ki}(x) = (x_i + x_{i+1} + \dots + x_{i+k-1}) k^{-1} \rightarrow s$$

as $k \to \infty$ uniformly in *i*. Let *f* denote the set of all almost convergent sequences.

Maddox [7], [8] has defined x to be strongly almost convergent to a number s if

$$t_{ki}(|x-s|) = \frac{1}{k} \sum_{j=0}^{k-1} |x_{i+j} - s| \to 0$$

as $k \to \infty$ uniformly in *i*. Throughout the paper we will write x-s for (x_k-s) . Let [f] denote the set of all strongly almost convergent sequences. It is easy to see that $[f] \subset f \subset l_{\infty}$.

The following sequences spaces have been introduced and examined for what concerns their relative strengths by Das and Sahoo [5].

$$w = \{x \mid \lim_{n} \left(\frac{1}{n+1} \sum_{k=0}^{n} t_{ki}(x-s) \right) = 0 \text{ uniformly in } i, \text{ for some } s\}$$

$$[w] = \{x \mid \lim_{n} \left(\frac{1}{n+1} \sum_{k=0}^{n} |t_{ki}(x-s)| \right) = 0 \text{ uniformly in } i, \text{ for some } s\}$$

$$[w_1] = \{x \mid \lim_{n} \left(\frac{1}{n+1} \sum_{k=0}^{n} t_{ki}(|x-s|) \right) = 0 \text{ uniformly in } i, \text{ for some } s\}.$$

It may be noted that almost convergent sequences are nencessarily bounded but the sequence spaces w, [w] may contain unbounded sequences. If $x \in w$ then we say that x is w-convergent. Similarly, we define [w]-convergent sequences and $[w_1]$ -convergent sequences.

By a lacunary sequence $\theta = (k_r)$, r = 0, 1, 2, ..., where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $h_r = (k_r - k_{r-1}) \to \infty$. The intervals determined by θ are denoted by $I_r = (k_{r-1}, k_r]$. The ratio $k_r (k_{r-1})^{-1}$ will be denoted by q_r .

The object of the present paper is to determine a new sublinear functionals involving lacunary sequence that both dominates and generates Banach limits. Also we introduce a new concept of strong almost convergence through a lacunary sequence.

2 - Sublinear functionals and lacunary sequences

A sequences x of real or complex numbers is said to be *lacunary w-convergent*, *lacunary* [w]-convergent or *lacunary* $[w_1]$ -convergent (with respect to the lacunary sequence θ) to the value s if

$$\lim_{r} \sup_{i} \frac{1}{h_{r}} \sum_{k \in I_{r}} t_{ki}(x - s) = 0 \qquad \lim_{r} \sup_{i} \frac{1}{h_{r}} \sum_{k \in I_{r}} |t_{ki}(x - s)| = 0$$

$$\lim_{r} \sup_{i} \frac{1}{h_{r}} \sum_{k \in I_{r}} t_{ki}(|x - s|) = 0$$

respectively. Let w_{θ} , $[w]_{\theta}$ and $[w_1]_{\theta}$ denote the set of the lacunary w-convergent sequences, the lacunary [w]-convergent and the lacunary $[w_1]$ -convergent sequences, respectively.

For a lacunary sequence θ , we define sublinear functionals on l_{∞} by

$$\begin{split} \phi_{\theta}(x) &= \overline{\lim}_r \sup_i \frac{1}{h_r} \sum_{k \in I_r} t_{ki}(x) \\ \psi_{\theta}(x) &= \overline{\lim}_r \sup_i \frac{1}{h_r} \sum_{k \in I_r} |t_{ki}(x)| \\ \zeta_{\theta}(x) &= \overline{\lim}_r \sup_i \frac{1}{h_r} \sum_{k \in I_r} t_{ki}(|x|). \end{split}$$

It can be easily seen that each of the above functionals are finite, well defined and sublinear on l_{∞} .

In the following theorem, we demonstrate that $\{l_{\infty}, \phi_{\theta}\}$ is the set of all Banach limits on l_{∞} .

Theorem 1. The sublinear functional ϕ_{θ} on l_{∞} both dominates and generates Banach limits for every lacunary sequence; in other words

$$\phi_{\theta}(x) = t(x) = q(x)$$
 $x \in l_{\infty}$.

Proof. It is easy to verify that $\phi_{\theta}(x) \leq t(x)$ for all $x \in l_{\infty}$. Hence, ϕ_{θ} generates Banach limits. Using the properties of $L \in B$, we obtain

$$L(x) = \frac{1}{h_x} L(\sum_{k \in I} t_{ki}(x)) \le \sup_{i} \frac{1}{h_x} \sum_{k \in I} t_{ki}(x).$$

This implies that $L(x) \leq \phi_{\theta}(x)$ for all $x \in l_{\infty}$ and then proves that $B \subset \{l_{\infty}, \phi_{\theta}\}$, that is ϕ_{θ} dominates Banach limits. This completes the proof.

Corollary 1. We have

$$f = \{x \in l_{\infty} \mid \varphi(x) = s \text{ for all } \varphi \in \{l_{\infty}, \phi_{\theta}\}\}$$

$$= \{x \in l_{\infty} \mid \frac{1}{h_{\infty}} \sum_{k \in I_{\infty}} t_{ki}(x) \to s \text{ uniformly in } i\} = l_{\infty} \cap w_{\theta}.$$

Proof. This follows from the fact that $\varphi(x) = s$ for all $\varphi \in \{l_{\infty}, \phi_{\theta}\}$ if and only if ([2] Theorem 6)

$$\phi_{\theta}(x) = -\phi_{\theta}(-x).$$

But this condition holds if and only if

$$\frac{1}{h_r} \sum_{k \in I_r} t_{ki}(x) \to s \quad (r \to \infty, \text{ uniformly in } i),$$

i.e. $x \in w_0 \cap l_\infty$. But condition (1) also is equivalent (by Theorem 1) to t(x) = -t(-x), i.e. $x \in f$.

Corollary 2. For every θ , $l_{\infty} \cap w_{\theta} = l_{\infty} \cap w = f$.

Proof. This follows from Corollary 1 and Theorem 2 c of [3].

If f(x-se)=0 for all $f\in\{l_\infty,\psi_\theta\}$, then we say that x is ψ_θ -convergent to s. Similarly we define the ζ_θ -convergent sequences. In the following theorem, we characterize the ψ_θ -convergent sequences and the ζ_θ -convergent sequences.

Theorem 2. We have

a
$$[w]_{\theta} \cap l_{\infty} = \{x \mid \psi_{\theta}(x - se) = 0 \text{ for some } s\} = \{x \mid f(x - se) = 0, \forall f \in \{l_{\infty}, \psi_{\theta}\}\}$$

b $[w]_{\theta} \cap l_{\infty} = \{x \mid \zeta_{\theta}(x - se) = 0 \text{ for some } s\} = \{x \mid f(x - se) = 0, \forall f \in \{l_{\infty}, \zeta_{\theta}\}\}.$

Proof. By Hahn-Banach theorem, $\{l_{\infty}, \psi_{\theta}\}$ is non-empty. If $f \in \{l_{\infty}, \psi_{\theta}\}$, then we have

$$-\psi_{\theta}(-x) \le f(x) \le \psi_{\theta}(x) \quad x \in l_{\infty}$$

or equivalently $-\psi_{\theta}(-x+se) \leq f(x-se) \leq \psi_{\theta}(x-se)$.

Now f(x - se) = 0 if and only if $\psi_{\theta}(x - se) = -\psi_{\theta}(-x + se) = 0$ ([2], Theorem 6). But since by definition $\psi_{\theta}(x) = \psi_{\theta}(-x)$, it follows that f(x) = s for $f \in \{l_{\infty}, \psi_{\theta}\}$ if and only if $\psi_{\theta}(x - se) = 0$. It is easy to verify that $\psi_{\theta}(x - se) = 0$ is equivalent to the fact that

$$\frac{1}{h_r} \sum_{k \in I_r} |t_{ki}(x-s)| \to 0 \quad (r \to \infty, \text{ uniformly in } i).$$

This completes the proof of a.

The proof of **b** is similar.

It is evident from Theorem 2 that $[w]_{\theta} \cap l_{\infty}$ and $[w_1]_{\theta} \cap l_{\infty}$ are the sets of all ψ_{θ} -convergent sequences and all ζ_{θ} -convergent sequences, respectively.

In the following theorem we examine the relationship between $[w_1]$ -convergence and lacunary $[w_1]$ -convergence. We need a Lemma.

Lemma 1. Suppose, for given $\varepsilon > 0$, there exist n_0 and i_0 such that

$$\frac{1}{n}\sum_{k=0}^{n-1}t_{ki}(|x-s|)<\varepsilon$$

for all $n \ge n_0$, $i \ge i_0$. Then $x \in [w_1]$.

Proof. Let $\varepsilon > 0$ be given. Choose n'_0 , i_0 such that

(2)
$$\frac{1}{n} \sum_{k=0}^{n-1} t_{ki}(|x-s|) < \frac{\varepsilon}{6}$$

for all $n \ge n'_0$ and $i \ge i_0$. It is enough to prove that there exists n''_0 such that for $n \ge n''_0$, $0 \le i \le i_0$

(3)
$$\frac{1}{n} \sum_{k=0}^{n-1} t_{ki}(|x-s|) < \varepsilon.$$

Since, taking $n_0 = \max(n'_0, n''_0)$, (3) will hold for $n \ge n_0$ and for all i, we obtain the result.

Once i_0 has been chosen, i_0 is fixed, so

(4)
$$\sum_{k=0}^{i_0-1} \left(\frac{1}{k} \sum_{j=0}^{i_0-1} |x_j - s| \right) = M \quad \text{(constant)}.$$

Now, taking $0 \le i \le i_0$ and $n > i_0$, we have (from (4) and (2))

$$\frac{1}{n} \sum_{k=0}^{n-1} t_{ki}(|x-s|) = \frac{1}{n} (\sum_{k=0}^{i_0-1} + \sum_{k=i_0}^{n-1}) \left[\frac{1}{k} (\sum_{j=i}^{i_0-1} + \sum_{j=i_0}^{i+k-1}) |x_j - s| \right] \leq \frac{M}{n} + \frac{\varepsilon}{2}.$$

Taking, n sufficiently large, we can make $\frac{M}{n} + \frac{\varepsilon}{2} < \varepsilon$ which gives (3) and hence the result.

Theorem 3. We have $[w_1]_{\theta} = [w_1]$ for every θ .

Proof. Let $x \in [w_1]_{\theta}$. Given $\varepsilon > 0$, there exist r_0 and s such that

$$\frac{1}{h_r} \sum_{k=0}^{h_r-1} t_{kq}(|x-s|) < \varepsilon$$

for $r \ge r_0$ and $q = k_{r-1} + 1 + i$, $i \ge 0$.

Let $n \ge h_r$. Write $n = m h_r + \theta$ where $0 \le \theta \le h_r$, m is an integer. Since $h \ge h_r$, $m \ge 1$. Now

$$\frac{1}{n} \sum_{k=0}^{n-1} t_{kq}(|x-s|) \leq \frac{1}{n} \sum_{k=0}^{(m+1)h_r-1} t_{kq}(|x-s|) = \frac{1}{n} \sum_{u=0}^{m} \sum_{k=uh_r}^{(u+1)h_r-1} t_{kq}(|x-s|)$$

$$\leq \frac{m+1}{n} h_r \varepsilon \leq \frac{2m h_r}{n} \varepsilon \quad (m \geq 1).$$

For $\frac{h_r}{n} \le 1$, since $m \frac{h_r}{n} \le 1$, we get

$$\frac{1}{n}\sum_{k=0}^{n-1}t_{kq}(|x-s|) \leq 2\varepsilon.$$

Then by Lemma 1, $[w_1] \subset [w_1]_{\theta}$. It is trivial that $[w_1]_{\theta} \subset [w_1]$ for every θ . Hence we have the result.

In order to prove Theorem 4, we require the following Lemma.

Lemma 2. Suppose, for a given $\varepsilon > 0$, that there exist n_0 and i_0 such that

$$\frac{1}{n}\sum_{k=0}^{n-1}\left|t_{ki}(x-s)\right|<\varepsilon$$

for all $n \ge n_0$, $i \ge i_0$. Then $x \in [w]$.

Proof. Let $\varepsilon > 0$ be given. Choose n'_0 , i_0 such that

(5)
$$\frac{1}{n} \sum_{k=0}^{n-1} |t_{ki}(x-s)| < \frac{\varepsilon}{4} \quad \text{for } n \ge n'_0, \quad i \ge i_0.$$

As in Lemma 1, it is enough to show, there exist n''_0 such that for $n \ge n''_0$, $0 \le i \le i_0$, we have

$$\frac{1}{n}\sum_{k=0}^{n-1}|t_{ki}(x-s)|<\varepsilon.$$

Since i_0 is fixed, put

$$\sum_{k=0}^{i_0-1} \frac{1}{k} \sum_{j=0}^{i_0-1} |x_j - s| = M.$$

Now, let $0 \le i \le i_0$ and $n > i_0$, then

$$\frac{1}{n} \sum_{k=0}^{n-1} |t_{ki}(x-s)| \leq \frac{1}{n} \sum_{k=0}^{i_0-1} \frac{1}{k} \sum_{j=0}^{i_0-1} |x_j-s| + \frac{1}{n} \sum_{k=0}^{i_0-1} |\frac{1}{k} \sum_{j=i_0}^{i+k-1} (x_j-s)|
+ \frac{1}{n} \sum_{k=i_0}^{n-1} |\frac{1}{k} \sum_{j=i}^{i+k-1} (x_j-s)|
\leq \frac{M}{n} + \frac{1}{n} \sum_{k=0}^{i_0-1} |\frac{1}{k} \sum_{j=i_0}^{i_0+(k+i-i_0)-1} (x_j-s)| + \frac{1}{n} \sum_{k=i_0}^{n-1} |\frac{1}{k} \sum_{j=i_0}^{i+k-1} (x_j-s)|.$$

Let $k - i_0 > n_0'$. Then for $0 \le i < i_0$, we have $k + i - i_0 \ge n_0'$. From (5)

(7)
$$\frac{1}{i_0} \sum_{k=0}^{i_0-1} \left| \frac{1}{k+i-i_0} \sum_{j=i_0}^{i_0+(k+i-i_0)-1} (x_j-s) \right| < \frac{\varepsilon}{4}.$$

From (6) and (7)
$$\frac{1}{n}\sum_{k=0}^{n-1}|t_{ki}(x-s)| \leq \frac{M}{n} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} < \varepsilon$$

for sufficiently large n. Hence the result.

Theorem 4. For every θ , we have $[w]_{\theta} \cap l_{\infty} = [w]$.

Proof. Let $x \in [w]_{\theta} \cap l_{\infty}$. For $\varepsilon > 0$, there exist r_0 and q_0 such that

(8)
$$\frac{1}{h_r} \sum_{k=0}^{h_r-1} |t_{kq}(x-s)| < \frac{\varepsilon}{2}$$

for $r \ge r_0$ and $q \ge q_0$, $q = k_{r-1} + 1 + i$, $i \ge 0$.

Now, let $n \ge h_r$, m is an integer greater than equal to 1. Then

$$\frac{1}{n} \sum_{k=0}^{n-1} |t_{kq}(x-s)| \leq \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{k} \sum_{\mu=0}^{m-1} |\sum_{j=q+\mu h_r}^{q+(\mu+1)h_r-1} (x_j-s)| + \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{k} \sum_{j=q+mh_r}^{q+k-1} |x_j-s|
\leq \frac{1}{n} \sum_{\mu=0}^{m-1} \sum_{k=\mu h_r}^{(\mu+1)h_r-1} \frac{1}{k} |\sum_{j=q}^{q+k-1} (x_j-s)| + \frac{1}{n} \sum_{k=mh_r}^{n-1} \frac{1}{k} \sum_{j=q}^{q+k-1} |x_j-s|.$$

Since $x \in l_{\infty}$, for all j, $|x_j - s| < M$. So, from (8) and (9)

$$\frac{1}{n} \sum_{k=0}^{n-1} |t_{kq}(x-s)| \leq \frac{1}{n} m h_r \frac{\varepsilon}{2} + \frac{M h_r}{n}.$$

For, $\frac{h_r}{n} \leq 1$, $M \frac{h_r}{n}$ can be made less than $\frac{\varepsilon}{2}$ by taking n sufficiently large and since $m \frac{h_r}{n} \leq 1$, then

$$\frac{1}{n}\sum_{k=0}^{n-1}\left|t_{kq}(x-s)\right|<\varepsilon$$

for $r \ge r_0$, $q \ge q_0$. Hence, by Lemma 2, $[w]_\theta \cap l_\infty \subset [w]$.

It is trivial that $[w] \in [w]_{\theta} \cap l_{\infty}$. The proof is completed.

We have the following corollary if we consider together with Theorem 4 of [3] Theorem 3 and Theorem 4.

Corollary 3.
$$[f] \subset [w_1]_{\theta} \subset l_{\infty} \cap [w]_{\theta} \subset l_{\infty} \cap w_{\theta} = f$$
.

We are indebted to the referee for his valuable suggestions which improved the paper.

References

- [1] S. Banach, Théorie de opérations linéraries, Warsazava 1932.
- [2] G. DAS, Banach and other limits, J. London Math. Soc. 7 (1973), 501-507.
- [3] G. DAS and S. K. MISHRA, A note on a theorem of Maddox on strong almost convergence, Math. Proc. Cambridge Phil. Soc. 89 (1981), 393-396.
- [4] G. Das and B. K. Patel, Lacunary distribution of sequences, Indian J. Pure Appl. Math. 20 (1989), 64-74.
- [5] G. Das and J. K. Sahoo, On some sequence space, J. Math. Anal. Appl. 164 (1992), 381-398.

- [6] G. G. LORENTZ, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [7] I. J. MADDOX, A new type of convergence, Math. Proc. Cambridge Phil. Soc. 83 (1978), 61-64.
- [8] I. J. MADDOX, On strong almost convergence, Math. Proc. Cambridge Phil. Soc. 85 (1979), 345-350.

Summary

The object of this paper is to introduce some new sequence spaces related with the concept of lacunary strong almost convergence, [3] [4].
