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METIN BASARIR (%)

On some new sequence spaces (**%)

1 - Introduction

Let [, be the set of all real or complex sequences x = (x,) with the norm
||| = sup |x, | < ®. A linear functional L on I, is said to be a Banach limit [1],

if it has the properties,

() L@ =0if =0 (e, z,=0 for all n)
(i) L(e) =1, where e=(1, 1, ...)
(i) L(Sx) = L(x), where the shift operator S is defined by (Sx), =, 1.

If p is any sublinear functional on [, then we write {l., p} to denote the set
of all linear functionals ¢ on [, such that p > ¢ ie, p@) = ¢(x), Vx el . A sub-
linear functional p is said to generate Banach limits if ¢ € {l.,, p} implies that ¢
is a Banach limit; p is said to dominate Banach limits if ¢ is a Banach limit im-
plies that ¢ € {l., p}. Then, if p both generates and dominates Banach limits,
then {l.,, p} is the set of all Banach limits. It is known [1] that {l.,, ¢} is the set
of all Banach limits, where

. Ll s
q(ﬂ/‘) - nl,nlgl,]:.tt‘, - ]{n r zg mk+71.,- .

It is well known that g(x) = t(x), x € ., where

— 1 p 1
t) =1 2 :
(@) =lm sup 3 2 @4
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Let B be the set of all Banach limits on [, . A sequence x € [, is said to be al-
most convergent to a number s if L(x) = s for all L € B. Lorentz [6] has shown
that « is almost convergent to s if and only if

i =t @) = @ + T+ o+ @)k o8

as k— oo uniformly in 4. Let f denote the set of all almost convergent
sequences.

Maddox [7], [8] has defined x to be strongly almost convergent to a number
s if

tki([x""sl)_ 'Ilz 2 |’Ui+j—8| -0

as k — oo uniformly in 4. Throughout the paper we will write x — s for (x;, — ).
Let {f] denote the set of all strongly almost convergent sequences. It is easy to
see that [flcfcl..

The following sequences spaces have been introduced and examined for what
concerns their relative strenghts by Das and Sahoo [5].

w = {x] lim (== Z b (x — 8)) = 0 uniformly in i, for some s}
[w] = {z| hm( 2 |£4; (@ — $)|) = 0 uniformly in 4, for some s}

[w] = {x| 11'71Ln( 2 tw (J& — s|)) = 0 uniformly in 4, for some s}.

+1 %

It may be noted that almost convergent sequences are nencessarily bounded
but the sequence spaces w,[w] may contain unbounded sequences. If x € w then
we say that x is w-convergent. Similarly, we define [w]-convergent sequences
and [w; ]-convergent sequences.

By a lacunary sequence 6 = (k,.), » = 0, 1, 2, ..., where k, = 0, we shall mean
an increasing sequence of non-negative integers with h, = (k, — k,_,) — . The
intervals determined by 6 are denoted by I, = (k,_,, k,]. The ratio k,(k,_,)™*
will be denoted by g,.

The object of the present paper is to determine a new sublinear functionals
involving lacunary sequence that both dominates and generates Banach limits.
Also we introduce a new concept of strong almost convergence through a lacu-
nary sequence.
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2 - Sublinear functionals and lacunary sequences

A sequences x of real or complex numbers is said to be lacunary w-conver-
gent, lacunary [wl-convergent or lacunary [w, ]-convergent (with respect to the
lacunary sequence 6) to the value s if

. 1 — 3 __]_“__ . — =
lim sup e k%,tki @-s)=0 lim sup - 121, [t (@ —8)| =0

lim sup + 3 t(|e —s]) =0

T Ny kel
respectively. Let w,, [w], and [w; ], denote the set of the lacunary w-convergent
sequences, the lacunary [w]-convergent and the lacunary [w,]-convergent se-

quences, respectively.
For a lacunary sequence 6, we define sublinear functionals on [. by

4@ =Tm sup - 3 (@)

r kel,

dot@) = Tim sup - 3 |t4@)|
r i kel,

& (@) = lim sup -,—}kzl tu(a]).

It can be easily seen that each of the above functionals are finite, well defined
and sublinear on /..

In the following theorem, we demonstrate that {l., ¢,} is the set of all Ba-
nach limits on ..

Theorem 1. The sublinear functional ¢, on 1, both dominates and gener-
ates Banach limits for every lacunary sequence; in other words

@) =tlx)=qx) =zel..

Proof. It is easy to verify that ¢,(x) < {(x) for all x e [... Hence, ¢, gene-
rates Banach limits. Using the properties of L € B, we obtain

L@ = LL(S ty@) <sup ~ 3 b @).
h, kel i he Ker

P
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This implies that L(x) < ¢,(x) for all x €., and then proves that Bc {l., ¢},
that is ¢, dominates Banach limits. This completes the proof.

Corollary 1. We have

f={zel.|o@ =s for all pe{lo, $}}

s b (@)~ s uniformly in i} =1, Nw,.

={wel.| hy Kel,

Proof. This follows from the fact that o(x) = s for all p e {l.., ¢} if and
only if ([2] Theorem 6)

1) ¢o(x)= _¢o(_x)-

But this condition holds if and only if

%1— Dtui@)—>s (r—o o, uniformly in 17),
r kel

ie. xew,NI,. But condition (1) also is equivalent (by Theorem 1) to
tx) = —t(—wx), ie. xef

Corollary 2. For every 6, I, Nw,=1, Nw=1.
Proof. This follows from Corollary 1 and Theorem 2 ¢ of([3].

If flx — se) = 0 for all fe {l, ¢}, then we say that x is J,-convergent to s.
Similarly we define the ¢,-convergent sequences. In the following theorem, we
charactirize the ¢;-convergent sequences and the ¢ -convergent sequences.

Theorem 2. We have

a [whNl. ={x|y@—se)=0 for some s}={x|flx—se)=0, Vfe{l., }}
b [wlNl. ={x|{(x—se)=0 for some s}={x|flx—se)=0, Yfe{l,, {}}.

Proof. By Hahn-Banach theorem, {l.., ¢y} is non-empty. If fe {l., ¢},
then we have

—dp(—x) S fl@) < (@) wels

or equivalently —dp(—x + se) < flw — se) < Yp(x — se).
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Now f(z — se) = 0 if and only if ¢, (x — se) = —¢,(—2x + se) = 0 ([2], Theorem 6).
But since by definition ¢, (x) = ¢, (—), it follows that f(x) = s for fe {l., ¢} if
and only if ¢, (x — se) = 0. It is easy to verify that ¢, (x — se) = 0 is equivalent to
the fact that

1

W > |ti@—8)| =0 (r— o, uniformly in 7).
r kel,

This completes the proof of a.
The proof of b is similar.

It is evident from Theorem 2 that [w], N I, and [w; ], N [, are the sets of all
Jconvergent sequences and all -convergent sequences, respectively.

In the following theorem we examine the relationship between [w; ]-conver-
gence and lacunary [w,]-convergence. We need a Lemma.

Lemma 1. Suppose, for given ¢ > 0, there exist ny and iy such that

7 —

1 n—1
%kZOtki(lw— s|)<e

for all n=mny, i =1. Then x e luy].

Proof. Let ¢> 0 be given. Choose 7y, iy such that

n

@ .

£

_1
=Otki(}x —s)< 5

for all n = ny and © = 4. It is enough to prove that there exists 7 such that for
n=ng, 0Si<4,

1 n—1
6)) w > tu(lx —s]) <e.
k=0
Since, taking 7, = max (ng, nh), () will hold for n = n, and for all ¢, we obtain
the result.
Once iy has been chosen, i, is fixed, so

i —1

-1
G > (l 2 lzi—s])=M (constant).
k=0 k j=o
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Now, taking 0 <1i <1, and »n > %5, we have (from (4) and (2))

1 - fg—1 n— fg—1 i M c
= Z m(lx—SI)*—(Z + Z)[ (2 + Z Yoy sl < R
Taking, » sufficiently large, we can make —%— + % < ¢ which gives (3) and
hence the result.

Theorem 3. We have [w;], = [w,] for every 6.

Proof. Let xe[w;],. Given ¢ > 0, there exist 13 and s such that

Ry~ 1
t - <
h kZO kq({m sP<e
for r=zvyand ¢q=Fk,._{+1+1, i=0.

Let n = h,. Write n =mh, + 0 where 0 <6< h,, m is an integer. Since
h=h,, m=1 Now

17 PRGAECRE ] m G-
St <k 2 watla b= 873 e e
2mh,
<Pty e< % mz1)
Ry h
For — <1, since m —1 <1, we get

1 n-1

—’E k%otkq(lw - SI) < 2e.
Then by Lemma 1, [w;]c[w;],. It is trivial that [w; ], c [w, ] for every 6. Hence
we have the result.

In order to prove Theorem 4, we require the following Lemma.

Lemma 2. Suppose, for a given > 0, that there exist ny, and iy such
that

1 e
n g [t — )| <e

for all n=mny, i Z1. Then x e [wl].
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Proof. Let ¢ >0 be given. Choose 7y, i, such that

(5) .7177 2 |tki(x—-s)|<i for n zng, i21.

As in Lemma 1, it is enough to show, there exist nj such that for n = nj,
0<1<1,, we have

% g |tki(x—s)l <e.
Since 4y is fixed, put
2_: 71; 2 |z, —s| =M

Now, let 0 =i <1, and n > iy, then

1 n—1 1 - 1 - ip—1 itk-1
%kg()'tki(x_S)l n 2 A ; | ——sl-{-_ Z I 2 (wj_s)l
LIS LR
(6) + 2, l% Jgi (;—9)|
f~1 fg+k+i—ig—1 itk
M, 1 1 _ 1 _
Y15 P A z;k];(x 9.

Let & — iy > ng. Then for 0 <i <4, we have k+ 17— = nj. From (5)

1 St 1 o+ G +imip)—1 .
— —— - < =
@ 1y k‘go | k+1i—1 j;jo @ = 5| 4
From (6) and (7) + j lta@-s)| <M 42,
nZo R R

for sufficiently large n. Hence the result.
Theorem 4. For every 0, we have [w], N1, = [w].

Proof. Let xe[w];NIl.. For ¢> 0, there exist 7, and ¢, such that
1 h.o~1 c
—_— - < —_
€) e lgo iy @ = )| < 5

for r=ryand ¢=¢qy, g=k,_;+1+14, i=0.
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Now, let % = h,., m is an integer greater than equal to 1. Then

m=—1 ¢+u+1Yh—1 n-1 1 g+k—1

175 151 1
el A — < = el .— + = = €L:—
/2 g It,,q(x )| n 2 k Z" | j=q§+‘lyh, Y 9] n kg() kj=q§nlzr|%] d
@) 1™ 1 e+ 1)k, —11 q+k—1 7ol g+k-1
S - x—8)+ - %—8].
nygﬂ k=2yh, kl E @ =3)] k—gnh‘,k qu |2=s]
Since x e l,, for all j, |&;—s| <M. So, from (8 and (9)
1! 1 Mh,
%—k=0|tkq(fc——s){ sﬁmhr—;‘-%- e
h’r h’r & . .
For, o ﬁll, M -, can be made less than 3 by taking n sufficiently large and
since m WT <1, then

n-1
;Eo [t —8)| < e

I~

for =7y, ¢ = qy. Hence, by Lemma 2, [w], N [, c[w].
It is trivial that [w] c[w], N I, . The proof is completed.

We have the following corollary if we consider together with Theorem 4
0f[3] Theorem 3 and Theorem 4.

Corollary 8. [flclwlycl. NIwlycle, Nw, = f.

We are indebted to the referee for his valuable suggestions which improved
the paper.
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Summary

The object of this paper is to introduce some new sequence spaces related with the
concept of lacunary strong almost convergence, [3] [4].






