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Extension theorems and the problem of measure (**)

1 - Introduction

The Hahn-Banach theorem is a well-known extension theorem which is fun-
damental in the study of topological vector spaces. H. Hahn proved the follow-
ing extension theorem in 1927 for bounded linear functionals in a normed linear
space [4].

Theorem 1. Let M be a subspace of the real normed linear space X, and f
a bounded linear functional defined on M. Then there exists a bounded linear
functional F defined on X such that F(x)=f(x) for all xeM and

1E] = 11

S. Banach proved the same theorem in 1929 [3] and published the following
generalization in 1932 [1].

Theorem 2. Let M be a subspace of the real vector space X, p a sublinear
functional defined on X, and f a linear functional defined on M with f(x) < p(x)
for all x e M. Then there exists a linear functional F defined on X such that
F(x) = f(x) for all xe M and F(x) < plx) for all xeX.

Also in this 1932 text Banach gave a solution to the problem of measure
using Theorem 2 ([1], p. 32).

Most texts which refer to the problem of measure state that it is a conse-
quence of the Hahn-Banach theorem (Theorem 2). However, Banach’s original
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solution of the problem appeared in 1923 [2]. Although Banach did not use the
Hahn-Banach theorem initially to solve the problem, he did use an extension
theorem for linear functionals. An anlysis of [2] demonstrates that the extension
theorem used in the solution of the problem of measure has some interesting ra-
mi-

fications and is actually related to a result due to M. Krein which appeared in
1948 [6].

2 - The problem of measure

The problem of measure as solved by Banach in [2] may be formulated as
follows.

Problem of measure. Is it possible to assign to every bounded subset
of real mumbers a monnegative number m(E) such that

a mE)=0

b m([0, 1) =1

¢ mli; U Ey) =m(lE,) + m(ly), where BE{ N E; =0

d m(&,) = m(Ey) for all sets E, and E, which are congruent (isometric)?

The original statement of the problem was due to H. Lebesgue [7] and en-
compassed both finite and countable unions in condition ¢. He restricted his in-
vestigation to a certain class of sets without any mention of the solvability or in-
solvability of the general problem. Banach refers to F. Hausdorff’s work on this
problem in Grundziige der Mengenlehre which was originally published in 1914
[(5]. In this work Hausdorff generalizes the problem to sets in n-dimensional
space. He shows that the question is answered in the negative for countable
unions in any space and also in the negative for finite unions in spaces with
three or more dimensions. The question for finite unions in space with one or
two dimensions was answered by Banach in the affirmative in 1923 [2].

3 - Banach’s solution

To solve the problem of measure, Banach begins with the set & of all bound-
ed real valued functions f(x) of a real variable which are periodic with period 1.
Using an idea from Hausdorff’s work ([5], p. 401), Banach considers these func-
tions to be defined on the circumference of the circle with centre at the origin
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and radius where x denotes the arclength. He creates a structure on this

1
27
set of functions by starting out with the following definition ({2], p. 9).

Definition 1. We write f(x)~0, if for each ¢ > 0 there is a finite set of re-
al numbers a,, a5, ..., @, such that for each real number x

1 n
| 2 f@ta)] <

This definition leads to a decomposition of Finto equivalence classes in the usual
way ie., f(@)~g(x) if f(x) — glx)~0. Banach calls these equivalence classes hy-
perfunctions and defines addition and scalar multiplication of classes again in
the usual way.

An order relation is defined on & as follows ([2], p.11).

Definition 2. We write f(x) > 0, if there is a ¢ > 0 and a finite set of real
numbers a;, Gs, ..., &, such that

1 n

1 v+ a)| =

nlkglf(m a)| = ¢
for all .

This leads to an ordering on F by defining f(x) > g(x) if f(x) — g(x)>0. In
turn this order relation on &is used to define an order relation on the hyper-
functions ([2], p.14).

Definition 8. Let F, and F, be any two equivalence classes, i.e. hyper-
functions. Then F, > F, if f(x) > 0 for each fe Fy — Fy; F| = F, if either F; = F
or F; > F,.

It can easily be shown that the set of all hyperfunctions with the above defi-
nitions forms an ovdered vector space. Furthermore, this space has an order-
unit. The hyperfunction containing the constant function f(x) =1 is an order-
unit and is denoted by 1.

Banach then discusses the coneept and properties of nonnegative linear fune-
tionals on the space of hyperfunctions. After some preliminaries he proves the
following theorems ([2], p. 16, 19).

Theorem 3. Let 9 be a subspace of hyperfunctions and F; a hyperfunc-
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tion not i M. Let Fy, F3 e M with Fy > F, > Fy and A a nonnegative linear
Sfunctional defined on IN. Then there exists a nonnegative linear functional A
defined on the space spanned by MU {F,} such that AF)=AF) for all
Feon.

Theorem 4. Let 9T be a subspace of hyperfunctions containing the hyper-
Sfunction 1 and A a nonnegative linear functional defined on M. Then there
exists a nonnegative linear functional A defined on the space of all hyperfunc-
tions such that A(F) = AF) for all F e 9.

Therem 4 enables Banach to establish the following result (2], p. 23).

Theorem 5. There exists a functional H defined for all bounded func-
tions with period 1 satisfying the following conditions:

1 Hcy fi@) + ¢ fo () =y H(fy (@) + e, H(f3 () for any bounded functions
fi, fo with period 1 and any real numbers ¢y, cs.

2 H(fi@)=0 1 filx) =0.

3 H(fix) =cif filx)=c for all x, ie, H(c)=c for any real number c.

4 H(f(x) = H(f(xx + a)) for every real number «.

5 If f is Lebesgue integrable, then

1
H(f@) = (L) [ fw) da.
0

Theorem 5 follows from Theorem 4 by the following considerations. The sub-
space I consists of all hyperfunctions which contain Lebesgue integrable func-

1
tions. The nonnegative linear functional A is given by A(F) = (L) j flx) de where

Fedrtand fe F is Lebesgue integrable. Theorem 4 guarantees tohe existence of
A, i.e., an extension of A to the space of all hyperfunctions. The functional Ain
turn gives rise to a functional G on F defined by G(f(x)) = A(F) where feF.
The required functional H for Theorem 5 is defined by

H(f(w) = %[G(f(x)) + G(f(— ).

By setting m(E) = H(xg(x)), where yzis the characteristic function on E c [0, 1),
the problem of measure is solved in the affirmative for the real line. Banach
notes ([2], p. 31) that an analogous procedure leads to an affirmative answer to
the problem of measure in two dimensions.
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4 - Extension theorems

Clearly Theorem 3 and Theorem 4 are extension theorems for nonnegative
linear functionals. Moreover, with these two theorems Banach established a
prototype for the procedure used in proving the Hahn-Banach theorem. Specifi-
cally he shows that the functional can be extended from 91 to 9t U {F; } (Theo-
rem 3). Then he uses transfinite induction to extend the functional from 9% to
the whole space (Theorem 4). This is precisely the procedure used by Hahn in
1927 [4] and Banach in 1929 [3] and in 1982 [1] to prove the Hahn-Banach
theorem.

The works of Hahn [4] and Banach [3] cited in the preceding paragraph con-
tain the original version of the Hahn-Banach theorem, i.e., the extension theo-
rem for normed linear spaces. It is easy to see that the space of hyperfunctions
is actually an archimedean ordered vector space. There is a natural norm which
can be assigned to such a space. If ¢ denotes an order-unit in the space, then
this norm is given by

] = inf{x > 0]z e[—2e, 2e]}.
This norm gives rise to a corresponding norm for linear functionals, ie.,

Al = Sup, |A@)] .

Using these norms in Theorem 4, it can be shown that the norm of the original
functional and its extension are the same. With these modifications Theorem 4
becomes a special case of the Hahn-Banach theorem for normed linear spaces
(Theorem 1).

Also, the proofs of Theorem 3 and Theorem 4 as given by Banach do not rely
on any special properties of hyperfunctions. With appropriate changes in termi-
nology and notation, Banach’s work can be applied to prove the following exten-
sion theorem.

Theorem 6. Let X be an ordered vector space with an order-unit e, M a
subspace of X with e e M, and f a nonnegative linear functional defined on M.
Then there exists a nonnegative linear functional F defined on X such that
F(x) = f(x) for all x e M.

An extension theorem related to Theorem 6 can be found in the 1948 mono-
graph Linear operators leaving invariant a cone in a Banach space by M. Krein
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and M. Rutman. In this monograph they prove an extension theorem for positi-
ve linear functionals. Before stating this theorem, some definitions are neces-
sary.

Definition 4. Let X be a normed linear space and K c X. Then K is called
a (linear) semi-group if

a xeK=lxeK VY2z=0
b x,yeK=zx+yek.

A semi-group gives rise to a partial ordering on X.
Definition 5. Let x,yeX. Then e <y if y —xe K.

Definition 6. A closed semi-group K c X is called a cone if for each ele-
ment £ e K with © # 0 we have, —x ¢ K.

Definition 7. A linear functional f is said to be positive (with respect to
K) if flx)=0 VzxeK and there exists at least one ;€K such that
Sflxg) > 0.

The Krein-Rutman extension theorem may be given as follows ([7],
p. 13).

Theorem 7. Let K # X be a semi-group with interior and let the subspace
M c X contain at least one strictly positive element in the interior of K. Then
each positive linear functional f(x) defined on M can be extended to a positive
linear functional F(x) defined on all of X.

In Theorem 7 the semi-group provides the space with an order relation.
Also, order units are always positive interior points. Hence the relation be-
tween Theorem 6 and Theorem 7 is clear, viz., Theorem 6 is a special case of
Theorem 7.

It should be mentioned that in the introduction to their monograph, Krein
and Rutman state that Theorem 7, i.e., the extension theorem for positive
linear functionals, is due to Krein. It was part of an unpublished manuscript
written on the eve of the war ([6], p. 9). Whatever the case may be it is clear
that Theorem 7 has a precursor in the works of Banach, specifically in his 1923
paper in which he solves the problem of measure.
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5 - Conclusion

Although the Hahn-Banach theorem can be used to solve the problem of
measure, Banach’s solution to the problem predates that theorem. In fact, Ba-
nach’s solution to the problem of measure furnishes more than a solution to that
problem. The techniques used to solve it provide a prototype for the proof of the
Hahn-Banach theorem. Also, the extension theorems proven by Banach are a
precursor to the result published by M. Krein in 1948 on the extension of positi-
ve linear functionals.
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Sommario

Nella sua soluzione originale al problema di misura, S. Banach adoperd un teorema
di estensione che precede il teorema di Hahn-Banach. Un’analisi del suo lavoro di-
mostra che questo teorema d'estensione pud essere modificato per gli spazi vettoriali or-
dinati e porta ad un caso speciale del teorema di Krein-Rutman.
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