L. MARIA ABATANGELO (*)

A study of submanifolds in Finsler spaces by principal bundle techniques (**)

1 - Introduction

Let (M, F) be an *n*-dimensional Finsler space and $O(E) \to V(M)$ the principal O(n)-bundle of all Finslerian frames of M.

Let $\theta \in \Gamma^{\infty}(T^*(O(E)) \otimes \mathbb{R}^{2n})$ be the canonical 1-form considered in [4] (i.e. the direct product of the h- and v-basic 1-forms of [9]). As observed in [4] (cf. also [6]) if H is a connection in O(E) then $\theta_z \colon H_z \to \mathbb{R}^{2n}$ is an \mathbb{R} -linear isomorphism, for any $z \in O(E)$. Therefore θ may be thought of as the Finslerian analogue of the canonical 1-form in [8] (I, p. 118). It is noteworthy that, unlike the classical case, where the canonical 1-form does not depend on the Riemannian structure of M, the construction of its Finslerian analogue makes use of the Dombrowski map (cf. [2]) and therefore depends on the Langrangian function F.

In the present note we build on work in [4] and show that θ satisfies the structure equation (2.3), analogous to the first structure equation associated with a linear connection on M ([8], I, p. 120).

The applications we have in mind concern the geometry of submanifolds in Finsler spaces.

Let (N, F_0) be an (n+p)-dimensional Finsler space and $f: M \to N$ an immersion, so that $F(u) = F_0(f_*u)$ for any $u \in T(M)$. Let $\theta_0 \in \Gamma^{\infty}(T^*(O(E_0)) \otimes \mathbf{R}^{2(n+p)})$ be the canonical 1-form of (N, F_0) . If (M, F) and (N, F_0) are Riemannian manifolds, then the pullback of θ to the principal

^(*) Dip. di Matematica, Univ. Bari, Via E. Orabona 4, 70125 Bari, Italia.

^(**) Received September 7, 1992. AMS classification 53 B 40. Work partially supported by MURST.

 $O(n) \times O(p)$ bundle $O(E_0, E)$ of all adapted frames coincides with the restriction of θ_0 to $O(E_0, E)$ (cf. [8], II, Prop.1.1 p. 3). This fact no longer holds for Finslerian immersions and our Theorem 2 furnishes its Finslerian analogue.

The main tool in the proof of Theorem 2 is a formula of [7]

(1.1)
$$\beta X = \beta_0 X + \gamma_0 H(X, v)$$

for any Finslerian vector field X tangent to M (Sec. 4). Its meaning is that horizontal tangent vectors on V(M) may fail to be horizontal with respect to the Cartan-Chern connection of the ambient space (N, F_0) .

In Sec. 5 we deal with induced connection 1-forms on M and formulate an open problem.

2 - The canonical 1-form

Let M be an n-dimensional C^{∞} -differentiable manifold. Let $T(M) \to M$ be its tangent bundle and set $V(M) = T(M) \setminus 0$. Let π : $V(M) \to M$ be the natural projection and $E = \pi^{-1}TM \to V(M)$ the pullback of T(M) by π . Let $F: T(M) \to [0, \infty)$ be a Lagrangian function on M, i.e. (M, F) is a Finsler space. Then E becomes a Riemannian bundle, in a natural way (cf. [5], p. 2). Let g be the Riemannian bundle metric associated with F. Then g is parallel with respect to the Cartan-Chern connection of (M, F).

Let $E \to X$ be a vector bundle of real rank r over a C^{∞} manifold X. Let $g \in \Gamma^{\infty}(S^2(E^*))$ be a Riemannian bundle metric in E. Then $O(E) \to X$ denotes the principal O(r)-bundle of all orthonormal frames in the fibres of (E,g). That is, if $z \in O(E)_u$, $u \in X$, then $z \colon R^r \to E_u$ is an R-linear isomorphism, so that $g_u(Y_i, Y_j) = \delta_{ij}$ for $1 \le i, j \le r$, where $z(e_i) = Y_i$ and $\{e_1, \ldots, e_r\}$ denotes the canonical basis of R^r .

Let (M, F) be an n-dimensional Finsler space and (E, g) its (induced) Riemannian bundle, as above. Let $\rho \colon O(E) \to V(M)$ be the corresponding principal O(n)-bundle. Each $z \in O(E)$ is referred to as a Finslerian frame on M. Consider $\theta^h \in \Gamma^\infty$ $(T^*(O(E)) \otimes \mathbf{R}^n)$ given by $\theta^h_z = z^{-1} \circ L_u \circ (d_z \rho)$ for any $z \in O(E)$, where $u = \rho(z)$. Also L is the bundle epimorphism $L \colon T(V(M)) \to E$ given by $L_u X = (u, (d_u \pi) X)$, for any $X \in T_u(V(M))$, $u \in V(M)$. The \mathbf{R}^n -valued 1-form θ^h on O(E) is, up to a bundle isomorphism, the h-basic 1-form ([10], p. 48).

Let ∇ be the Cartan-Chern connection of (M, F). Let N be its horizontal distribution (on V(M)) i.e. $X \in \Gamma^{\infty}(N)$, iff $\nabla_X v = 0$, where $v \in \Gamma^{\infty}(E)$ is the Liouville vector, v(u) = (u, u), for $u \in V(M)$. Then (cf. e.g. [7]) N is a nonlinear con-

nection on V(M), i.e.

$$(2.1) T_{u}(V(M)) = N_{u} \oplus \operatorname{Ker}(d_{u}\pi)$$

for any $u \in V(M)$.

Let $Q_n\colon T_n(V(M))\to \operatorname{Ker}(d_n\pi)$ be the natural projection associated with (2.1). The *Dombrowski map* of (M,F) is the bundle epimorphism $K\colon T(V(M))\to E$ defined by $K=\gamma^{-1}\circ Q$ where $\gamma\colon E\to \operatorname{Ker}(d\pi)$ is the vertical lift. At this point we may recall the construction of the v-basic 1-form $\theta^v\in \Gamma^\infty(T^*(O(E))\otimes \mathbf{R}^n)$, i.e.

$$\theta_z^v = z^{-1} \circ K_u \circ (d_z \rho)$$

for any $z \in O(E)$, where $u = \rho(z)$.

Let $\theta = \theta^h \oplus \theta^v$ be the direct product of the h- and v-basic 1-forms of (M, F). Then θ is an \mathbb{R}^{2n} -valued 1-form on O(E) (called the *canonical* 1-form of (M, F)). Let H be the connection-distribution in O(E) corresponding to the Cartan-Chern connection ∇ (cf. [5] for the construction of H). Then by a result in [4], $\theta_z \colon H_z \to \mathbb{R}^{2n}$ is a \mathbb{R} -linear isomorphism, for any $z \in O(E)$.

We summarize our constructions so far in the following diagram

Let $\xi \in \mathbb{R}^{2n}$. Let $H(\xi) \in \Gamma^{\infty}(H)$ denote the unique horizontal tangent vector field on O(E), so that $\theta_z(H(\xi)_z) = \xi$ for any $z \in O(E)$. This turns out to possess properties, which are similar to those of the standard horizontal vector fields in [8] (I, p. 119). Precisely, the following result holds.

Proposition 1. We have

$$(d_z R_a) H(\xi)_z = H(a^{-1} \xi)_{za}$$

for any $a \in O(n)$, $z \in O(E)$

$$\xi \neq 0 \Rightarrow H(\xi)_{\alpha} \neq 0$$

for any $z \in O(E)$.

In Proposition 1. $R_a\colon O(E)\to O(E)$ stands for right translation with $a\in O(n)$. Also O(n) acts canonically on $\mathbf{R}^{2n}=\mathbf{R}^n\oplus\mathbf{R}^n$, i.e. $a\xi=a\xi_1\oplus a\xi_2$ where $\xi=\xi_1\oplus\xi_2$ and $\xi_i\in\mathbf{R}^n$, i=1,2. The proof is straightforward.

Let $\mathfrak{o}(n)$ be the Lie algebra of O(n). Let $A \in \mathfrak{o}(n)$, $\xi \in \mathbb{R}^{2n}$. Then

$$[A^*, H(\xi)] = H(A\xi)$$

where $A\xi = A\xi_1 \oplus A\xi_2$. Here $A^* \in \Gamma^{\infty}(\text{Ker}(d\rho))$ denotes the fundamental vector field associated with the left invariant vector field A. The proof of (2.2) is similar to the proof of Prop. 2.3 in [8] (I, p. 120), and therefore is left as an exercise for the reader.

Let $\theta = D\theta$ be the *covariant derivative* of θ , i.e. $\theta(X, Y) = (d\theta) (hX, hY)$ for any $X, Y \in T(O(E))$. Here $h_z \colon T_z(O(E)) \to H_z$ denotes the natural projection associated with $T_z(O(E)) = H_z \oplus \operatorname{Ker}(d_z \rho)$ for $z \in O(E)$. We have

Theorem 1. Let (M, F) be a Finsler space and $\theta \in \Gamma^{\infty}(T^*(O(E)) \otimes \mathbb{R}^{2n})$, its canonical 1-form. Let Θ be the covariant derivative (with respect to the connection H in $O(E) \to V(M)$ induced by the Cartan-Chern connection of (M, F)) of θ . Then

(2.3)
$$(\mathrm{d}\theta)(X, Y) = -\frac{1}{2}(\omega(X)\,\theta(Y) - \omega(Y)\,\theta(X)) + \Theta(X, Y)$$

for any $X, Y \in T(O(E))$. Here $\omega \in \Gamma^{\infty}(T^*(O(E)) \otimes \mathfrak{o}(n))$ is the connection 1-form associated with H.

Proof. It is sufficient to check (2.3) for $X = A^*$ and $Y = H(\xi)$, where $A \in \mathfrak{O}(n)$, $\xi \in \mathbb{R}^{2n}$. Both sides in (2.3) may be shown to be equal to $-\frac{1}{2}A\xi$ (one should use (2.2) to evaluate the left hand member of (2.3)).

3 - Adapted Finslerian frames

Let (M, F), (N, F_0) be two Finslerian spaces, $\dim_R M = n$, $\dim_R N = n + p$ and $f: M \to N$ a C^{∞} -immersion which is *isometric*, i.e. $F(u) = F_0((d_x f)u)$ for any $u \in T_x(M)$, $x \in M$. Let $\pi_0: V(N) \to N$ be the natural projection and set $E_0 = \pi_0^{-1} TN$. In the sequel, an index 0 attached to a symbol indicates a geometric object (Lagrangian function, induced bundle, Cartan-Chern connection, etc.) associated with the ambient space N.

Corresponding to (N, F_0) one may consider a Riemannian vector bundle

 (E_0, g_0) and the principal O(n+p)-bundle $\rho_0: O(E_0) \to V(N)$. Set

$$O(E_0)|_{V(M)} = \{z \in O(E_0) | \varphi_0(z) \in V(M)\}.$$

As usual, since all our considerations are local, we do not distinguish notationally between x and f(x), u and $(d_x f)u$, etc., for $x \in M$, $u \in T_x(M)$.

A Finslerian frame $z \in O(E_0)|_{V(M)}$ is called adapted if

$$z = (u\{Y_1, ..., Y_n, Y_{n+1}, ..., Y_{n+p}\})$$

with $\{Y_1, \ldots, Y_n\} \subseteq E_u$ and $\{Y_{n+1}, \ldots, Y_{n+p}\} \subseteq \upsilon(f)_u$, $u \in V(M)$. Here $\upsilon(f) \to V(M)$ denotes the normal bundle of the given immersion f (cf. also [5], [7]). That is, if z is adapted then $z(\mathbf{R}^n) = E_u$ and $z(\mathbf{R}^p) = \upsilon(f)_u$, where $\mathbf{R}^{n+p} = \mathbf{R}^n \otimes \mathbf{R}^p$ canonically.

Let $O(E_0, E)$ consist of all adapted Finslerian frames and $\rho: O(E_0, E) \to V(M)$ the natural projection. Then $O(E_0, E)$ is a principal $O(n) \times O(p)$ bundle over V(M). Define the principal bundle morphism $h': O(E_0, E) \to O(E)$ by $h'(z) = (u, \{Y_1, ..., Y_n\})$ for any adapted frame

$$z = (u, \{Y_1, ..., Y_n, Y_{n+1}, ..., Y_{n+n}\})$$

as above. That is $h'(z) = z|_{R^n}$ where $z: R^{n+p} \to E_{0,u}$. Thus $O(E) \cong O(E_0, E)/O(p)$ (a principal bundle isomorphism). Note also that $O(\upsilon(f)) \cong O(E_0, E)/O(n)$. Finally, there is a natural principal bundle morphism $h'': O(E_0, E) \to O(\upsilon(f))$ and $O(\upsilon(f)) \times_{O(p)} R^p \cong \upsilon(f)$ (a vector bundle isomorphism).

We summarize our constructions so far in the following commutative diagram

$$\begin{array}{c|c} O(E) \xleftarrow{h'} O(E_0, E) \xrightarrow{h''} O(\upsilon(f)) \\ O(n) \Big| O(n) \times O(p) \Big| \wp & O(p) \Big| \wp'' \\ V(M) \xleftarrow{1} V(M) \xleftarrow{1} V(M) . \end{array}$$

4 - Immersions and canonical 1-forms

Let $\theta \in \Gamma^{\infty}(T^*(O(E)) \otimes \mathbb{R}^{2n})$ and $\theta_0 \in \Gamma^{\infty}(T^*(O(E)) \otimes \mathbb{R}^{2(n+p)})$ be the canonical 1-forms of (M, F) and (N, F_0) , respectively. We wish to relate $(h')^*\theta$ and (the restriction to $O(E_0, E)$ of) θ_0 .

To this end we shall need the Gauss formula (cf. e.g. [1], p. 276)

 $\nabla^0_x Y = \nabla_x Y + \widehat{H}(X, Y)$ for any $X \in \Gamma^\infty(T(V(M)))$, $Y \in \Gamma^\infty(E)$. Here ∇^0 , ∇ and \widehat{H} are respectively the Cartan-Chern connection of (N, F_0) , the induced connection, and the second fundamental form (of f). Let N be the nonlinear connection of ∇ and β : $E \to N$ the corresponding horizontal lift. The horizontal second fundamental form H is given by $H(X, Y) = \widehat{H}(\beta X, Y)$ for any $X, Y \in \Gamma^\infty(E)$.

To state our main result we shall need the 1-form $\varphi \in \Gamma^{\infty}(T^*(O(E_0, E)) \otimes \mathbf{R}^p)$ given by $\varphi_z X = z^{-1} H(L_u d_z(\varphi' h') X, v)$ for any $X \in T_z(O(E_0, E))$, $z \in O(E_0, E)$, where $u = \varphi(z)$. Here $\mathbf{R}^p \cong \{0\} \times \mathbf{R}^p \subset \mathbf{R}^{n+p}$.

Theorem 2. The following identities hold:

$$(4.1) i*j*\theta_0^h = (h')*\theta^h \oplus 0 i*j*\theta_0^v = (h')*\theta^v \oplus \varphi$$

where $i: O(E_0, E) \to O(E_0)|_{V(M)}$ and $j: O(E_0)|_{V(M)} \to O(E_0)$ are canonical inclusions. In particular, the restriction to $O(E_0, E)$ of the \mathbb{R}^{n+p} -valued 1-form θ_0^h is \mathbb{R}^n -valued.

We summarize our constructions in the following commutative diagram

$$\begin{split} O(E_0,E) & \xrightarrow{i} O(E_0)\big|_{V(M)} \xrightarrow{j} O(E_0) \\ O(n) \times O(p) \bigg|_{\mathcal{F}} & O(n+p) \bigg|_{\mathcal{F}_0} & O(n+p) \bigg|_{\mathcal{F}_0} \\ V(M) & \xrightarrow{f_*} V(M) \xrightarrow{f_*} V(N) \; . \end{split}$$

Let $z \in O(E_0, E)$, $u = \rho(z)$, and set $z' = h'(z) \in O(E)$. We wish to compute $(h')_z^* \theta_{z'}^h$, where $(h')_z^* : T_z^*(O(E)) \otimes \mathbf{R}^n \to T_z^*(O(E_0, E)) \otimes \mathbf{R}^n$. By the chain rule

$$(4.2) (h')_z^* \theta_{z'}^h = (z')^{-1} L_u d_z(\rho' h').$$

We shall need the following commutative diagram

$$O(E_0,E) \xrightarrow{f'} O(E) \xrightarrow{\wp'} V(M) \\ \downarrow f_* \\ O(E_0) \xrightarrow{\wp_0} V(N)$$

that is, the identity

$$(4.3) \rho_0 \circ j \circ i = f_* \circ \rho' \circ h'.$$

Let $(Df)_u: E_u \to (E_0)_u$ be the restriction of $d_x f \times d_x f$ to E_u , where $x = \pi(u)$. The following diagram is commutative

$$R^{n} \xrightarrow{\alpha} R^{n+p}$$

$$(z')^{-1} \uparrow \qquad \qquad \uparrow z^{-1}$$

$$E_{u} \xrightarrow{(Df)_{u}} (E_{0})_{\overline{u}}$$

$$L_{u} \uparrow \qquad \qquad \uparrow (L_{0})_{\overline{u}}$$

$$T_{u}(V(M)) \xrightarrow{d_{u} f_{*}} T_{\overline{u}}(V(N))$$

where $\alpha(\xi)=(\xi,\,0)$ and $\overline{u}=f_*(u),\,\xi\in I^n$, $u\in V(M)$. Let us check the commutativity of the lower square. Let $Z\in T_u(V(M))$. Since $\pi_0\circ f_*=f\circ \pi$ we may perform the following calculation

$$(L_0)_{\overline{u}}(d_u f_*) Z = (\overline{u}, (d_{\overline{u}} \pi_0)(d_u f_*) Z) = (\overline{u}, d_u (\pi_0 f_*) Z)$$

$$= ((d_{-(u)} f) u, (d_{-(u)} f)(d_u \pi) Z) = (Df)_u (u, (d_u \pi) Z) = (Df)_u L_u Z,$$

At this point we may prove $(4.1)_1$. To this end we use (4.2), (4.3) and the identity

$$(4.4) (L_0)_u (d_u f_*) = (Df)_u L_u$$

where f_*u is identified with u. We may perform the following calculation

$$\begin{split} \alpha(h')_z^* \, \theta_{z'}^h &= \alpha(z')^{-1} \, L_u \, d_z(\rho' \, h') = z^{-1} (\mathrm{D} f)_u L_u \, d_z(\rho' \, h') \\ &= z^{-1} (L_0)_u \, (d_u \, f_*) \, d_z(\rho' \, h') = z^{-1} (L_0)_u \, d_z(f_* \rho' \, h') \\ &= z^{-1} (L_0)_u \, d_z(\rho_0 j i) = (j i)_z^* \, z^{-1} (L_0)_u \, d_{j i(z)} \, \rho_0 = (j i)_z^* \, \theta_{0, z}^h \, . \end{split}$$

The proof of (4.1)₂ is somewhat trickier. Firstly, note that

$$f_{**}(\operatorname{Ker}(\mathrm{d}\pi)) \subset \operatorname{Ker}(\mathrm{d}\pi_0)$$
.

Moreover, the following diagram is commutative

$$E_{u} \xrightarrow{\gamma_{u}} \operatorname{Ker}(d_{u}\pi)$$

$$(Df)_{u} \downarrow d_{u}f_{*}$$

$$(E_{0})_{f_{*}u} \xrightarrow{\gamma_{0}, f_{*}u} \operatorname{Ker}(d_{f_{*}u}\pi_{0})$$

for any $u \in V(M)$.

The proof is in local coordinates. Let (U, u^{α}) , (V, x^{i}) be local coordinate neighborhoods on M, N respectively (with $f(U) \in V$). Let $(\pi^{-1}(U), u^{\alpha}, v^{\alpha})$, $(\pi_{0}^{-1}(V), x^{i}, y^{j})$ be the naturally induced local coordinates on V(M), V(N) respectively. We adopt the following convention for the indices: $1 \leq \alpha$, β , ... $\leq n$ and $1 \leq i, j, \ldots \leq n + p$. Set $X_{\alpha}(u) = (u, \frac{\partial}{\partial u^{\alpha}}|_{x})$ for any $u \in \pi^{-1}(u)$, $x = \pi(u)$. Then $\{X_{1}, \ldots, X_{n}\}$ is a (local) frame field in E over $\pi^{-1}(U)$. Finally set $\partial_{\alpha} = \frac{\partial}{\partial u^{\alpha}}$, $\dot{\partial}_{\alpha} = \frac{\partial}{\partial v^{\alpha}}$. We shall need the following

Lemma 1. We have

(4.5)
$$(Df)_u X_{\alpha}(u) = B_{\alpha}^i(\pi(u)) X_i(f_* u) \quad f_{**} \dot{\partial}_{\alpha} = B_{\alpha}^i \dot{\partial}_i$$
 for any $u \in \pi^{-1}(U)$, where $B_{\alpha}^i = \frac{\partial f^i}{\partial u^{\alpha}}$ and $f^i = x \circ f$.

Let us firstly show how the commutativity of the diagram above follows from Lemma 1. Indeed

$$\begin{split} (d_u f_*) \gamma_u X_{\alpha}(u) &= (d_u f_*) \dot{\partial}_{\alpha}(u) = B_{\alpha}^i \dot{\partial}_i (f_* u) \\ \\ &= B_{\alpha}^i \gamma_{0, f_* u} X_i (f_* u) = \gamma_{0, f_* u} (\mathrm{D} f)_u X_{\alpha}(u) \,. \end{split}$$

It remains to establish Lemma 1. The proof of $(4.5)_1$ is a straighforward consequence of definitions. To check $(4.5)_2$ one may write $f_{**}\dot{\partial}_{\alpha} = A^i_{\alpha}\dot{\partial}_i + C^i_{\alpha}\partial_i$ for some A^i_{α} , $C^i_{\alpha} \in C^{\infty}(\pi^{-1}(U))$. Applying $(\pi_0)_*$ furnishes $C^i_{\alpha} = 0$.

To compute the remaining functions A^i_{α} we need

Lemma 2. We have

(4.6)
$$y^{i}(f_{*}u) = B_{\alpha}^{i}(\pi(u)) v^{\alpha}(u)$$

for any $u \in \pi^{-1}(U)$.

The identity (4.6) may be written succintly $y^i = B^i_\alpha v^\alpha$ and is of interest in itself. In classical language, the submanifold M is tangent to the supporting element of the ambient space. Let us apply $f_{**}\dot{\partial}_\alpha = A^i_\alpha\dot{\partial}_i$ to y^i (thought of as a function $y^i \colon \pi_0^{-1}(V) \to \mathbf{R}$). We have

$$A_{\alpha}^{i} = (f_{**}\dot{\partial}_{\alpha})y^{i} = \dot{\partial}_{\alpha}(y^{i} \circ f_{*}) = \dot{\partial}_{\alpha}(B_{\alpha}^{i}v^{\beta}) = B_{\alpha}^{i} \circ \pi.$$

Finally, it remains to check $(4.5)_2$. To this end, let $u \in \pi^{-1}(U)$ be written as $u = u^{\alpha} \frac{\partial}{\partial u^{\alpha}}|_{x}$, where $x = \pi(u)$, $u^{\alpha} = v^{\alpha}(u)$. Then $f(x) = f(\pi(u)) = \pi_0$ f_*u so that we may conduct the following calculation

$$f_* u = u^{\alpha} f_* \frac{\partial}{\partial u^{\alpha}} \big|_{x} = u^{\alpha} B_{\alpha}^{i}(x) \frac{\partial}{\partial x^{i}} \big|_{f(x)} = v^{\alpha}(u) B_{\alpha}^{i}(\pi(u)) \frac{\partial}{\partial x^{i}} \big|_{\pi_0(f_*u)}.$$

So far we have obtained the identity

(4.7)
$$(\gamma_{0, f_* u})^{-1} \circ (d_u f_*) = (\mathrm{D} f)_u \circ \gamma_u^{-1}$$

for any $u \in V(M)$. Unlike the case of (4.4), the following diagram is *not commutative* in general (it only collects the arrows we need)

$$E_{u} \xrightarrow{(Df)_{u}} (E_{0})_{f_{*}u}$$

$$K_{u} \uparrow \qquad \uparrow K_{0,f_{*}u}$$

$$T_{u}(V(M)) \xrightarrow{d_{u}f_{*}} T_{f_{*}u}(V(N)).$$

Nevertheless, we may show that the Dombrowski maps K, K_0 of (M, F), (N, F_0) are related. More explicitly

Lemma 3. We have

(4.8)
$$(Df) KZ = K_0 f_{**} Z - H(LZ, v)$$

for any $Z \in T(V(M))$.

As a consequence of (4.8) the diagram above is commutative if and only if f is totally-geodesic. Our Lemma 3 may be used to end the proof of $(4.1)_2$. Indeed,

we may conduct the following calculation

$$\begin{split} \alpha(h')_z^* \, \theta_{z'}^v Z &= \alpha \, \theta_{z'}^v \, (d_z \, h') \, Z = \alpha(z')^{-1} \, K_u \, (d_{z'} \, \wp') (d_z \, h') \, Z = z^{-1} \, (\mathrm{D} f)_u \, K_u \, d_z \, (\wp' \, h') \, Z \\ \\ &= z^{-1} \, K_0 \, _{f,\, u} \, (d_u \, f_u) \, d_z \, (\wp' \, h') \, Z - z^{-1} \, H(L_u \, d_z \, (\wp' \, h') \, Z, \, v) = (ji)_z^* \, \theta_{0,\, z}^v \, Z - \varphi_z \, Z \, . \end{split}$$

It remains to prove (4.8). The proof is in local coordinates. Let β be the horizontal lift associated with the induced connection ∇ and set $\delta_{\alpha} = \beta X_{\alpha}$, $1 \leq \alpha \leq n$. Then $\delta_{\alpha} = \partial_{\alpha} - N_{\alpha}^{\beta} \dot{\partial}_{\beta}$ where N_{α}^{β} are the coefficients of the nonlinear connection of ∇ . We may write $f_{**}\partial_{\alpha} = A_{\alpha}^{i}\partial_{i} + C_{\alpha}^{i}\dot{\partial}_{i}$ for some A_{α}^{i} , $C_{\alpha}^{i} \in C^{\infty}(\pi^{-1}(U))$. Applying $(\pi_{0})_{*}$ yields at once $A_{\alpha}^{i} = B_{\alpha}^{i} \circ \pi$. Next, we may use (4.6) to compute C_{α}^{i} , that is

$$C_{\alpha}^{i} = \partial_{\alpha}(y^{i} \circ f_{*}) = \partial_{\alpha}(B_{\beta}^{i} v^{\beta}) = B_{\alpha\beta}^{i} v^{\beta} \quad \text{with} \quad B_{\alpha\beta}^{i} = \frac{\partial^{2} f^{i}}{\partial u^{\alpha} \partial u^{\beta}}.$$

We obtain

$$(4.9) f_{**} \partial_{\alpha} = B^{i}_{\alpha} \partial_{i} + B^{i}_{\alpha\beta} v^{\beta} \dot{\partial}_{i}.$$

Using (4.9) and (4.5)₂ of Lemma 1 we may derive

$$f_{**} \, \delta_{\alpha} = B_{\alpha}^{i} \, \delta_{i} + (B_{\alpha\beta}^{j} v^{\beta} + N_{i}^{j} B_{\alpha}^{i} - N_{\alpha}^{\mu} B_{\mu}^{j}) \, \dot{\partial}_{j}$$

where $\delta_i = \partial_i - N_i^j \dot{\partial}_j$ and N_i^j are the coefficients of the non linear connection of the Cartan-Chern connection ∇^0 of (N, F_0) . The Gauss formula

$$\nabla^0_{f^{**}\hat{c}_\alpha}(\mathrm{D}f)\,X_\beta=(\mathrm{D}f)\,\nabla_{\hat{c}_\alpha}X_\beta+H(X_\alpha\,,\,X_\beta)$$

may be written

$$(4.11) F_{\alpha\beta}^{\lambda} B_{\lambda}^{k} + H_{\alpha\beta}^{k} = B_{\alpha\beta}^{k} + B_{\beta}^{i} \left\{ B_{\alpha}^{i} F_{ji}^{k} + (B_{\alpha\lambda}^{j} v^{\lambda} + N_{m}^{j} B_{\alpha}^{m} - N_{\alpha}^{\lambda} B_{\lambda}^{i}) C_{ji}^{k} \right\}.$$

Contraction with v^{β} in (4.11) leads (as $F_{\alpha\beta}^{\mu}v^{\beta}=N_{\alpha}^{\mu}$) to

$$(4.12) H_{\alpha 0}^k = B_{\alpha \beta}^k v^{\beta} + B_{\alpha}^j N_j^k - N_{\alpha}^{\lambda} B_{\lambda}^k$$

where $H_{\alpha 0}^i = H_{\alpha \beta}^i v^{\beta}$. Finally (4.10) may be written (by (4.12)) as

$$f_{**} \, \delta_{\alpha} = B_{\alpha}^{i} \, \delta_{i} + H_{\alpha 0}^{i} \, \dot{\partial}_{i} .$$

Consequently one has the identities

$$\begin{aligned} & (\mathrm{D}f)\,K\,\dot{\partial}_{\,a} = B^{\,i}_{\,\alpha}X_{i} & (\mathrm{D}f)\,K\,\delta_{\alpha} = 0 \\ & K_{0}\,f_{**}\,\dot{\partial}_{\alpha} = B^{\,i}_{\,\alpha}X_{i} & K_{0}\,f_{**}\,\dot{\partial}_{\alpha} = H^{\,i}_{\,\alpha0}X_{i} \end{aligned}$$

which yield (4.8).

5 - Immersions and connection 1-forms

Let $\omega_0 \in \Gamma^\infty(T^*(O(E_0)) \otimes \mathfrak{o}(n+p))$ be the connection 1-form on $O(E_0)$ corresponding to the Cartan-Chern connection ∇^0 in (E_0, g_0) . Then $j^*\omega_0$ is a connection 1-form on $O(E_0)|_{V(M)}$. Next, let $\mathfrak{g}(n,p)$ be the ortogonal complement (with respect to the Killing-Cartan form of $\mathfrak{o}(n+p)$) of $\mathfrak{o}(n)+\mathfrak{o}(p)$ in $\mathfrak{o}(n+p)$. Let ω be the $(\mathfrak{o}(n)+\mathfrak{o}(p))$ -component of $i^*j^*\omega_0$ (with respect to the decomposition $\mathfrak{o}(n+p)=(\mathfrak{o}(n)+\mathfrak{o}(p))\otimes \mathfrak{g}(n,p)$). Then ω is a connection 1-form for $O(E_0,E)\to V(M)$. Let $\omega_{\mathfrak{o}(n)}$ be the $\mathfrak{o}(n)$ -component of ω . The following diagram describes our construction

for any $z \in O(E_0, E)$. By Prop. 6.1 in [8], vol. I, ch. II, there is a unique connection 1-form $\omega' \in \Gamma^{\infty}((T^*(O(E)) \otimes \mathfrak{o}(n)))$ such that $(h')^* \omega' = \omega_{\mathfrak{o}(n)}$.

We may formulate the following

Problem. Show that ω' is the connection 1-form in $O(E) \to V(M)$ corresponding to the induced connection ∇ in (E, g).

If (M, F), (N, F_0) are Riemannian manifolds the problem above may be solved by showing that θ has zero torsion. This in turn follows by restriction of the first structure equation satisfied by θ_0

$$d\theta_0 = -\omega_0 \wedge \theta_0 + \Theta_0$$

to the bundle of adapted frames and making use of Prop. 1.1 of [8], vol. II, p. 3. As to our case, the Finslerian analogue of Prop. 1.1 in [8], vol. II, is Theorem 2.

One may apply i*j* to (5.1) and use (4.1) to derive

$$(5.2) \qquad [(h')^* d\theta^h \oplus 0] \oplus [(h')^* d\theta^v \oplus \varphi] = \{-i^*j^* \omega_0 \wedge [(h')^* \theta^h \oplus 0]\} \oplus \{-i^*j^* \omega_0 \wedge [(h')^* \theta^v \oplus \varphi]\} + i^*j^* \Theta_0.$$

While the structure equation (5.2) possesses a highly complicated character (in comparison with its Riemannian counterpart, where $\theta_0 = 0$), it is reasonable to expect that it may yield (via Theor. 4.4 in [4], p. 82) the torsions T and S^1 of ω' . It is known (cf. e.g. [1], p. 277) that the induced connection ∇ is characterized by $\nabla q = 0$, $S^1 = 0$ and

$$T(X, Y) = \tan \{C^*(N(X), Y) - C^*(N(Y), X)\}$$
 for any $X, Y \in \Gamma^{\infty}(E)$.

The author hopes to address these questions in a further paper.

References

- [1] L. M. Abatangelo, S. Dragomir and S. Hōjō, On submanifolds of Finsler spaces, Tensor 47 (1988), 272-285.
- [2] P. Dombrowski, On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88.
- [3] S. Dragomir, On the holonomy groups of a connection in the induced Finsler bundle, Proc. of the Nat. Seminar on Finsler spaces, Univ. Brasov, 2 (1983), 83-97.
- [4] S. Dragomir, On the geometry of Finslerian G-structures on differentiable manifolds, Boll. Un. Mat. Ital. 5-D (1986), 71-86.
- [5] S. Dragomir, Submanifolds of Finsler spaces, Confer. Sem. Mat. Univ. Bari 217 (1986), 1-15.
- [6] S. Dragomir and L. Di Terlizzi, On lifts of Finslerian G-structures associated with a nonlinear connection, Rend. Mat. Appl. 6 (1986), 365-381.
- [7] B. T. M. HASSAN, Subspaces of a Finsler space, Sem. de Geometrie si Topologie, Univ. Timisoara, 54 (1980).
- [8] S. Kobayashi and K. Nomizu, Foundations of differential geometry, I, II, Interscience, New York 1963, 1969.
- [9] M. Matsumoto, The induced and intrinsic Finsler connections of a Finsler hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ. 25 (1985), 107-144.
- [10] M. Matsumoto, Foundations of Finsler geometry and special Finsler Spaces, Kasheisa Press, Kyoto 1986.

Summary

In this work the submanifolds geometry in Finslerian manifolds is studied by using principal bundles techniques.
