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L. MARIA ABATANGELO (%)

A study of submanifolds in Finsler spaces

by principal bundle techniques (**)

1 - Introduction

Let (M, F) be an n-dimensional Finsler space and O(E) — V(M) the princi-
pal O(n)-bundle of all Finslerian frames of M.

Let 0 I'*(T*(O(E)) ® R™) be the canonical 1-form considered in [4] (ie.
the direct product of the 4~ and v-basic 1-forms of [9]). As observed in [4]
(cf. also [6]) if H is a connection in O(E) then 6,: H,— R* is an R-linear iso-
morphism, for any z e O(E). Therefore 6 may be thought of as the Finslerian
analogue of the canonical 1-form in [8] (I, p. 118). It is noteworthy that, unlike
the classical case, where the canonical 1-form does not depend on the Rieman-
nian structure of M, the construction of its Finglerian analogue makes use
of the Dombrowski map (cf. [2]) and therefore depends on the Langrangian
function F.

In the present note we build on work in [4] and show that 6 satisfies the
structure equation (2.3), analogous to the first structure equation associated
with a linear connection on M (8], I, p. 120).

The applications we have in mind concern the geometry of submanifolds in

Finsler spaces.

Let (N, Fy) be an (n + p)-dimensional Finsler space and f: M —N
an immersion, so that F(u)=Fy(f.u) for any wueTM). Let
0 e ' (T*(O(E,)) ® R*™ *P)) be the canonical 1-form of (N, F,). If (M, F) and
(N, Fy) are Riemannian manifolds, then the pullback of 6 to the principal

(*) Dip. di Matematica, Univ. Bari, Via E. Orabona 4, 70125 Bari, Italia.
(**) Received September 7, 1992. AMS classification 53 B 40. Work partially suppor-
ted by MURST.
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O(n) X O(p) bundle O(E,, E) of all adapted frames coincides with the restriction
of 6, to O(F,, E) (cf. [8], II, Prop.1.1 p. 3). This fact no longer holds for Finsle-
rian immersions and our Theorem 2 furnishes its Finslerian analogue.

The main tool in the proof of Theorem 2 is a formula of [7]

(L.1) BX = BoX + yo H(X, v)

for any Finslerian vector field X tangent to M (Sec. 4). Its meaning is that
horizontal tangent vectors on V(M) may fail to be horizontal with respect to
the Cartan-Chern connection of the ambient space (N, Fy).

In Sec. 5 we deal with induced connection 1-forms on M and formulate an
open problem.

2 - The canonical 1-form

Let M be an n-dimensional C“-differentiable manifold. Let T(M) — M be its
tangent bundle and set V(M) = T(M)\O. Let =: V(M) — M be the natural pro-
jection and E =x"'TM— V(M) the pullback of T(M) by = Let
F: T(M)— [0, ») be a Lagrangian function on M, i.e. (M, F) is a Finsler space.
Then E becomes a Riemannian bundle, in a natural way (cf. [5], p. 2). Let g be
the Riemannian bundle metric associated with F. Then g is parallel with respect
to the Cartan-Chern connection of (M, F).

Let E— X be a vector bundle of real rank r over a C” manifold X. Let
geI'*(S2(E*)) be a Riemannian bundle metric in E. Then O(F) — X denotes
the principal O(r)-bundle of all orthonormal frames in the fibres of (&, g). That
is, if ze O(E),, ueX, then z: R"— E, is an R-linear isomorphism, so that
9.(¥;, Y;) =8, for 1<4,j < where 2(¢;) =Y; and {ey, ..., e,} denotes the
canonical basis of R”.

Let (M, F) be an n-dimensional Finsler space and (E, g) its (induced) Rie-
mannian bundle, as above. Let o: O(E) — V(M) be the corresponding principal
O(n)-bundle. Each z € O(F) is referred to as a Finslerian frame on M. Consider
0" e ' (T*(OE)) @ R™) given by 6" =271oL, o(d,¢) for any z e O(E), where
% =g(2). Also L is the bundle epimorphism L: T(V(M))—E given by
L, X = (u,(d, 7) X), for any X e T, (V(M)), u € V(M). The R"valued 1-form ¢* on
O(E) is, up to a bundle isomorphism, the k-basic 1-form ([10], p. 48).

Let V be the Cartan-Chern connection of (M, F). Let N be its horizontal
distribution (on V(M)) i.e. X e I'*(N), iff Vxv = 0, where v e I'"(E) is the Liou-
ville vector, v(u) = (u, u), for u € V(IM). Then (cf. e.g. [T]) N is a nonlinear con-
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nection on V(M), ie.
2.1 T,(V(M)) =N, ® Ker(d, =)

for any u e VIM).

Let Q,: T,(VIM)) — Ker(d,=) be the natural projection associated with
(2.1). The Dombrowski map of (M, F) is the bundle epimorphism
K: TV(M)) — E defined by K =y~ ! oQ where y: E — Ker(d=) is the vertical
lift. At this point we may recall the construction of the v-basic 1-form
*eI'*(T*(0O&E)) ®R™), ie.

62 = z_l OKu O(dzP)

for any z e OF), where u = ().

Let 6 = 6" @ 6” be the direct product of the - and v-basic 1-forms of (M, F).
Then 6 is an R**-valued 1-form on O(E) (called the canonical 1-form of (M, F)).
Let H be the connection-distribution in O(E) corresponding to the Cartan-Chern
connection V (ef. [5] for the construction of H). Then by a result in [4],
6,: H,— R? is a R-linear isomorphism, for any z e O(E).

We summarize our constructions so far in the following diagram

h v

0"‘ 4
R'<—T.(O(E)) — R*

e

e e
E, I T, (V(M)) K E,.

Let £e R®™. Let H(¢) e I'"(H) denote the unique horizontal tangent vector
field on O(E), so that 6,(H(®),) = ¢ for any z € O(E). This turns out to possess
properties, which are similar to those of the standard horizontal vector fields in
8] (I, p. 119). Precisely, the following result holds.

Proposition 1. We have
(d:R,)HE, = H(a ™ &)y
for any a e Om), z e OF)
=0 = H(),#0

for any z e O&F).



276 L. M. ABATANGELO [4]

In Proposition 1. B,: O(F) — O(E) stands for right translation with a € O(n).
Also O(n) acts canonically on R*=R"®R", ie. af=af ®ak where
t=5®& and e R", i =1, 2. The proof is straightforward.

Let o(n) be the Lie algebra of O(n). Let A € o(n), £ R?. Then

2.2) [A%, H(®)] = H(4%)

where Af = At @ A&,. Here A* e I'*(Ker (dg)) denotes the fundamental vector
field associated with the left invariant vector field A. The proof of (2.2) is simi-
lar to the proof of Prop. 2.8 in [8] (I, p. 120), and therefore is left as an exercise
for the reader.

Let @ = Dé be the covariant derivative of 6, i.e. OX, Y) = (d) (hX, hY) for
any X, Y e T(O(E)). Here h,: T,(0(E)) > H, denotes the natural projection as-
sociated with T,(O(E)) = H, ® Ker (d,p) for z € O(E). We have

Theorem 1. Let (M, F) be a Finsler space and 0 e ' (T*(O(E)) ® R?),
its canonical 1-form. Let O be the covariant derivative (with respect to the con-
nection H in OE) — V(M) induced by the Cartan-Chern connection of (M, F))
of 6. Then

@3) @O, ¥) = — —}Z(woo 6(Y) — w(¥)6(X)) + O(X, Y)

Jor any X, Y e T(OE)). Here w e I'*(T*(O(E)) ® o(n)) is the connection 1-form
associated with H.

Proof. It is sufficient to check (2.3) for X =A* and Y = H(&), where
A e o(n), £e R*. Both sides in (2.3) may be shown to be equal to — —21—A£ (one
should use (2.2) to evaluate the left hand member of (2.3)).

3 - Adapted Finslerian frames

Let (M, F), (N, Fy) be two Finslerian spaces, dimgp M =mn, dimp N =n + p
and f: M — N a C”-immersion which is isometric, i.e. F(u) = Fy((d, f)u) for
any ueT,(M), xeM. Let my: VIN)— N be the natural projection and set
E, =g TN. In the sequel, an index 0 attached to a symbol indicates a geome-
tric object (Lagrangian function, induced bundle, Cartan-Chern connection,
ete.) associated with the ambient space N.

Corresponding to (N, Fjy) one may consider a Riemannian vector bundle
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(Ey, go) and the principal O(n + p)-bundle ¢y: O(F,) — V(N). Set
OWo) | van = {2 € O(Ey) | 0 () € VIM)}.

As usual, since all our considerations are local, we do not distinguish notational-
ly between % and f(x), » and (d, f)u, ete, for xe M, u e T, (M).
A Finslerian frame z e O(F)|yay is called adapted if

z= (u{Yl7 L] Yn3 Yn—i—ly g} Yn+p})

with {Yy, ..., Y.} cEy and {Y,.1, ..., Yuuptcu(f), ueV(M). Here u(f)— V(M)
denotes the normal bundle of the given immersion f (cf. also [5], [7]). That is, if z
is adapted then z(R") = E, and 2(R?) = u(f),, where R"*? = R" @ R? canoni-
cally.

Let O(E\, E) consist of all adapted Finslerian frames and g: O(E,, E)— V(M)
the natural projection. Then O(E,, E) is a principal O(n) X O(p) bundle over
V(M). Define the principal bundle morphism #': O(E,, E) — OE) by
k' @) = (u,{Y:, ..., ¥, }) for any adapted frame

z= (u,{Yly reey Yn: Yn+1y seey Yll+p})

as above. That is &'(z) =2|g- where 2: R""?—E,,. Thus OE) = 0F,E)/0(p) (a
principal bundle isomorphism). Note also that O(u(f)) = O(E,, E)/O(n). Finally,
there is a natural principal bundle morphism k" O(E,, E) — O(u(f)) and
OW(f)) X o R? = u(f) (a vector bundle isomorphism).

We summarize our constructions so far in the following commutative
diagram

' 7,1

o) < 0y, B) > 00f))
Om) l 0(m) % O(p) l 0<p>l,o"

VM) ! Vi) ! VM) .

4 - Immersions and canonical 1-forms

Let 0 e I'*(T*(O(E)) @ R®™) and 6, e I'* (T*(O(E)) ® R***P) be the canoni-
cal 1-forms of (M, F) and (N, Fy), respectively. We wish to relate (A')*6 and
(the restriction to O(E,, E) of) 6,.

To this end we shall need the Gauss formula (cf. eg. [1], p. 276)
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VY =V,Y + HX, Y) for any X e '*(T(V(M))), Y e I'*(E). Here V°, V and H
are respectively the Cartan-Chern connection of (N, Fy), the induced connec-
tion, and the second fundamental form (of f). Let N be the nonlinear connection
of V and g: £ — N the corresponding horizontal lift. The horizontal second fun-
damental form H is given by H(X, Y) = H(ﬁX, Y) for any X, YeI'"(E).

To state our main result we shall need the 1-form
0eI'*(T*(OE,, E)) @ R?) given by ¢,X=2"1H(L,d,(¢'h)X,v) for any
XeT,(OF,, E)), ze O(E,, E), where u = o(z). Here R? = {0} X RP cR"*P.

Theorem 2. The following identities hold:
4.1) ik = (W) 6" D0 ¥R =(h)*0" Do

where i: O(Ey, E) — O(Ey) |van and j: OE))|yan — OE,) are canonical inclu-
sions. In particular, the restriction to O(E,, E) of the R™ " P-valued 1-form 6} is
R™wvalued.

We summarize our constructions in the following commutative diagram

O, E) s OE | van L O(Ey)
O(n) x O(p)lp O(n+ p)l On+ p)lpo

V() 1 V) 7 VIN).

Let ze O(E,, E), u = o(2), and set 2’ = h'(z) e O(F). We wish to compute
(B")F 6k, where (B)F: THOW®E)QR™—T#(0OE,, E)) @R™. By the chain
rule

4.2) (hFok = (@) L,d, (o' k).

We shall need the following commutative diagram

OB —— V)

h/f
OE,, E) S
v |

0B — V)
co
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that is, the identity
4.3) cpofol = fuop oh'.

Let (Df),: B, — (Fy), be the restriction of d, f X d, fto K, where x = =(u).
The following diagram is commutative

R “ > Rntp

(z’)‘lT Tz‘l
Df)

Eu_—_——li—%_ (EO)ZT

LuT T(LO)IT

T,(V(M)) e To(V(\))

wJe

where «(&) = (£, 0) and w =f.. (w), £e R", u e V(M). Let us check the commuta-
tivity of the lower square. Let Z e T, (V(M)). Since =y o fi = fox we may per-
form the following calculation

Lodz(dy ) Z = @, (dgmoXdy [1) Z) = (W, dy (7o f1) Z)
= ((daqo ) (G FN Ay 7) Z) = (Df ) (0, (dy 7) Z) = (Df )y Loy Z.

At this point we may prove (4.1);. To this end we use (4.2), (4.3) and the
identity

(44 (Lo (dy fi) = (Df )y Loy,
where f.u is identified with 4. We may perform the following calculation
alh)E0h = a@)F Lyd, (o' h') = 27 (D) Lo d, (&' B')
=2 (Lo (dy fu) Ao (")) = 27 (L ) A, (ficp' B)
= 27 LoDy (oo i) = (G0F 27 (Lo Vu iy p0 = (G007 6L .
The proof of (4.1), is somewhat trickier. Firstly, note that

Sfes (Ker (dn)) c Ker (dmy).
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Moreover, the following diagram is commutative

7’1!
E,——— Ker(d,=)

D), l ldf

(Eﬂ)f 2 ——’_'"—'9' Ker (dj u 7.'0)
for any u e V(M).

The proof is in local coordinates. Let (U, u*), (V, ') be local coordinate
neighborhoods on M, N respectively (with f(U)cV). Let (= 1(U), u*, v*),
(=g 1 (V), «*, y’) be the naturally induced local coordinates on V(M), V(N) re-
spectively. We adopt the following convention for the indices: 1< «, 5, ... €%
and 1<4,74,...<n+p. Set X, (w) = (u, é—%; |,) for any u e n *(u), x = =(w).
Then {Xi,...,X,} is a (local) frame field in E over = '(U). Finally set

) : 3
3, = —, 3, = .
o uE Y o

We shall need the following

Lemma 1. We have

4.5) (Df )y X, ) = Bi(rw)) X; (fu %)  fis 0, = Bi;
for any we ="' (U), where Bl = 2{; and f'=xof.

Let us firstly show how the commutativity of the diagram above follows
from Lemma 1. Indeed

(A f2) v X () = (d, f1) 8, () = Bi&; (f)

= Bi Y0, fun Xi(fou) = Yo, f*u(Df)u X, (w).

It remains to establish Lemma 1. The proof of (4.5); is a straighforward con-
sequence of definitions. To check (4.5), one may write fi.3, = Aid; + C:9; for
some A}, Cie C* (z~1(U)). Applying (=), furnishes C! = 0.

To compute the remaining functions A we need

Lemma 2. We have
(4.6) Y (feu) = Bl(z(w)) v* (u)

for any e =" 1(U).
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The identity (4.6) may be written succintly y* = Blv* and is of interest in it-
self. In classical language, the submanifold M is tangent to the supporting ele-
ment of the ambient space. Let us apply f...d, = A2d; to y' (thought of as a
function y*: 75! (V) — R). We have

A; = (f*:%: éa)yl = éa(yi Of*) = a.a(Bivﬁ) = Bclc o,
Finally, it remains to check (4.5);. To this end, let u e =~ 1 (I) be written as

% = u* 5%; |, where ¢ = =(u), u* = v*(u). Then f(x) = f(=(w)) = =y fu so that

we may conduct the following calculation

o ; d i 2]
#U=Ufo T | = aB; &) = p* Bol: I T I (few) -
f. U =U f W, I U (x) Py If(x) v* (u) (=(u)) Py I'-o(f* )

So far we have obtained the identity
4.7) (Yo, fuu) " o (@ufi) = (D Yy o7y

for any u e V(M). Unlike the case of (4.4), the following diagram is not commau-
tative in general (it only collects the arrows we need)

(Df)y
Eu _—_.f_-+ (EO)f#‘u

K, uT TKO, fa

S

Nevertheless, we may show that the Dombrowski maps K, K, of (M, F), (N, F,)
are related. More explicitly

Lemma 3. We have

4.8) OAKZ = Ky fos Z — HILZ, v)
Jor any Z e T(V(M)).

As a consequence of (4.8) the diagram above is commutative if and only if fis
totally-geodesic. Our Lemma 3 may be used to end the proof of (4.1),. Indeed,
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we may conduct the following calculation

a(B)F6Z = abl (d,h') Z = a(2') K (dy o' Wd R Z = 27 (D), Ko d. (2" B Z
Ky, @y fi) e (@' B Z — 2 T H(L, d (" R Z, v) = (jOF06,.Z = 9. Z.

It remains to prove (4.8). The proof is in local coordinates. Let 8 be the hori-
zontal lift associated with the induced connection V and set ¢, =X, 1 Sa < n.
Then 8, = 3, — N¥ éﬁ where N are the coefficients of the nonlinear connection
of V. We may write fu. 8, = Ai9; + C1J; for some A%, Cie C*(="1(U)). Apply-
ing (my)s yields at once Al = B}ox. Next, we may use (4.6) to compute Cf,
that is

82 fi
du=du®

Ci=08,(y'of) = 8. (Bjv") = Bio® with Bly=

We obtain
4.9) fuxd, = Bid; + Biyw? ;.

Using (4.9) and (4.5), of Lemma 1 we may derive
(4.10) fuseds = Bié; + (Bi,v® + NI Bi — NtBi)0;

where ¢; = 0; — N éj and N! are the coefficients of the non linear connection of
the Cartan-Chern connection V° of (N, Fy). The Gauss formula

Vi (DAY X, = DAV, X, + HX,,, X,)
may be written
4.11) FLBE+ HE =BE + Bi{BIFfi + (B,v* + Nj,B™ — N2B{)C{}.
Contraction with v# in (4.11) leads (as Fi4v® = N{) to
(4.12) HY = Blyv* + BN} — N B}
where H}y = Hiv®. Finally (4.10) may be written (by (4.12)) as

(4.13) fandn=Bis + Hiyd; .
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Consequently one has the identities

(DAYKd, = BiX; DfIKs, =0

Kof**éa = BiX; Ky fsx éa =H)X;

which yield (4.8).

5 - Immersions and connection 1-forms

Let wye I'*(T*(0(E,)) ® o(n + p)) be the connection 1-form on OF,) corre-
sponding to the Cartan-Chern connection V° in (&;, go). Then j* w, is a connec-
tion 1-form on O(Ey)|van. Next, let g(n, p) be the ortogonal complement (with
respect to the Killing-Cartan form of o(n + p)) of o(n) + o(p) in o(n + p). Let
o be the (o(n)+ o(p))-component of i*j*w, (with respect to
the decomposition o(n + p) = (0(n) + 0(p)) @ g(n, p)). Then w is a connection
1-form for O(&,, E) — V(M). Let wyy be the o(n)-component of w. The follo-
wing diagram describes our construction

TAOEy, E)) > o(n)+ o(p)

proj.

o(n)

for any z € O(E,, E). By Prop. 6.1 in [8], vol. I, ch. II, there is a unique connec-
tion 1-form o' e I'” (T*(O(E)) ® o(n)) such that (2')* o' = wyyy-
We may formulate the following

Problem. Show that o' is the connection 1-form in OFE) — VM) corre-
sponding to the induced conmection V in (E, g).

If (M, F), (N, Fy) are Riemannian manifolds the problem above may be
solved by showing that 6 has zero torsion. This in turn follows by restriction of
the first structure equation satisfied by 6,

(51) de() = )y /\ 00 + @0

to the bundle of adapted frames and making use of Prop. 1.1 of [8], vol. II, p. 8.
As to our case, the Finslerian analogue of Prop. 1.1 in [8], vol. II, is Theorem 2.
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One may apply i*5* to (5.1) and use (4.1) to derive

[(R")*de"* D 01D [(h)* do” D ¢]

(5.2)
= { =1%o AT)* 0 @ 01} @ {—i*j* g A [(R)*0* D gl} +6%5%6, .

While the structure equation (5.2) possesses a highly complicated character
(in comparison with its Riemannian counterpart, where 6, = 0), it is reasonable
to expect that it may yield (via Theor. 4.4 in [4], p. 82) the torsions 7 and S* of
w'. It is known (cf. e.g. [1], p. 277) that the induced connection V is characte-
rized by Vg =0, S'=0 and

TX, Y) = tan {C*(NX), Y) — C*(N(Y), X)} for any X, YeI'*(B).

The author hopes to address these questions in a further paper.
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Summary

In this work the submanifolds geometry in Finslerian manifolds is studied by using
principal bundles technigues.






