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On the relaxation processes

in a mixture of Maxwell gases (*%)

1 - Introduction

Several papers published in the last 10-15 years about the Boltzmann equa-
tion were devoted to the investigation of nonlinear relaxation problems in the
case of Maxwell-molecules (for a review, see Ernst [3], Bobylev [2], and Spiga
[5]). The choice of Maxwell-type interactions was motivated by the fact that it
allows by far the deepest analytical investigation, and that it is the only case
where one might hope to devise something like exact solutions. On the other
hand, it is well known that all macroscopic applications relevant to kinetic the-
ory are to a great extent independent of the particular microscopic collision
model. One of the main achievement in the previous papers is the considerable
simplification provided by the use of Fourier transform technique, since the
five-fold collision integral reduces, in the Fourier representation, to a two-fold
integral over the unit sphere. Such simplification remains valid also for mix-
tures of gases with different masses [2], and even in the presence of other types
of interactions of interest for applications (extended kinetic theory [5]). Never-
theless, only few of the articles above were actually dealing with gas mixtures
[4], [1]. In particular, [1] was concerned with the Fourier transformed Boltz-
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mann equations for a binary mixture, and with their asymptotic solution for
weakly interacting components. Gas mixtures are indeed of practical interest in
many physical problems. These problems are in general very complicated, but
can often be handled in an appropriate and convenient way by taking into ac-
count the natural occurrence of small parameters. Typical examples are the
problems of neutron physics (small density ratio) and plasma physics (small
mass ratio). The first case is described by linear transport theory. The second
case, which will be addressed to in the present work, retains its nonlinear fea-
tures even in the asymptotic limit. We restrict here our attention to relaxation

problems in a two component mixture, with masses m, and my, ¢ = %1 <« 1, and

distribution functions f; and f,. We will show that it is possible to reduce the
system of two Boltzmann equations (at least for isotropic distributions) to a sin-
gle Boltzmann equation, so that all results available for it are simply generalized
to a binary mixture when ¢ — 0. We will also consider a typical problem from
extended kinetic theory, namely the case when the light component constitutes
a fixed background of field particles with given equilibrium distribution, and re-
moval interactions can take place together with elastic scattering. It is shown
that in the asymptotic limit the solution can be obtained from the knowledge of
the solution for a non-scattering background (for which some results are avail-
able [5]). The problem of the effects of an externally applied force field can be
analyzed in a similar way, taking again advantage of the simplifications due to
the Fourier representation. However, this will be the subject of a subsequent

paper.

2 - Fourier transformed kinetic equations

Our starting point is the set of space homogeneous Boltzmann equations for
a mixture of N Maxwell-gases

(1 E I 95(

at LW, ) f@, )~ filv, ) f;w, 1dwdn

J=1RyxS, I '
i=1, ..., N, where v and w are velocity variables, # denotes a unit vector span-
ning the unit sphere S,, g stands for the differential microscopic collision fre-
quency for elastic scattering, and v’ and w' represent the postcollisional veloci-
ties of particles i and j associated to an encounter between the same pair at ve-
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locities v and w. They are given by

m;v + m;w + V) , m - Vi) + m;w
@) v = w =
m; + Mm; m; + my;

with V= |v —w].
The main macroscopic fields are number density

@ ei (@) =Rf filv, Hdv
drift velocity
(4) w)= 1+ [vfi, v
Pi R,
and temperature (in energy units)
_ 1 1 2 2
(5) ;@) = sm;[= [v® filv, Bdv —ui].
3 Ri g,

Equilibrium distributions are the Maxwellians

3
= (M e _Mm o2
(6) J) = ol 27:@) exp [ 20 w —u)yl.
The Fourier transform approach has proved very effective in the investi-
gation of (1); in that frame one has to determine the unknown characteristic
Sfunctions

M fille, ) = [ fi(v, ) exp(—ik-v)dv.
Ry

Since almost all interesting features of the relaxation processes in gas mix-
tures can be clarified by studying the technically simpler case of a binary mix-
ture, we shall take N = 2, and with j = 1, write the Fourier transformed kinetic
equations as [2]

sik+kn ~ k—Ikn

of;
1+€i )ﬁ( 1+5i

®) a—t=1i<ﬁ,ﬁ>+fg*<1$-ﬁ>[ﬁ<
Sa

V=F) FO]d7 &=

where t-dependence has been dropped for brevity, k stands for k/k, k= |k|, g
is the common value of g;, and g,,, while g;; will be labeled by g;. The bilinear
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operator I; is defined by

© LG D= fgzm AFE ”m VFoke = k”) _ Fk) Feoyl .

At this point we remark that it is convenient to resort to dimensionless vari-
ables. Let the initial value (relevant to ¢ = 0) of any quantity be labeled by a
subscript 0, and let T, denote a characteristic constant temperature (e.g., the
average of the initial temperatures weighted on the initial densities).

Initial conditions for (8) read as f;(k, 0) = f;; (k), and one may introduce new
dependent variables g; by

(10 fik, t)—ﬂ[( ) k, 1]
T 1
and rename (%9_«)2 k by k in the i-th equation, to get the symmetric form
7
1 1

Ezk‘f'kﬁ — Eizk— 2

9%
T L v

at

o8} =G, 3) + g0 )[%: ( > % (k) %; (0)]d7 .

Notice that in the new setting we have

1
a=m00  u=i)? LT,5)0,0
(12) i

6= -2 1wtz -

1
P
1
g vt
1

and Maxwellians take the form p exp[—i( %)2 k-u — O0k?/2T,]. We shall pro-
0

ceed now to consider the problem of solving the approximate form taken by (11)
in the asymptotic limit when ¢ — 0 and 0(c*) terms are neglected. It is worth re-
marking that specialization at k = 0 yields at once the first integrals ¢; = con-
stant. Moreover, if even 0(c) terms were disregarded in the limiting procedure,
the second equation would decouple and become

Jo
% “Iz(§92, 102)

whereas the first, reading as

3% e -
(13) g’f} =1,G1, 1) + p2J 9 G- W), (eit) — 3, ()] A7

would collapse to the single species Boltzmann equation only in isotropic condi-
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tions. This is clear from a physical point of view, since for ¢ = 0 heavy particles
are not deflected by collision, and light ones change their direction but not their
speed.

3 - Isotropic binary mixture

In isotropic conditions the characteristic functions depend only on k£ and t,
drift velocities vanish, and new variables, defined by

(14) Gk, ) =oi(2h2, ) o= L2
2 2
are more suitable for the analysis.
Now
— — _ 1,9%;
(15) ¢; = ¢; (0, t) = constant 0,=-T, —F~_( e )0, t)

and Maxwellians are ¢ exp(—sci,@—). In (11) one has
0 1
..1_. | = _1._ + 2
lz(kikn)l k[z(l_‘u)]
with p = k-7, and similarly for the other arguments. By defining further

1-pu
b,(s) =4rg,(1 — 2s 3 =
5 (s) = 4ny ) R

(16) s =

it is matter of only little algebra to cast the kinetic equations as
amn %’-’; =Ji (91, 1) +0flb* (Mo [(1 — o) ] g (B5%) — 9;(®) 9;(0)} ds
where 1 =1,2, j=1,2, 714, and

Jilgi, 1) =Oflbi (Mo [(1 — )] ; (sw) — 9;(x) 9;(0)} ds.

If we derive (17) with respect to « and specialize at x = 0, we get macrosco-
pic equations for temperatures

(19) (ﬁ" = 20;(; — 0;) with
1 1
(20) A= —;—agﬁ;" g =2 [ sb,(s)ds = 2z [ (1 = 12) g, (1) du.
] -1
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Thus X;¢;0; is also a first integral (so that the choice Ty = (¥;pq O0i) Cieo) !
is appropriate), and temperatures are analytically expressed by

i

@1 0;®) =Ty + (Og; — Og;) exp [ —Ale; + ;)1

i T e

with exponential relaxation to T.

We expand now with respect to the small parameter ¢ in (17) and keep up to

0(3) terms, in order to get first order asymptotic kinetic equations. After some
algebra, one ends up with

dg: | Gi®

+
ox TQ

a"i
(22) _87;5_ =Ji(gi, 9i) — Mgl

Pi (x>] ’

coupled by densities and temperatures only, which are known a priori. It is
worth noticing that (22) preserves the macroscopic equations. The final decou-
pling is achieved by the further ansatz

0,
(23) : pi(x, 1) = expl—x T()]‘I"i(x, t)
¢
leading to
_— . — = J A, Y, yr, = (5n- —_
(24) 3 + Aoj @ o J (75, ) iz, 0) = o (@) exp (@ T, )

where the standard method of characteristics allows reduction to the single
Boltzmann equations
ovr;

(25) 3 = Ji (W, V)

in terms of the new independent variables y = « exp (—2g;t), * =1, j # i, in the
i-th equation.

The solution to the approximate kinetic equations for a binary Maxwell
mixture with small mass ratio is thus amenable to the solution of standard
Boltzmann equations for single gases. So, for instance, if initial conditions are
Maxwellians at temperature @y (ie. ¥;(x, 0) =p;), then (25) is solved by
¥, = ¢;, so that (22) provides again two Maxwellians, at temperatures 6; (). All
recently discovered exact solutions of the Boltzmann equation apply however to
the two by two system (22). The solution associated to the BKW mode [2] corre-

sponds to the initial condition ¥y;(®) = g;(1 — Bo; @) exp (Bp; &), With 0 < fy; < %
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for positivity. The actual distribution functions can be obtained by going back
through all previous steps, and read as

3
— mi 43
fiw, ) =g - ]
(26)
. Tofi®) exp(—2gi8)  m; 3 oM,
{1+ ) @ ? " 2l el vl
where
% (£) = 0;(8) — T3 () exp (= 2g;t)  B;(8) = Bo; exp (—gi o)
@0

1
9t =3 fa — 42 gi () dp. .

Positivity of the solution (26) can always be guaranteed by choosing

. 2 6 %
Bo; < min [ 5 T, exp (gt + g% o;1)].

4 - Single gas in the presence of background and removal

Let us suppose now that, in the physical situation described in Sec. 2, the
light species is a fixed background, whose given distribution function is an
isotropic Maxwellian at an assigned temperature T, (which will be the tempera-
ture chosen for the adimensionalization (10)). In addition, let heavy particles
may undergo removal collisions between themselves (annihilation) as well as
with field particles (absorption), and let G, and G, denote the relevant differen-
tial microscopic collision frequencies. Dropping the unnecessary index 2, (11)
must be replaced by [5]

o
- ~ 2 N
@ 5 =16+ [g, a5 (= gz gy

— G- ) 3k) 5(0) A7 — [ G, (k-72) 5(k) 3, (0) 47,

Here o, (k) = pyexp(— %kz), and it is convenient to resort the group sym-
metries of the Boltzmann equation, setting o(k, t) = ok, t) exp (— é—lcz). It is
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readily obtained

@ L =l +alg. G R - 01dh ~ @+ Bue) otk D
with o(k, 0) = 3o (k) exp(%kz) and
. 1
(30) G, =27 [ G () du.
-1

Notice that now ¢ = ¢(0, t) is not constant; (29) prescribes for it the conti-
nuity equation

d
(31) d‘; + Groip+ G =

that can be easily solved mdependently [5], and implies of course decay to zero
for nonvanishing G. and G.

The first order approximation to the kinetic equation (29) in the asymptotic
limit ¢ — 0 is obtained as in the previous section, and reads

%8 | gtk -Veo=Ilg, ¢) — [Geld) + Guprl ok, D since

(82) ot

(33) Jtk — kn) g, Ge-n)din = g5k.

We can proceed again by the method of characteristics, introduce
o=k exp(—cg¥e,t) and v =t, and get the equation for a nonscattering back-
ground

(34) -88—% = I(g, @) — [Ge(®) + Gupr 0@, .

This equation is also amenable to a standard Boltzmann equation. It is easy

to verify, in fact, that, if ¥(e, 7) is the solution to %—— = J(¥, ¥) corresponding
to the initial condition in (29), then the solution to the Cauchy problem (34) is
given by

(35) o(@, 7) = exp[— [AG)de'] o, Ofexp = Of A(w) dul d=")
0

where A(7) = Ge(r) + G .p;. Since gyexp[— f A(z)d7'] = p(7) in force of (31), an
0
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example of exact solution to (34) is provided by the generalized BKW
mode

0y~ T 2
ML —ﬁ&)ﬂ;—] exp { [ =2 - ] L}
(36) ) 0
PE) = foexpl=g* (=) d<']

corresponding to an initial test particle temperature 0,, and with a free para-
meter Sy, chosen in order to guarantee positivity of the distribution funetion.
The choice 5, = 0 yields a Maxwellian with density o(r) and temperature

37 0(z) = Oy exp (— o1 t) + To[1 — exp (= 2e )] 2 = 29t .

It must be noted that in general the second argument of ¥ in (35) does not
tend to infinty when «— o (for instance, it tends to 1 /é*cl for G = 0). There-
fore, relaxation processes described in this section do not mean approach to a
Maxwellian.
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Riassunto

Llarticolo ¢ dedicato alla descrizione dei processi di rilassamento in miscele di gas
Magwelliani per mezzo delle trasformate di Fourier delle relative equazioni di Boltz-
mann nonlineari. In particolare vengono considerate miscele binarie con piccolo rap-
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porto tra le masse, e viene mostrato che il sistema di due equazioni di Boltzmann puod
essere ridotto ad un'unica equazione di Boltzmann. Il problema esteso di un gas in un
assegnato mezzo ospite in equilibrio ed in presenza di rimozioni viene anch’esso studiato
secondo lo stesso schema.



