F. DEFEVER, R. ROSCA and L. VERSTRAELEN (*)

On null Killing vector fields (**)

1 - Introduction

When studying geometrical vector fields on a pseudo-Riemannian Manifold (M, g), a problem of current interest is to consider various types of null vector fields. Such vector fields intervene in different situations as for instance: Coisotropic hypersurfaces in a Lorentzian manifold, isotropic and pseudo-isotropic submanifolds (M, g), null Sachs frames in a general space-time, etc. On the other hand, Killing vector fields play also an important role in the study of connected Lorentzian manifolds [2]. In the present paper we are concerned with a certain type of null Killing vector fields in the following cases:

- 1. (M, g) is a para-Kählerian manifold
- 2. (M, g) is a pseudo-Sasakian manifold
- 3. (M, g) is a general space-time.

1. Let $M(\mathcal{U}, \Omega, g)$ be a para-Kählerian manifold [12], where \mathcal{U} and Ω are the (1, 1)-structure tensor field and the structure symplectic form of M respectively. Any null vector field X (i.e. $||X||^2 = 0$) whose covariant derivative is the 2-vector $X \wedge \mathcal{U}X$, that is such that

(1)
$$\nabla X = X \wedge \mathcal{U}X \quad ||X||^2 = 0,$$

is defined as a null structure vector field (abr. NSK). After having showed that

^(*) R. ROSCA: 59 Av. E. Zola, Paris, France; F. Defever and L. Vestraelen: Dept. Wiskunde, Celestijnenlaan 200B, 3001 Heverlee, Belgium.

^(**) Received July 7, 1992. AMS classification 53 C 50. The first author has been supported by a post-doctoral fellowship of the Research Council of the Katholieke Universiteit Leuven.

the existence of such an X is determined by an exterior differential system in involution (in the sense of [4]) the following properties are proved:

- a Any $M(\mathcal{U}, \Omega, g)$ which carries a NSK vector field is the local Riemannian product $M = M_X \times M_X^{\perp}$ where M_X is a totally geodesic surface tangent to X and $\mathcal{U}X$, whilst M_X^{\perp} is a 2-codimensional totally isotropic submanifold
 - b X and $\mathcal{U}X$ commute and each of them is a strict geodesic [16]
- c X is a global Hamiltonian vector field of Ω and an infinitesimal automorphism of all (2q+1)-forms $\alpha_q = \alpha \wedge \Omega^q$, where α is the dual form of X.
- 2. Let $M(\mathcal{U}, \eta, \xi, g)$ be a pseudo-Sasakian manifold [19] where \mathcal{U} is as in 1 the paracomplex operator [12], whilst η and ξ are the contact structure 1-form and the structure vector field respectively. A NSK vector field X on $M(\mathcal{U}, \eta, \xi, g)$ satisfies as in 1. (1) and similarly its existence is proved by an exterior differential in involution. One has the following properties:
 - a X defines a relative contact transformation [1], i.e. $d(\mathcal{L}_X \eta) = 0$
- **b** $\mathscr{U}X$ defines an infinitesimal conformal transformation of X, i.e. $\mathscr{L}_{\mathscr{U}X}X = (*)X$
 - c $\eta(X)$ is an isoparametric function [23]
- d Any $M(\mathcal{U}, \eta, \xi, g)$ is foliated by co-isotropic hypersurfaces M_X having X as characteristic vector field.
- 3. Finally let (M, g) be a general space-time manifold. Then in terms of the complex vectorial formalism [3], let h_4 and h_1 be Debever's vector field and its associated null real vector field, respectively. It is proved that if both h_4 and h_1 are Killing vector fields, then the space-time (M, g) is of type D in Petrov's classification and is foliated by totally pseudo-isotropic space-like surfaces. We agree to say that such a space-time has the Killing property.

2 - Preliminaries

Let (M, g) be a Riemannian or pseudo-Riemannian C^{∞} manifold and let ∇ be the covariant differential operator defined by the metric tensor g. Let $\Gamma(TM) = \Xi(M)$ and $b \colon TM \to T^*M$ be the set of sections of the tangent bundle TM and the musical isomorphism [15] defined by g respectively. Following W. A. Poor [15] we set

$$A^{q}(M, TM) = \Gamma \operatorname{Hom}(\wedge^{q} TM, TM)$$

and notice that the elements of $A^q(M, TM)$ are vector valued 1-forms. The vector 1-form $dp \in A^q(M, TM)$, where $p \in M$, is called the *soldering form* of M (dp: canonical vector valued 1-form of M [6]). Next the *operator*

$$d^{\nabla}$$
: $A^{q}(M, TM) \rightarrow A^{q+1}(M, TM)$

denotes the exterior covariant derivative with respect to ∇ (see also [15]). Notice that generally

$$d^{\nabla^2} = d^{\nabla} \circ d^{\nabla} \neq 0$$
 unlike $d^2 = d \circ d$.

A vector field $X \in \Xi(M)$ such that

(2)
$$d^{\nabla}(\nabla X) = \nabla^2 X = \pi \wedge dp \in A^2(M, TM)$$

for some 1-form π is said to be an exterior concurrent vector field [21], [13] (abr. EC). If X is a tangent vector field, then the 1-form π (which is called the *concurrence form*) is defined by

(3)
$$\pi = fb(X) \quad f \in A^0 M.$$

In this case if \mathcal{R} denotes the Ricci tensor of ∇ , then by (3) one has

(4)
$$\mathscr{R}(X,Z) = -(n-1)fg(X,Z) \quad Z \in \Xi M$$

where $n = \dim M$. A function $f: \mathbb{R}^n \to \mathbb{R}$ is isoparametric [23] if $\|\operatorname{grad} f\|^2$ and $\operatorname{div}(\operatorname{grad} f)$ can be expressed as functions of f. The operator

$$(5) d^{\omega} = d + e(\omega)$$

acting on $\wedge M$, where $e(\omega)$ means the exterior product by the closed 1-form ω , is called the *cohomology operator* [9]. One has

$$(6) d^{\omega} \circ d^{\omega} = 0$$

and any form $u \in \Lambda M$, such that $d^{\omega}u = 0$, is said to be d^{ω} -closed. In particular if the cohomology form ω is exact, then u is said to be a d^{ω} -exact form.

Let $E = \text{vect}\{e_A \mid A = 1, ..., n\}$ be a local field of adapted vectorial frames over M and let $E^* = \text{covect}\{\omega^A\}$ be the associated coframe. Then E. Cartan's structure equations, written in indexless form are

(7)
$$\nabla e = \theta \otimes e \quad d\omega = -\theta \wedge \omega \quad d\theta = -\theta \wedge \theta + \Theta.$$

In the above equations, θ (resp. Θ) are the local connection forms in the tangent bundle TM (resp. the curvature 2-form on M). Further, let $x: M \to \widetilde{M}$ be

the inclusion of a submanifold M in a pseudo-Riemannian manifold M, and let N be a normal section associated with x. If the Gauss map corresponding to N satisfies

(8)
$$\langle \nabla N, \nabla N \rangle = 0$$

then, following [17], N is called a *pseudoisotropic normal section* (see also [7]). If all normal sections associated with x are pseudo-isotropic, the M is called a *pseudo-isotropic submanifold* of \widetilde{M} .

If S denotes the *shape operator* of M, the above property is equivalent to write $\langle SX, SX \rangle = 0$, for all tangent vectors to M [7].

3 - Null Killing vector fields in a para-Kählerian manifold

Let $M(\mathcal{U}, \Omega, g)$ be a 2m-dimensional para-Kählerian manifold [12] that is a neutral pseudo-Riemannian manifold endowed with a Kählerian structure (see also [20]). The triple (\mathcal{U}, Ω, g) of structure tensor fields, denotes the para-complex operator, a symplectic form and a para-Hermitian metric exchangeable with Ω , respectively.

Let $W = \text{vect}\{h_a, h_{a^*} | a=1, ..., m; a^*=a+m\}$ be a local field of Witt frames and let $W^* = \text{covect}\{\omega^a, \omega^{a^*}\}$ be the associated coframe of W. One has

(9)
$$\mathcal{U}^2 = \text{Id} \quad \mathcal{U}h_a = h_a \quad \mathcal{U}h_{a^*} = -h_{a^*} \quad g(h_a, h_{b^*}) = \delta_{ab}$$

and the matrix connection \mathcal{M}_{θ} in the bundle W(M) is a *Chern-Libermann matrix*; that is

(10)
$$\mathscr{M}_{\theta} = \begin{pmatrix} \theta_b^a & 0 \\ 0 & \theta_b^{a*} \end{pmatrix}.$$

The structure equations are

(11)
$$g(Z, \mathcal{U}Z) = 0 i_Z \Omega = b(\mathcal{U}Z)$$
$$\Omega(Z, Z') = g(\mathcal{U}Z, Z') \mathcal{U}\nabla Z = \nabla \mathcal{U}Z Z, Z' \in \mathcal{E}M$$

and in terms of the W-basis, Ω and g are expressed by

$$\Omega = \sum \omega^a \wedge \omega^{a^*}$$
 $g = 2 \sum \omega^a \otimes \omega^{a^*}$.

It should be noticed that, with respect to g, one has

$$Z = Z^A h_A \Rightarrow b(Z) = \sum Z^a \omega^{a^*} + Z^{a^*} \omega^a$$
.

Now we give the following

Definition. Any null vector field X, such that

$$\nabla X = X \wedge \mathcal{U}X$$

is called a null structure Killing vector field.

Setting $\alpha = b(X)$, $\beta = b(\mathcal{U}X)$ then, as is well known, one may write (12) as

(13)
$$\nabla X = \beta \otimes X - \alpha \otimes \mathcal{U}X.$$

Therefore it follows at once from (13) that one has

$$\langle \nabla_Z X, Z' \rangle + \langle \nabla_{Z'} X, Z \rangle = 0 \Leftrightarrow \mathcal{L}_X g = 0 \quad Z, Z' \in \Xi M$$

 $(\langle , \rangle \text{ instead of } g)$, i.e. X satisfies the Killing equation $\mathcal{L}_Z g = 0$, $Z \in \mathcal{E}M$. Setting $X = X^a h_A$ one has

$$\langle X, X \rangle = 0 \implies \sum X^a X^{a^*} = 0$$

and by reference to (6) the 1-forms α and β are expressible as

$$\alpha = \sum (X^a \omega^{a^*} + X^{a^*} \omega^a) \qquad \beta = \sum (X^a \omega^{a^*} - X^{a^*} \omega^a) = i_X \Omega.$$

Making now use of the structure equations $(7)_1$ and $(7)_2$ one derives from (13)

(14)
$$d\beta = 0 \quad d\alpha = 2\beta \wedge \alpha \Leftrightarrow d^{-2\beta}\alpha = 0.$$

Hence, by the above equations we may say that the dual form α of X is $d^{-2\beta}$ -closed (see (5)).

Next, making use of equations (11), one quickly derives from (13)

(15)
$$\nabla \mathcal{U}X = \beta \otimes \mathcal{U}X - \alpha \otimes X.$$

Since X and $\mathcal{U}X$ are both null vector fields one derives from (13) and (15)

(16)
$$\nabla_X X = 0 \quad \nabla_{\mathcal{U}X} \mathcal{U} X = 0 \quad [X, \mathcal{U}X] = 0.$$

Hence X and $\mathcal{U}X$ are both null vector fields, and both are *strict geodesics* [16].

In addition by (15) one gets

$$\langle \nabla_Z \mathcal{U} X, Z' \rangle = \langle \nabla_{Z'} \mathcal{U} X, Z \rangle$$

which, as is known, proves that the vector field $\mathscr{U}X$ is a gradient. So one may write

(17)
$$\beta = b(\mathcal{U}X) = \mathrm{d}f.$$

We notice also the following fact. Since the connection ∇ is Riemannian, the Ricci identity

$$\mathcal{L}_{U}\langle Z, Z' \rangle = \langle \nabla_{U}Z, Z' \rangle + \langle Z, \nabla_{U}Z' \rangle \quad U, Z, Z' \in \mathcal{Z}M$$

holds good. Identifying in the above formulas Z and Z' with X and $\mathcal{U}X$ it is easily seen that (13) and (15) are matching the Ricci identity.

On the other hand since by (17) one has

(18)
$$i_X \Omega = \beta = \mathrm{d}f \Rightarrow \mathcal{L}_X \Omega = 0$$

one may say that f is a Hamiltonian function and that X is a global Hamiltonian vector field. Since X and $\mathcal{U}X$ are null vector fields, one derives by $(14)_1$ and (16)

(19)
$$\mathcal{L}_{X}\alpha = 0 \quad \mathcal{L}_{YX}\beta = 0.$$

which proves that both X and $\mathcal{U}X$ are autoinvariant vector fields [22].

Consider then the (1, 1)-type operator L of S. Goldberg [8], defined by the symplectic form Ω , that is $L: u \to u \wedge \Omega$ and set

$$L^q \alpha = \alpha \wedge \Omega^q = \alpha_q$$
.

Then by (18) and (19) one gets at once $\mathcal{L}_X \alpha_q = 0$. Hence one may say that X defines an *infinitesimal automorphism* of all (2q+1)-forms α_q .

Let now $D_X = \{X, \mathcal{U}X\}$ be the 2-distribution defined by X and $\mathcal{U}X$ and let X', X'' be any vector fields of D_X . Then on behalf of (13) and (15) one finds $\nabla_{X''}X' \in D_X$. This, as is known, proves that D_X is an autoparallel foliation and that the leaves M_X of D_X are totally geodesic surfaces (see also [11]). Furthermore since

(20)
$$\langle X, X \rangle = 0 \quad \langle X, \mathcal{U}X \rangle = 0 \quad \langle \mathcal{U}X, \mathcal{U}X \rangle = 0$$

it is easily seen that any vector field of D_X is a null vector field. From the above considerations it follows by (8) and (14), (20) that M is the local Riemannian

product $M = M_X \times M_X^{\perp}$ where M_X is a totally geodesic and null surface tangent to X and $\mathscr{U}X$, whilst M_X^{\perp} is a 2-codimensional and totally pseudo-isotropic submanifold of M.

If we denote by Σ the exterior differential system which defines X, it is seen by (14) that the characteristic numbers of Σ are r=2, $s_0=0$, $s_1=2$. Since $r=s_0+s_1$, it follows by E. Cartan's test [4] that Σ is in involution and depends on two arbitrary functions of one argument.

Theorem. Let X be a null structure Killing vector field on a para-Kählerian manifold $M(\mathcal{U}, \Omega, g)$. Then any $M(\mathcal{U}, \Omega, g)$, which carries such an X, is the local Riemannian product $M = M_X \times M_X^{\perp}$ where

- 1. M_X is a totally geodesic and null surface, tangent to X and $\mathcal{U}X$
- 2. M_X^{\perp} is a 2-codimensional and totally pseudo-isotropic submanifold of M

and the existence of X is determined by an exterior differential system in involution. In addition

- 3. X and $\mathcal{U}X$ commute and both of them is a strict geodesic
- 4. X is a globally Hamiltonian vector field of the symplectic form Ω and an infinitesimal automorphism of all (2q+1)-forms $\alpha_q = \alpha \wedge \Omega^q$, where α is the dual form of X.

4 - Null Killing vector fields in a pseudo-Sasakian manifold

Pseudo-Sasakian manifolds $M(\mathcal{U}, \eta, \xi, g)$ have been defined in [19] and, roughly speaking, as a pseudo-Riemannian version of a Sasakian manifold. One may prove that any $M(\mathcal{U}, \eta, \xi, g)$ is derived from a para-Kählerian manifold in a similar manner as a Sasakian manifold is derived from a Kählerian manifold.

In the present case $\mathcal U$ denotes, as in the previous section, the paracomplex operator, whilst η and ξ are the structure 1-form and the structure vector field respectively.

Since $M(\mathcal{U}, \eta, \xi, g)$ is endowed with a contact structure one has $\eta \wedge d\eta \neq 0$, i.e. η is of maximal rank (dim M = 2m + 1).

If Z, Z' are any vector fields on M one has the following *structure* equations.

(21)
$$\mathcal{U}^{2} = \operatorname{Id} - \eta \otimes \xi \quad \mathcal{U}\xi = 0 \quad \eta(\xi) = 1$$
$$g(\mathcal{U}Z, \mathcal{U}Z') = -g(Z, Z') + \eta(Z)\eta(Z') \quad g(Z, \xi) = \eta(Z)$$
$$d\eta(Z, Z') = -2g(Z, \mathcal{U}Z') \quad \nabla_{Z}\xi = \mathcal{U}Z$$
$$(\nabla \mathcal{U})Z = -\eta(Z) dp + b(Z) \otimes \xi \quad (\nabla \mathcal{U})Z = \nabla \mathcal{U}Z - \mathcal{U}\nabla Z.$$

Let
$$dp = \omega^{\alpha} \otimes h_{\alpha} + \eta \otimes \xi \quad \alpha = 1, ..., 2m$$

be the soldering form of M. Then one may write

(22)
$$\nabla \xi = \mathcal{U} \, \mathrm{d}p = \omega^a \otimes h_a - \omega^{a^*} \otimes h_{a^*}$$

where a = 1, ..., m; $a^* = a + m$; and from (22) one quickly gets

$$\nabla_Z \xi = \mathcal{U} Z \Rightarrow \mathcal{L}_{\varepsilon} g = 0$$

which shows that ξ is a Killing vector field and

$$\nabla^2 \xi = \eta \wedge \mathrm{d} p$$

which shows that ξ is an EC vector field (see (2)). We recall that similar results hold for Sasakian manifold [14].

Let then $W = \text{vect}\{h_a, h_{a^*}, h_0 = \xi \mid a = 1, ..., m; a^* = a + m\}$ be a local frame of Witt frames on $M(\mathcal{U}, \eta, \xi, g)$ [12]. Then in addition of equation (9) one has

(23)
$$g(h_a, \xi) = 0$$
 $g(h_a, h_{b^*}) = \delta_{ab}$ $g(\xi, \xi) = 1$

and g is expressed by $g = 2 \sum \omega^a \otimes \omega^{a^*} + \eta \otimes \eta$.

In consequence of the contact structure defined by η one has in addition of equation (10)

$$\theta_a^0 + \theta_0^{a^*} = 0$$
 $\theta_0^a + \theta_{a^*}^0 = 0$ $\theta_a^0 = \omega^{a^*}$ $\theta_{a^*} = -\omega^a$.
$$X = X^{\alpha} h_{\alpha} + X^0 \xi \qquad \alpha = 1, \dots, 2m$$

is a null vector field, then by (9) and (23) one has

If

(24)
$$||X||^2 = 2 \sum X^a X^{a^*} + ||X^0||^2 = 0.$$

If, in addition, X is a Killing structure vector field, then as in (12), (7)₂ one may write

$$\nabla X = X \wedge \mathcal{U}X = \beta \otimes X - \alpha \otimes \mathcal{U}X$$

where

$$\alpha = b(X)$$
 $\beta = b(\mathcal{U}X)$.

Setting

$$X^0 = \gamma(X) = f$$

we agree to call f the distinguished scalar associated with X. From (24), (25) one derives

(26)
$$d\alpha = 2\beta \wedge \alpha \quad df = (f-1)\beta.$$

Let now Σ be the exterior differential system which defines the vector field X on $M(\mathcal{U}, \eta, \xi, g)$. By (26) we see that the characteristic numbers of Σ are the same as in the para-Kählerian case.

Take now the Lie derivative of the structure 1-form η with respect to X. By (21) and (22)₂ one finds

$$\mathcal{L}_X \eta = (f+1)\beta \Rightarrow d(\mathcal{L}_X \eta) = 0$$

which shows that X defines a relative contact transformation on $M(\mathcal{U}, \eta, \xi, g)$. Further, by reference to the expression for the covariant differential of \mathcal{U} given by (21), one finds by (25)

(27)
$$\nabla \mathcal{U}Z = -f \,\mathrm{d}p + \beta \otimes \mathcal{U}X - \alpha \otimes X + (f+1)\alpha \otimes \xi.$$

From the above equation, a short calculation gives

$$[\mathcal{U}X, X] = \mathcal{L}_{\mathcal{U}X}X = (f+1)fX$$

which shows that UX defines an infinitesimal conformal transformation of X.

Following the general definition one has

$$\operatorname{div}\,\mathscr{U}X=\operatorname{trace}\nabla\mathscr{U}X=\sum\omega^{a^*}(\nabla_{h_a}\mathscr{U}X)+\sum\omega^a(\nabla_{h_a}\mathscr{U}X)+\eta(\nabla_{\xi}\mathscr{U}X)$$

and on behalf of (27) one gets

(28)
$$\operatorname{div} \mathcal{U}X = 1 - f^2 - 2mf.$$

On the other hand by $(26)_2$ one may write

(29)
$$\operatorname{grad} f = (f-1)\mathcal{U}X$$

and since by (24) one has $\|\mathcal{U}X\|^2 = f^2$, it follows by (29)

(30)
$$\|\operatorname{grad} f\|^2 = f^2 (f-1)^2.$$

On the other hand by $(26)_2$ and (28) one derives

(31)
$$\operatorname{div}(\operatorname{grad} f) = -(f-1)(2mf-1).$$

Since by (30) and (31) it is seen that $\|\operatorname{grad} f\|^2$ and div $(\operatorname{grad} f)$ are functions of f, then by reference to [23] (see also Preliminaries) it follows that the distinguished scalar f associated with X is an isoparametric function.

On the other hand, equation (26)₁ shows that $M(\mathcal{U}, \eta, \xi, g)$ is foliated by hypersurfaces M_X normal to X. But X being a null vector field it follows by (25) that M_X is a coisotropic hypersurface having X as characteristic vector field [18] that is

$$X \subset T_{p_X}(M_X) \cap T_{p_X}^{\perp}(M_X)$$

where $T_{p_X}(M_X)$ and $T_{p_X}^{\perp}(M_X)$ is the tangent space and the normal space to M_X at $p_X \in M_X$ respectively.

In order to simplify, we agree to denote the induced elements on M_X by the same latters. It follows then by (27) that $\mathcal{U}X$ on M_X satisfies

$$\nabla \mathcal{U}X = -f \,\mathrm{d}p + \beta \otimes \mathcal{U}X$$

and with the help of $(26)_2$ the second covariant derivative of $\mathscr{U}X$ is expressed by

$$\nabla^2 \mathscr{U} X = \beta \wedge \mathrm{d} p.$$

Therefore one may say that on M_X , the vector field $\mathscr{U}X$ is EC and has, as ξ , +1 as conformal scalar. In consequence of this fact, the Ricci curvature of $\mathscr{U}X$ is expressed by

$$\operatorname{Ric}(\mathscr{U}X) = -2mf^2.$$

Theorem. Let X be a null structure Killing vector field on a (2m+1)-dimensional pseudo-Sasakian manifold $M(\mathcal{U}, \eta, \xi, g)$ and let $f = \eta(X)$ be the distinguished scalar associated with X. The existence of such a vector field on $M(\mathcal{U}, \eta, \xi, g)$ is, as in the para-Kählerian case, determined by an exterior differential system in involution, which depends on two functions of one argument. The following properties are proved:

- 1. X defines a relative contact transformation $M(\mathcal{U}, \gamma, \xi, g)$, i.e. $\mathcal{U}(\mathcal{L}_X \gamma) = 0$
- 2. $\mathscr{U}X$ defines an infinitesimal conformal transformation of X, i.e. $\mathscr{L}_{\mathscr{U}X} = \tau X$, $\tau = f(f+1)$
 - 3. f is an isoparametric function
- 4. Any $M(\mathcal{U}, \gamma, \xi, g)$ is foliated by coisotropic hypersurfaces M_X having X as characteristic vector field and, on M_X , the vector field $\mathcal{U}X$ is EC and $\text{Ric}(\mathcal{U}X) = -2mf^2$.

5 - Null Killing vector fields on space-time manifolds

Let (M, g) be a general space-time satisfying the usual integrability condition and let $S = \text{vect}\{h_A \mid A = 1, ..., 4\}$ be a local field of Sachs frames over M [3]. The normalization conditions for the vector fields h_A are

(32)
$$\langle h_1, h_4 \rangle = 1$$
 $\langle h_2, h_3 \rangle = -1$ where \langle , \rangle stands for g

and all the other scalar products are zero. Therefore h_1 , h_4 are real null vectors, whilst h_2 , h_3 are complex conjugate.

If $S^* = \operatorname{covect}\{\theta^A\}$ is the associated coframe of S, then the soldering form dp of M is expressed in terms of S^* by

$$\mathrm{d}p = \theta^A \otimes h_A$$

which by (32) implies $g = 2(\theta^1 \otimes \theta^4 - \theta^2 \otimes \theta^3)$.

If $T_p(M)$ is the tangent space at $p \in M$, then it may be split as

$$(33) T_p(M) = D_h \oplus D_S$$

where $D_h = \{h_1, h_4\}$ and $D_s = \{h_2, h_3\}$ are the hyperbolic and the spatial distribution respectively.

In the following we will make use of the complex vectorial formalism (abr. CVF) constructed in [3]. This formalism is based on the local isomorphism $\mathcal{A}: L(4) \to SO^3(C)$ where L(4) is a 4-dimensional Lorentz group and $SO^3(C)$ is the 3-dimensional complex rotation group. With such a formalism are associated the six 1-forms

(34)
$$\sigma_{\alpha} = \sigma_{\alpha A} \theta^{A} \quad \bar{\sigma}_{\alpha} = \bar{\sigma}_{\alpha A} \bar{\theta}^{A} \quad A = 1, 2, 3, 4; \quad \alpha = 1, 2, 3$$

(the bar denotes complex conjugate, i.e. $\theta^2=\bar{\theta}^3$, $\theta^1=\bar{\theta}^1$, $\theta^4=\bar{\theta}^4$) where the coef-

ficients $\sigma_{\alpha A}$, $\overline{\sigma}_{\alpha A}$ correspond to the 12 spinorial coefficients of Neumann and Penrose [10].

In terms of $\sigma_{\alpha A}$, $\bar{\sigma}_{\alpha A}$, the covariant derivatives of h are expressed by

$$\nabla h_{1} = -\frac{1}{4}(\sigma_{3} + \overline{\sigma}_{3}) \otimes h_{1} + \frac{1}{2}\overline{\sigma}_{2} \otimes h_{2} + \frac{1}{2}\sigma_{2} \otimes h_{3}$$

$$\nabla h_{2} = -\frac{1}{2}\overline{\sigma}_{1} \otimes h_{1} + \frac{1}{4}(\overline{\sigma}_{3} - \sigma_{3}) \otimes h_{2} + \frac{1}{2}\sigma_{2} \otimes h_{4}$$

$$\nabla h_{3} = -\frac{1}{2}\overline{\sigma}_{1} \otimes h_{1} - \frac{1}{4}(\overline{\sigma}_{3} - \sigma_{3}) \otimes h_{3} + \frac{1}{2}\overline{\sigma}_{2} \otimes h_{4}$$

$$\nabla h_{4} = -\frac{1}{2}\overline{\sigma}_{1} \otimes h_{2} - \frac{1}{2}\overline{\sigma}_{1} \otimes h_{3} + \frac{1}{2}(\sigma_{3} + \overline{\sigma}_{3}) \otimes h_{4}$$

and the first group of structure equations (EC) by

(36)
$$d\theta^{1} = +\frac{1}{4}(\sigma_{3} + \overline{\sigma}_{3}) \wedge \theta^{1} + \frac{1}{2}\overline{\sigma}_{1} \wedge \theta^{2} + \frac{1}{2}\sigma_{1} \wedge \theta^{3}$$

$$d\theta^{2} = -\frac{1}{2}\overline{\sigma}_{1} \wedge \theta^{1} + \frac{1}{4}(\sigma_{3} - \overline{\sigma}_{3}) \wedge \theta^{2} + \frac{1}{2}\sigma_{1} \wedge \theta^{4}$$

$$d\theta^{3} = -\frac{1}{2}\sigma_{2} \wedge \theta^{1} - \frac{1}{4}(\sigma_{3} - \overline{\sigma}_{3}) \wedge \theta^{3} + \frac{1}{2}\overline{\sigma}_{1} \wedge \theta^{4}$$

$$d\theta^{4} = -\frac{1}{2}\sigma_{2} \wedge \theta^{2} - \frac{1}{2}\overline{\sigma}_{2} \wedge \theta^{3} - \frac{1}{4}(\sigma_{3} + \overline{\sigma}_{3}) \wedge \theta^{4}.$$

It should be noticed that θ^1 (resp. θ^4) is the dual form of h_4 (resp. h_1). We recall that the null vector field h_4 , which is called *Debever's vector* [10], plays a distinguished role in the frame of the CVF. In consequence of this fact, it is natural to assume that at each point p of M, h_4 is a covariant skew symmetric (abr. CSS) Killing vector field. Therefore we will write

$$\nabla h_4 = h_4 \wedge U = u \otimes h_4 - \theta^1 \otimes U$$

for some vector field U having u = b(U) as dual frame. If we set

$$U = \sum u_s h_s \qquad s = 2, 3, 4$$

then by comparison to (35) one may write $u=u_4\,\theta^1-u_2\,\theta^3-u_3\,\theta^2$ and

$$\sigma_1 = 2u_2 \, \theta^1 \qquad \overline{\sigma}_1 = 2u_3 \, \theta^1.$$

Hence, by (34) one has

$$\sigma_3 + \overline{\sigma}_3 = -4(u_2 \theta^3 + u_3 \theta^2) = -2(\sigma_{11} \theta^3 + \overline{\sigma}_{11} \theta^2)$$

and
$$\sigma_{11} = 2u_2$$
 $\sigma_{13} = 0$ $\sigma_{14} = 0$ $\overline{\sigma}_{11} = 2u_2$ $\overline{\sigma}_{13} = 0$ $\overline{\sigma}_{14} = 0$.

On behalf of the CVF dictionnary [10] we recall that equations $\sigma_{14} = 0$, $\sigma_{13} = 0$ express that the congruence $G(h_4)$ is geodetic and shear-free and that

(38)
$$\sigma_{14} = 0 \quad \sigma_{13} = 0 \quad \sigma_{3} + \overline{\sigma}_{3} = -2(\sigma_{11}\theta^{3} + \overline{\sigma}_{11}\theta^{2})$$

are the general conditions in order that h_4 be a Killing vector field. These results are a criterion for the exactness of our calculations. By (37) one also quickly finds

$$d\theta^1 = -2u \wedge \theta^1$$

which expresses that θ^1 is an exterior recurrent form [5]. Next, assume that the associated null real vector field h_1 of h_4 is, as h_4 , a CSS Killing vector field. Therefore, one must write for some V

$$\nabla h_1 = h_1 \wedge V = v \otimes h_1 - \theta^4 \otimes V$$

where v = b(V). By the same reasoning as for h_4 one finds by (35), (36)

(40)
$$\sigma_2 = \sigma_{24} \, \theta^4 \qquad \overline{\sigma}_2 = \overline{\sigma}_{24} \, \theta^4$$

$$d\theta^4 = 2v \wedge \theta^4$$

i.e.; θ^4 is as θ^1 an ER-form. Now since equation (40) implies

$$\sigma_{21} = 0 \qquad \sigma_{22} = 0$$

the above equations together with

$$\sigma_{13}=0 \qquad \sigma_{14}=0$$

(see equations (38)) are as is known in terms of CVF, characterizing a spacetime of type D in Petrov's classification [3], [10]. Further, equations (39) and (41), show by Frobenius theorem that the space-time distribution (see the splitting (33)) is involutive. Let then M_S be the leaf (surface) of D_S . Since M_S is determined by $\theta^1 = 0$, $\theta^4 = 0$, then clearly h_4 and h_1 are normal to M_S , and on M_S one has

$$\nabla h_A = u \otimes h_A \qquad \nabla h_1 = v \otimes h_1$$

(we denote the induced elements by the same letters). From above it follows at once

$$\langle \nabla h_4, \nabla h_4 \rangle = 0$$
 $\langle \nabla h_1, \nabla h_1 \rangle = 0$

and this reveals the significant fact, according to which M_S is a pseudo-isotropic surface of M. We agree to denominate any space-time having the above properties, a space-time having the Killing property.

Theorem. Let (M, g) be a general space-time and let h_4 and h_1 be the Debever's vector field and its associated null real vector field, respectively at each point $p \in M$. If h_4 and h_1 are both skew symmetric Killing vector fields, then (M, g) is of type D in Petrov's classification, and M is foliated by pseudoisotropic space-like surfaces, normal to h_4 and h_1 .

References

- [1] R. ABRAHAM and J. E. MARDEN, Foundations of Mechanics, Benjamin-Cummings, New York 1978.
- [2] J. K. Beem, P. E. Ehrlich and S. M. Vorsen, Timelike isometries and Killing fields, Geom. Dedicata 26 (1988), 247-256.
- [3] M. Cahen, R. Debever and L. Defrise, A complex vectorial formalism in general relativity, J. Math. Mech. 16 (1967), 769-785.
- [4] E. Cartan, Systemes différentiels extérieurs. Applications geometriques, Hermann, Paris 1945.
- [5] D. K. Datta, Exterior recurrent forms on a manifold, Tensor 36 (1982), 115-120.
- [6] J. DIEUDONNE, Elements d'Analyse 4, Gauthier Villars, Paris 1977.
- [7] F. DILLEN, R. ROSCA, L. VERSTRAELEN and L. VRANCKEN, Pseudo-isotropic Lorentzian hypersurfaces in Minkowski space, J. Geom. Phys. 9 (1992), 149-154.
- [8] S. I. GOLDBERG, Curvature and Homology, Academic Press, New York 1962.
- [9] F. GUEDIVA et A. LICHNEROWICZ, Géometrie des Algèbres de Lie locales de Kirilov, J. Math. Pures Appl. 63 (1984), 407-484.
- [10] W. ISRAEL, Differential Forms in General Relativity, Research Monograph, Dublin Institute for Advanced Studies, 1970.
- [11] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, 2, Interscience, New York 1969.

- [12] P. Libermann, Sur le probleme d'equivalence de certaines structures infinitesimales, Ann. Mat. Pura Appl. 36 (1951), 27-120.
- [13] M. Petrović, R. Rosca and L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math. 15 (1989), 167-197.
- [14] M. Petrović, R. Rosca et L. Verstraelen, Champ vectoriel exterieur concourant sur une variété différentielle, preprint series Kath. Univ. Leuven 2 (1990).
- [15] W. A. Poor, Differential geometric structures, MacGraw-Hill, New York 1981.
- [16] R. Rosca, Variété Lorentzienne a structure Sasakienne et admettant un champ vectoriel isotrope Φ-quasi-concirculaire, C.R. Acad. Sci. Paris 291 (1950), 45-47.
- [17] R. ROSCA, Les hypersurface pseudo-isotropes dans un espace de Minkowski, Bull. Acad. Roy. Belg. 56 (1970), 346-356.
- [18] R. Rosca, Sur les hypersurfaces isotropes de defaut 1 incluses dans une espace hyperbolique de type normal, Ann. Inst. H. Poincaré 10 (1974), 237-243.
- [19] R. Rosca, On pseudo-Sasakian manifolds, Rend. Mat. 4 (1984), 393-407.
- [20] R. Rosca, CR-sous-variété co-isotropes d'une variété para-Kählérienne, C.R. Acad. Sci. Paris 298 (1984), 149-151.
- [21] R. Rosca, Exterior concurrent vector fields on a conformal cosymplectic manifold endowed with a Sasakian structure, Libertas Math., Univ. Arlington, USA 6 (1986), 167-174.
- [22] R. ROSCA, On auto-invariant and auto-conformal vectorfields Atti Accad. Peloritana Pericolanti, Messina (to appear).
- [23] A. West, Isoparametric systems; Geometry and Topology of submanifolds.

 Proceedings of the meeting at Luminy, World Scientific, River Edge, N.J.
 USA 1989.

Summary

See Introduction.

* * *

·			
	·		