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On thermodynamics and stability problems

in linear viscoelasticity (**)

1 - Introduction

In the last decade much research has been performed in the framework of
linear viscoelasticity (ef. [4], [6]). In particular, thermodynamic restrictions on
the mathematical modelling and well posedness of the quasi-static and dynamic
problem have been the subject of a number of papers. As shown repeatedly
(ef.[2], ch. 4), the two topics are closely related, though compatibility with
thermodynamics does not guarantee, per se, well posedness of the pertinent
problems.

Recent papers on the stability for the dynamie problem of linear viscoelasti-
city seem to indicate that a further analysis of the connection between thermo-
dynamic restrictions, mathematical modelling and stability is in order. While a
general connection, if possible, is much too far, this note has three specific pur-
poses. First, to review the statement of the second law of thermodynamics and
the relation with a property that is usually called dissipativity. Second, to show
that some inequalities, sometimes involved in stability problems, are not a con-
sequence of thermodynamies. Third, to prove that some models are overly re-
strictive in that make the viscoelastic material be elastic.

To establish the necessary notation (ef. [2]), we consider a viscoelastic solid
occupying a region &2 c &2 in a reference, stress-free configuration. The motion
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of the solid is described by the displacement u(x, t) of any point x e & as a
function of the time f. The behaviour of the solid is described by letting the
Cauchy stress 7, at any point x, be a linear functional of the (infinitesimal)
strain tensor E = sym du/ox,

(1.1) T®) = GyE®) + _FG’(S)E(t ~s)ds
0

where G'e L1(R™*) and the values of Gy, G’ are fourth-order tensors; G, is
called the instantaneous elastic modulus. We denote by E*, on R ™, the history
of E up to time ¢. To save writing we denote by & (E*') the constitutive func-
tional for 7. The function

Gs) =G, + [G'()dz
0

is called the relaxation function. The possible dependence of G on x is under-
stood and not written. The limit G, = lim G(s) as s —> « exists and is called the
equilibrium elastic modulus. The fact that the material is a solid is reflected in
the inequality

(1.2) G.>0.

Of course, by (1.2) we may understand that G, is symmetric. As shown in a mo-
ment, the symmetry is implied by thermodynamics.

2 - Second law and dissipativity

A cycle (for an isothermal, viscoelastic solid) in the time interval [0, d) is a
one-parameter family of histories E° such that E?= E°. The initial history
(state) E° is regarded as known. We let the process P(z), re[0, d), such
that

E P(E)d 0, ~
g o PO [ POdE sl

E’(s—17 selr, ®)

be a piecewise continuous function on R*. Letting a superposed dot denote
(partial) time differentiation, we state the second law by saying that, for any
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cycle in [0, d), the inequality
d »

2.1) [T EHYEGdt=0
0

holds. The funetional F(E') is said to be compatible with the second law of
thermodynamics if the inequality (2.1) is identically true.

The functional (E?) is compatible with the second law of thermodynamics
if and only if ([2], ch. 3)

2.2) G=6Gf G.=GL

the superscript 7' denoting transpose, and
23) [IE,;'G'(S)E,+E5G'(s)Eslsinwsds+ [E;-[G'(8)—G'7(s)] E; cos ws ds <0
0 0

for every w in the set of strictly positive reals R** and every pair of symmetric
tensors E,, E,. In particular (2.3) implies that

2.4) G (w)<0 VYweR*"

the subscript s denoting the half-range Fourier sine transform. Of course (2.3)
and (2.4) are equivalent if G'(s) is a symmetric tensor for any value of s.

Especially in the fifties and sixties, much attention was devoted to a proper-
ty that, in a sense, was regarded as a condition of thermodynamic character.
Such a property is named dissipativity and can be stated as follows [3]. The
inequality

t
(2.5) w(E?) = [ TE)Edr=0

holds for any C'-function E(t), on R, starting from E(— ) = 0. In words, work
must be done to deform a solid from the undeformed configuration.

The connection between the second law and the dissipativity inequality is es-
tablished through the following theorem with the additional requirement that
G' be symmetric on B*.

Theorem 1. If the relaxation function G is symmetric and satisfies the
thermodynamic inequalities (2.2) and (2.4) then, for any E'e H'(R™"), the dis-
sipativity inequality holds.
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Proof. Following [2], p. 56, for any history Ete H'(R*) we let

E(7) Tt
e(r) =
E@) >t
Moreover, let Gs)=G(s|)~G. seR.

Then by the symmetry of G we have
wEY) = LEO G EQ+ 3 [ é) | Gu—9)ée)dsdu.

Hence by Plancherel’s theorem, we have

L)

w(E?) = —;—E’(t)-GwE(t) + Zl— [ éf-Gp(w)ép(w)dn

T -

where the subscript F' means Fourier transform and * means complex conju-
gate. Then, letting the subscript ¢ denote the half-range Fourier cosine trans-
form, we can write

WEY = LE®) G E®) + L [[6,(0) Gty () + é, ()G, ()&, ()] dw.
2 2z 0

G; ()

w

Because of the identity G.(w) = —
by (1.2), 2.2), and (24) we have the desired result.

Accordingly, in linear viscoelasticity, the dissipativity is a consequence of
thermodynamics.

3 - Assumptions involved in stability problems

Observe that upon the change of variable s—7 =%~ s in (1.1) we have
2
8.1 Ty =GE®)+ [ G'(t — ) E(r)dr.
Suppose that u (and then E) vanishes in 2 X (— », 0). Then (3.1) reduces to

t
T =GE®) + [G'(t — v E(7)dr.
0
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This is just the form considered in [1], the only significant difference being that,
in [1], the dependence of G' on t, « is not allowed in the particular, though
standard, form ¢ — 7. Moreover G, is taken to depend on ¢. Two assumptions are
made (in [1]). The first one is that there is b > 0 such that G,(x, {) satis-
fies

(3.2) ~[E-GyEdxc=b[E-Edx
(74 9

for any time t and any symmetrie, second-order tensor E. Incidentally, this con-
dition rules out the possibility of a constant instantaneous elastic modulus.
Sometimes (3.2) is introduced as a generalization of an analogous condition in [5]
§ 86, which is motivated by the use of a time-dependent reference configuration.
In fact, Knops and Wilkes investigate elastic solids and prove that if the elastici-
ty coefficients are positive definite and their time-derivatives are negative defi-
nite then the null solution is stable with respect to an appropriate mea-
sure.
The second assumption is that, for any xe &2 and teR”,

t T
(8.3) JTE@-JG' (z—s)E(s)dsdrdz =0
0

@R0

for any strain function E on &2 X R*. At first sight, (3.3) resembles the dissipa-
tivity condition (2.5) but there are two conceptual differences. First, relative to
(2.5), the inequality (3.3) does not involve the elastic part E -G, E. Second, the
assumption (3.3) does not require that the initial value of E vanish while the dis-
sipativity (2.5) does. In words, (2.5) holds only for strain functions starting from
the zero value, while (3.3) holds for every initial value. Seemingly, the motiva-
tion for (3.2) and (8.3) is of technical character in connection with stability pro-
blems. To the author’s knowledge, no mechanical or thermodynamic arguments
have been given to support (8.2) and (8.3). Indeed, the next Theorem 2 makes a
physical motivation of (3.3) quite unlikely.

For simplicity, let the material function G' and the strain £ be independent
of the position x € 2. Then (3.3) reduces to

t T
(8.4) [E@ [G'(z—s)E(s)dsdr = 0.
0 0

Now we derive a consequence of the inequality (3.4).
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Theorem 2. If G'e C(R™) then the inequality (3.4) holds for any contin-
uous, piecewise differentiable, function E on R* only if G'=0 on R™.

Proof. For any teR** and ¢ (0, ) choose the function £ on R* as

A Tvel0, t—¢)
EQ=A+G-t+98  ccli-q0)
A+B zelt, o)

A, B being arbitrary, symmetrie, second-order tensors. Substitution in (3.4)
yields

]. 4 toe ! g ' S—'t+5
0= s 1) B'[Of G'(z—s)dsd +tf G'(z—38)4 + ——B)dsldr.

£
By the continuity of G’ we have B-[G'(£)d£A + O(e) = 0. Since & can be taken
0

as small as we please, the arbitrariness of A and B yields

¢
JG'(&)dE=0 VieR*™
0

whence G'(t) =0 VieR™*.

The vanishing of G’ on R™ makes the constitutive functional (3.1) reduce to
the function T'(f) = Gy E(t) of (anisotropic) elasticity.

Of course, if (3.4) holds only for E(0) = 0 (dissipativity) then Theorem 2 does
not apply.
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Summary

The paper investigates some features of models of linear viscoelastic solids. Two
main results are exhibited. First, the second law of thermodynamics and a dissipativity
inequality are shown to be different from an inequality sometimes used in stability prob-
lems. Second, such an inequality is proved to be overly restrictive in that makes the
viscoelastic solid be elastic.
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