C. DENSON HILL and M. NACINOVICH (*)

A necessary condition for global Stein immersion of compact CR-manifolds (**)

1 - Abstract CR-manifolds and CR-complexes

An abstract CR-manifold is a triple (M, H, J) where M is a paracompact smooth real manifolds, H is an even dimensional subbundle of the tangent bundle TM and J a partial pseudocomplex structure on H, i.e. a fiber preserving bundle isomorphism $J: H \to H$ with $J^2 = -1$. We also require that J be formally integrable, i.e. that, for

(1.1)
$$\tau^{0,1}M = \{X + iJX | X \in \Gamma(M, H)\} \subset \Gamma(M, CTM)$$

we have

$$[\tau^{0,1}M, \tau^{0,1}M] \subset \tau^{0,1}M.$$

Let m be the real dimension of M and 2n the real dimension of the fibers of H. Then n is called the CR-dimension of M and k = m - 2n its CR-codimension. In this case we say that M is of type (n, k). For a general reference on CR-manifolds see G. Taiani [3].

Let $\Omega(M)$ denote the exterior algebra of smooth complex valued alternating

^(*) Dept. of Math., SUNY at Stony Brook, Stony Brook, NY 11794, USA. Dip. di Matematica, Univ. Pisa, via F. Buonarroti 2, 56127 Pisa, Italia.

^(**) Received March 6, 1992. AMS classification 32 F 25.

forms on M and $\Omega^p(M)$ the subspace of forms of degree p. We consider the ideal

(1.3)
$$\mathscr{S}(M) = \mathscr{S}^{1}(M) = \left\{ \gamma \in \bigoplus_{p \geq 1} \Omega^{p}(M) \, \big| \, \gamma_{\mid z^{0,1}M} = 0 \right\}$$

and its exterior powers

(1.4)
$$\mathscr{I}^{0}(M) = \Omega(M) \qquad \mathscr{I}^{p}(M) = \mathscr{I}^{p-1}(M) \wedge \mathscr{I}(M) \quad (p = 1, 2, ...).$$

By integrability condition (1.2) we have $d\mathcal{I}^p(M) \subset \mathcal{I}^p(M)$ for every $p \ge 0$.

Note that $\mathcal{I}^{n+k+1}(M) = 0$ by reasons of degree and that we obtain a decreasing sequence of ideals of $\Omega(M)$

$$(1.5) \mathcal{I}^{0}(M) = \Omega(M) \supset \mathcal{I}^{1}(M) \supset \mathcal{I}^{2}(M) \supset \dots \supset \mathcal{I}^{n+k}(M) \supset \{0\}.$$

For integers $p, q \ge 0$ we set $\mathcal{I}^{p, q}(M) = \mathcal{I}^p(M) \cap \Omega^{p+q}(M)$. Then clearly we have

$$(1.6) d \mathcal{F}^{p, q}(M) \subset \mathcal{F}^{p, q+1}(M) \mathcal{F}^{p+1, q}(M) \subset \mathcal{F}^{p, q}(M).$$

Now we define, for $p, q \ge 0$

(1.7)
$$Q^{p, q}(M) = \mathcal{I}^{p, p+q}(M) / \mathcal{I}^{p+1, p+q}(M)$$

so that, passing to the quotient we obtain from the De Rham complex the Cauchy-Riemann complexes on M

$$(1.8) 0 \longrightarrow Q^{p,0}(M) \xrightarrow{\bar{\partial}_M} Q^{p,1}(M) \xrightarrow{\bar{\partial}_M} \dots \longrightarrow Q^{p,n} \longrightarrow 0.$$

(Notice that by definition $Q^{p, q}(M) = 0$ for q > n). Setting $Q^{p, -1}(M) = 0$, we define the *cohomology groups of the CR-complexes*

$$\mathcal{K}^{p,q}(M) = \mathrm{Ker}\,(\overline{\partial}_M \colon \, Q^{p,q}(M) \to Q^{p,q+1}(M)) \big/ \mathrm{Im}\,(\overline{\partial}_M \colon \, Q^{p,q-1}(M) \to Q^{p,q}(M)) \,.$$

An open subset of a CR-manifold is in an obvious way itself a CR-manifold and thus we can define, via the natural restriction maps, the local CR-cohomology at a point $P \in M$

(1.9)
$$\mathscr{H}_{P}^{p, q}(M) = \varinjlim_{U \text{ open } \ni P} \mathscr{H}^{p, q}(U).$$

Remark 1. For every $p, q \ge 0$ we have natural restriction maps $\mathcal{H}^{p, q}(M) \to \mathcal{H}^{p, q}_{P}(M)$. They are surjective when q = n.

A CR-map of a CR-manifold (M_1, H_1, J_1) into a CR-manifold (M_2, H_2, J_2) is a differentiable map $\varphi: M_1 \to M_2$ such that

(1.10)
$$\varphi_*(H_1) \subset H_2 \qquad \varphi_*(J_1X) = J_2 \varphi_*(X) \qquad \text{for } X \in H_1.$$

If φ is a diffeomorphism and φ^{-1} is CR, we say that φ is a *CR-isomorphism*.

The CR-map φ induces natural homomorphisms of the CR-cohomology groups

$$(1.11) \varphi^* : \mathscr{H}^{p, q}(M_2) \to \mathscr{H}^{p, q}(M_1) \forall p, q \ge 0.$$

They are isomorphisms if φ is a CR-isomorphism. Clearly a CR-isomorphism φ of a neighborhood U of $P \in M_1$ onto a neighborhood V of $\varphi(P) = Q \in M_2$ induces isomorphisms $\varphi^* \colon \mathscr{H}_0^{p, q}(M_2) \to \mathscr{H}_p^{p, q}(M_1)$.

A CR-manifold of the form (M, TM, J) is a complex manifold by the Newlander-Nirenberg theorem and the CR-complexes on M are (modulo sheaf isomorphisms) the usual Dolbeault complexes on M.

Let M be a real submanifold of a complex manifold \widetilde{M} , with complex structure \widetilde{J} . If for every $P \in M$ we set $H_PM = T_PM \cap \widetilde{J}T_PM$, then we realize that $(M, HM, \widetilde{J}_{|HM})$ is a CR-manifold provided that the spaces H_PM have a constant dimension. In this case the embedding map $i \colon M \to \widetilde{M}$ is a CR-map of $(M, HM, \widetilde{J}_{|HM})$ into $(\widetilde{M}, T\widetilde{M}, \widetilde{J})$.

An embedding (resp. immersion) φ of a CR-manifold (M, H, J) in a complex manifold $(\widetilde{M}, T\widetilde{M}, \widetilde{J})$ is a CR-map $\varphi \colon M \to \widetilde{M}$ which is an embedding (resp. immersion).

The CR-maps of (M, H, J) into C (with the usual complex structure) are called CR-functions and correspond in a natural way to the elements of the group $\mathcal{H}^{0,0}(M)$.

Remark. A necessary condition in order that a CR-manifold (M, H, J) of type (n, k) could be innersed in a Stein manifold \widetilde{M} is that $\mathcal{K}^{p, 0}(M)$ be infinite dimensional for $0 \le p \le n + k$.

An immersion (resp. embedding) of a CR-manifold (M, H, J) of type (n, k) into a complex manifold \widetilde{M} of dimension n+k is said to be *generic*.

2 - Obstructions to global immersions of CR-manifolds

a) The Levi form.

Let (M, H, J) be a CR-manifold of type (n, k). Let $H^0 \subset T^*M$ be the annihilator bundle of the bundle H (i.e. the characteristic bundle of the CR-complexes on M). We consider the bundle $T^{0, 1}M = \{X + iJX | X \in H\}$.

Then the Levi form of (M,H,J) at $\omega \in H^0_P$ is the Hermitean form on $T^{0,\,1}_PM$

(2.1)
$$L(\omega, Z) = id\widetilde{\omega}(Z, \overline{Z}) = -i\omega[Z, \overline{Z}]$$

where $\widetilde{\omega} \in \Gamma(M, H^0)$ satisfies $\widetilde{\omega}(P) = \omega$ and $Z \in \tau^{0, 1}M$ satisfies Z(P) = Z.

The equality of the last two expressions shows that they do not depend on the choice of $\widetilde{\omega}$ and Z and therefore L is a function defined on the direct sum of the bundles H^0 and $T^{0,1}M$.

Let $\sigma(\omega) = (\sigma_1(\omega), \sigma_2(\omega))$ denote the signature of the Hermitean form $Z \mapsto L(\omega, Z)$. In [1] the following statement is proved

Proposition 1. Assume that, for a point $P \in M$ we can find a generic immersion of an open neighborhood of P in M into some complex manifold. Then, if for some $\omega \in H^0_P$ we have $\sigma_1(\omega) + \sigma_2(\omega) = n$, then the groups $\mathcal{H}^{p, \sigma_1(\omega)}_P(M)$ and $\mathcal{H}^{p, \sigma_2(\omega)}_P$ are infinite dimensional for $0 \leq p \leq n + k$.

If we drop the assumption that there is a generic immersion of a neighborhood of P in some complex manifold, then we have a weak version of the above result (cf. [2]).

Proposition 2. If for some $\omega \in H_P^0$ we have $\sigma_1(\omega) + \sigma_2(\omega) = n$, then the groups $\mathscr{H}_P^{p, \sigma_1(\omega)}(M) \oplus \mathscr{H}_P^{p, \sigma_1(\omega) + 1}(M)$ and $\mathscr{H}_P^{p, \sigma_2(\omega)}(M) \oplus \mathscr{H}_P^{p, \sigma_2(\omega) + 1}(M)$ are infinite dimensional for $0 \leq p \leq n + k$.

b) In this subsection we state and prove the main result of this paper.

Theorem 1. Let (M, H, J) be a compact CR-manifold of type (n, k). A necessary condition in order that M could be immersed in a Stein manifold \widetilde{M} is that the following two conditions hold

- (i) $\mathcal{K}^{p,n}(M)$ is infinite dimensional for every $0 \le p \le n+k$;
- (ii) We can find $\omega \in H^0$ such that $\sigma(\omega) = (n, 0)$.

The same conclusions (i), (ii) hold, if we substitute for the assumption that \widetilde{M} be Stein the weaker assumption that there exists on \widetilde{M} a globally defined smooth strictly plurisubharmonic function $\psi \colon \widetilde{M} \to \mathbf{R}$.

We note that, in view of the results on the embedding of CR-strictly pseudoconvex manifolds of hypersurface type (i.e. of type (N, 1) for some N), conditions (i) and (ii) of Theorem 1 are also necessary for the existence of a CR-immersion of a compact CR-manifold (M, H, J) into a strictly pseudoconvex CR-manifold $(\widetilde{M}, \widetilde{H}, \widetilde{J})$ of type (N, 1) when $2N + 1 \neq 5$ or \widetilde{M} is compact. In the case N = 1, where in general \widetilde{M} is not embeddable into a complex manifold, the conditions are an easy consequence of [2]. For N > 1, we reduce to the second statement in Theorem 1.

Let us prove first the following weaker result

Proposition 3. Let (M, H, J) be a compact CR-submanifold of type (n, k) of a Euclidean complex space \mathbb{C}^N (with $N \ge n + k$). Then the conclusions (i) and (ii) of Theorem 1 hold.

Proof. Let $B(R) = \{z \in \mathbb{C}^N \mid |z| \le R\}$ for $R = \max_M |z|$. Let us fix a point θ in M with $|\theta| = R$.

If N = n + k, i.e. (M, H, J) is generic in \mathbb{C}^N , then we can represent M near θ as the set of common zeros of k real valued functions ρ_1, \ldots, ρ_k with

(2.2)
$$\partial \rho_1(\theta) \wedge \ldots \wedge \partial \rho_k(\theta) \neq 0.$$

We can choose ρ_1 in such a way that $\nabla \rho_1(\theta) = \theta$ and that the hypersurface $\rho_1 = 0$ is contained in B(R) near θ .

It follows that the restriction of ρ_1 to the boundary bB(R) has a local minimum at θ and hence its real Hessian is non-negative at θ on $T_{\theta}bB(R)$. But this implies that the real Hessian of ρ_1 is positive definite on the tangent space to bB(R) at θ . Then (ii) follows with

(2.3)
$$\omega = d^{c} \rho_{1}(\theta) = \frac{\partial \rho_{1} - \overline{\partial} \rho_{1}}{2i}(\theta) \in H_{\theta}^{0} M$$

and (i) follows from Proposition 1 and Remark 1.

The general statement of Proposition 3 is then an easy consequence of the following

Lemma 1. Let M be a compact CR-submanifold of \mathbb{C}^N , of CR-dimension n and CR-codimension k. Let $\theta \in M$ and assume that, for a closed Euclidean

ball B in C^N we have

(i)
$$M \in B$$
 (ii) $\theta \in M \cap bB$.

Then we can find a neighborhood U of θ in \mathbb{C}^N and an open holomorphic map $\Phi \colon U \to \mathbb{C}^{n+k}$, such that $\Phi(M \cap U)$ is a generic CR-submanifold of $\Phi(U)$, $\Phi_{|M} \colon M \cap U \to \Phi(M \cap U)$ is a CR-isomorphism and for a closed Euclidean ball B' in \mathbb{C}^{n+k} we have

(i')
$$\Phi(M \cap U) \subset B'$$
 (ii') $\Phi(\theta) \in \Phi(M \cap U) \cap bB'$.

Proof. With no loss of generality, we can assume that $|\theta| = 1$ and that

(2.4)
$$M \subset \left\{ z \in C^N \mid |z - \frac{\theta}{2}| \leq \frac{1}{2} \right\} \quad \text{so that}$$

(2.5)
$$|z|^2 \le 1 - |z - \theta|^2$$
 for $z \in M$.

Let $\widetilde{H}_{\theta}M = T_{\theta}M + JT_{\theta}M$ denote the smallest complex subspace of $T_{\theta}C^{N}$ containing $T_{\theta}M$. It has dimension n+k and, if n+k=N, the embedding of M is generic and there is nothing to prove.

We assume therefore that n + k < N and set l = N - n - k > 0. Let $S = \{|z| = 1\}$ be the unit Euclidean sphere centered at 0 in \mathbb{C}^N and

$$(2.6) H_{\theta}S = \{X \in T_{\theta}C^{N} \mid (X|\theta) = (JX|\theta) = 0\}$$

be the analytic tangent space to S at θ , where by (|) we denote the real part of the canonical Hermitean scalar product in \mathbb{C}^N .

If $\widetilde{H}_{\theta}M$ is not contained in $H_{\theta}S$, then we can find in $H_{\theta}S$ an l-dimensional complex subspace W such that $\widetilde{H}_{\theta}M \cap W = \{0\}$.

If V is the orthogonal (n+k)-dimensional linear subspace to W through the origin of \mathbb{C}^N , then we can take as Φ the restriction to a neighborhood U of θ of the orthogonal projection $\pi\colon \mathbb{C}^N\to V$.

Indeed, π maps the unit ball centered at 0 of \mathbb{C}^N into the unit ball B' centered at 0 of V. As W is tangent to the unit ball of \mathbb{C}^N at θ , then $\pi(\theta)$ is in the boundary of B'. Moreover, as W is transversal to $\widetilde{H}_{\theta}M$, the projection π defines a CR-isomorphism of $M \cap U$ into $\pi(M \cap U)$ for some small open neighborhood U of θ in \mathbb{C}^N .

So, to prove the lemma we only need to get rid of the case where $\widetilde{H}_{\theta}M \subset H_{\theta}S$. If this happens, let us fix $X \in T_{\theta}M - H_{\theta}M$ with |X| = 1. By assumption, $(\theta|JX) = 0$ and then the ball

$$B_{\varepsilon} = \{ z \in \mathbb{C}^N \mid |z - \varepsilon JX|^2 \le 1 + \varepsilon^2 \}$$

contains θ in its boundary for every $\varepsilon \in \mathbb{R}$. We claim that $M \in B_{\varepsilon}$ if ε is sufficiently small. Indeed, for $z \in M$ we have

$$|z - \varepsilon JX|^2 = |z|^2 + \varepsilon^2 |JX|^2 - 2\varepsilon(z|JX) = |z|^2 + \varepsilon^2 - 2\varepsilon(z|JX).$$

We note now that JX is orthogonal to $T_{\theta}M$ for the real scalar product. It follows that, for some constant c > 0, we have $|(z|JX)| \le c|z-\theta|^2$ for $z \in M$.

Then we obtain by (2.5), for $z \in M$

$$|z - \varepsilon JX|^2 \le 1 - |z - \theta|^2 + \varepsilon^2 + 2\varepsilon c|z - \theta|^2$$

and therefore $M \in B_{\varepsilon}$ for $|\varepsilon| \leq (2c)^{-1}$.

With $S_{\varepsilon} = bB_{\varepsilon}$ we have

(2.8)
$$H_{\theta}S_{\varepsilon} = \{ Y \in T_{\theta}C^{N} | (\theta - \varepsilon JX | Y) = (\theta - \varepsilon JX | JY) = 0 \}$$

and hence X does not belong to $H_{\theta}S_{\varepsilon}$ if $0 < |\varepsilon| \le (2c)^{-1}$, so that $\widetilde{H}_{\theta}M$ is not contained in $H_{\theta}S_{\varepsilon}$ and we can conclude arguing as above.

To complete the proof of Theorem 1, we first notice that the conclusion of Proposition 3 still holds if M is the image of a CR-manifold under a CR-immersion. Indeed, once we used the fact that M is a compact subset of \mathbb{C}^N , the remaining arguments have only a local character.

If we have an immersion φ of the CR-manifold (M, H, J) into a 0-convex complex manifold \widetilde{M} , we choose a strictly plurisubharmonic function $\psi \colon \widetilde{M} \to R$ and a point θ in $\varphi(M)$ such that $\psi(\theta) = \max_{\varphi(M)} \psi$.

Choosing coordinates on a neighborhood of θ in \widetilde{M} in such a way that φ becomes strictly convex in the new coordinates, we conclude by the arguments of Proposition 3 and of Lemma 1.

References

- [1] A. Andreotti, G. Fredricks and M. Nacinovich, On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Sup. Pisa 8 (1981), 365-404.
- [2] M. Nacinovich, On the absence of Poincaré lemma for some systems of partial differential equations, Compositio Math. 44 (1981), 241-303.
- [3] G. Taiani, Cauchy-Riemann (CR)manifolds, Pace Univ. Ed., New York 1989.

Summary

In this paper we derive necessary conditions for the global immersion of a compact CR-manifold, of any type, in C^N for some N; or more generally, in a Stein manifold. These conditions are stated in terms of the cohomology groups of the CR-tangential complexes.

* * *