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Multihelicoids in standard spaces of constant curvature (*¥)

1 - Introduction

In [4] Kowalski and Kiilich introduced the notion of generalized k-symmetric
submanifolds of the Euclidean space R™. In [2] generalized 2-symmetric sub-
manifolds are considered in any space of constant curvature and it is proved
that any such submanifold satisfies the condition

(1.1) Vg‘M =0 for each k

k
where 0y is the k-th fundamental form on M.

In this work we consider, more generally, a nicely curved submanifold M of
a standard space M = M(c) of constant curvature c, satisfying condition (1.1).

T 2n+1 2h+ 1
For such a submanifold M we put vV, = ?h ]\790 M, where N,M is the (2h+1)-th

normal space of M at x, I =[3( — 1)] and ! the number defined in Sec. 2.

Our main result (see Theorem in Sec. 8) asserts that any submanifold R of
M, which is a tubular meighbourhood of M in the set {exp,v}sca,vev, 18
minimal.

We observe that R is a submanifold of M foliated by totally geodesic sub-
manifold of M.

Since, if dim M = 1, condition (1.1) implies that M is just a curve with con-
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stant curvatures and R becomes the helicoid, associated to the curve in the
sense of [1], we will call B a multihelicoid.

2 - Preliminaries

Let M = M(c) be a standard space of constant curvature c. In other words,
we assume that M is the Euclidean sphere S7(c), the Euclidean space R™ or the
hyperbolic space H™(c), according to ¢ positive, zero or negative.

For the sake of simplicity we will take ¢=1,0, —1. We consider

_ m+l _ _
S7(1): >; ("% =1 as an hypersurface of R™*!, R™ identified with the hyper-
1 mot+1

plane: 2™ *1 =0 of R™*! and H™(-1): —@')?+ 2; @)= -1,2'>0,as a
hypersurface of the Lorentz space L™*!. 2

From now on we will indicate both R™* ', L™ *! with M, so we have, in any
case, M c M.

We recall that for the exponential map exp,: T.M — M at a point x € X we
have

@.1) exp,v = ol [v])x + ¢(Jv])v veT,M

where o(]v]) = cos |v| o(jo]) = selnvllvl ifc=1
e(Jv]) =1 (lvh =1 ifc=0
o(|v|) = cosh |v| (o)) = _s_e_rl'l_;_[Lv]_ if c=—1.

We also recall that, if we indicate with ¥V the Levi-Civita connection on M

— J— 0
and with V the induced connection on M, then the second fundamental form Gy
on M, defined by the equality

—~ — 0
VY =V ¥ + 05 (X,, Y,)

where X, Y, e T,M and Y is a tangent field to M which extends Y, satisfies
the equality

22) o (X, Y.) = — cg(Xs, Yo)w

where g is the standard Riemannian metric of R™*! or the Lorentzian metric of
L™+ aecording to ¢=1,0 or —1.
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We observe that if ¢ =1, —1 the position vector x is orthogonal, with re-
spect to g, to the tangent space T,M.

Now let M be a submanifold of M. We will indicate with V the Levi-Civita
connection induced by V on M and with O‘M the second fundamental form of M
(in M), so we have

VeV =V ¥ + Gy (X,, ¥)

where X,, Y, e T,M and Y is a tangent field of M which extends Y,.
The vector space generated by the values of the second fundamental form
Ty, on a fixed point x e M, is called the first normal space of M at x and is de-

noted by Z{IxM .

If 7lz(rv) = dim ]i/'xM is constant, then we have a vector bundle 2{7 M on M with
fiber Zifo on a point x € M. It can be proved that, for X, e T, M and alf e I’(Z{T M),
the orthogonal projection Py ye k. M)l of VX &1’ on (T,M @Iifo)L (subspace of

T.M) depends only on the value ::,x, of E at x. Then we have a bilinear
form

1 1
Topt ToM X NyM — (T, M @ N, M)*

1 1 — — 1
defined by O (X, &) = P(TzMGB I{’,M)* (VXZ 8.

2 1
The vector space N, M, generated by the values of Gy on a fixed point x € M, is
called the second normal space of M at x.

2
If we suppose 1%(90) = dim N, M is constant, we can consider the vector bun-
2 k
dle NM, and so, step by step, we have a family of vector bundles N M, with
k k
fiber N, M on x. NM is called the k-th normal bundle of M. As usual we put

0 _
also NM =TM and N M = 0. /
We point out the fact that the k-th normal space at « € M is the vector sub-
space of T,M generated by the values of the form

k— k-1 1 k-1
O T,M X NoM— T, MON MG ... ® N,M)*
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defined by the equality

k-1 k k=1
£

O'M(Xm ~x)~P(TM@NM@ e'N ml(VY £)

E-1 k-1
where £ eI( N M) is an extension of £,.

We call [ the smallest value of k such that c;j = (), and hence the blggest
value of & such that NxM = (0. We observe that for k=1 we have GM = (),

3 k
for k<1 we have N,M = 0 and that the vector spaces N,M are mutually

orthogonal.
It is well known that, for X, e T, M and Ee I’(N M) we have

— k k-1 k k+1
Vi NNMONM® N M.

— k k k
Moreover we have P 1 (U 8) = Gy (X, 5.

k k —
Now we denote by V the connection on the vector bundle N M induced by V,
that is the connection defined by

Bk~
VXrg - PKIIM <VX, 8

k k k-1
and by Ay the bilinear form on T,M X N, M to N,M, defined by

k = — &
AM( s S ) - - Pkir:M (VX, 5) .

Then we have the Frenet equations of M

k k k Ek k k
VXIE:‘ _AM(Xx,Ea:) + VX,E'!_ GM(X%-,E;.;)-

k k E k
The derivatives V &, and VA, respectively of &, and of Ay, are defined
by

(Ve o) (¥a 5 = Vi Gor (0, 5) = Gyt (Vi ¥, = G (7, Vi D

k k kE+1 &k k k k k ko k
’ (VXJ,AIM)(YQ: ’ Ex) = VX; (A}W (Yy E)) - AM (VXI Y, Ex) e AM (Yw , VX;c E)

k k
where Y e I'(TM) is a vector field which extends Y, and £e I'(N M) is a section
k
which extends &,.
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k k
We remark explicitly that, for each x e M, V&, and VA4, are multilinear
forms

k k k+1 k k k-1
Voy: T.MXT.MXN,M— N,M VAy: T,M x T,M x N,M — N, M.
For these derivatives the following proposition holds.

— k
Proposition 1. If M is a wicely curved submanifold of M, then Vg =0

k
for any k, if and only if VAy =0 for any k.

Proof. If M =R™, this proposition is just Lemma 4.1 (iii) of [3]. On the
other hand the proof of such a lemma, essentially based on the Frenet equa-
tions, is obviously valid also when M is any Riemannian manifold. Hence we ob-
tain the thesis.

3 - Minimality of the multihelicoids

Let M be a nicely curved submanifold of M, satisfying condition (1.1), and
let R be a multihelicoid associated to M by the vector bundle V — M, whose
fiber on x is V,,, as described in Sec. 1. According to (2.1), each point y of R is
given by

y=o(|vDe+Jv)v xeM, veV,.

For each point ¥ = o(|v|) 2 + ¢(|vg|) v € R, we can consider two submani-
folds of R, D(vy) and F(x,), defined only locally. More explicitly

38.1) D(y): ¥y =gox + v, xeM

where v, € V, is the vector obtained by parallel transport of v, = v,, on V, as vec-
tor subbundle of TM, along the geodesic of M joining x, with @, oy = o(|v, ),
do = ¢(Jvy|). The submanifold F(x,), the leaf, is defined by

3.2) Fwo): y = oo wo + ¢(Jv)v  ve V.

If y: @ = x(s) is any geodesic of M passing through x, = 2(0), let ¥ be the
curve of D(w,), passing through y,, defined by

x(s) = woe(s) + Yo &(s),
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where Z(s) = v, . The generic tangent vector of ¥ will be

% dz d¢
Xs) = E‘f = 20 X(8) + o 3=

where X(s) = %;9 is the tangent vector of the geodesic y.

Now we observe that, if we indicate with Pm and P 7 the orthogonal pro-
jections respectively on the tangent and on the orthogonal space of the manifold
M, we have

s -~ de, | 5 = 0 = —
VAN 1MATT) T V< i 8), 5(8)) = Vxes € Lys) .
s P (ds)+P (ds) Vxé + T ((X(8), £(8)) = Vyné (€ TyyM)

0
In fact, from (2.2), we have 03 (X(s), £(s)) = 0 trivially if ¢ = 0 and because
X(s) is orthogonal to £(s) € Vi C NyoM if ¢ =1, ~1. Then

X(s) = 9o X(s) + o Vi £

Moreover £(s) = v, is obtained by parallel transport in V, as vector subbun-
dle of TM, therefore we have VX(S)E 1 V and in particular VX(S)E 1 Vi . Henee,
being also X(s) L Vs, we have

(3.3) X(s) L Vi

Now let ¢: v(t) = vy + wt, w e V,,, be the generic straight line of V, passing
through v,. We indicate with ¢ the curve of F(x,) defined by

@) = o(|v@®)]) xy + (| v ) v(E) .

The tangent vector of & will be
2%, dg ’ ot
(3.4) Y(t) = rm =q' ) xy + V@) vE) + T(Hw,

where 0(t) = o(|v(@)|) and ') = ¢(|v@)]).

From (34) we have immediately Y(t) e V,, if ¢ =0 and Y(t) e V,, @ (a,) if
¢ =1, —1. Therefore, being X(s) e TE(S)D(vO)cTﬂs)RcTi(s)M-, from (3.3) we
have X(0) L Y(¢). Consequently it results

3.5) T, D(vy) L T, F(xy).
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We observe here, explicitly, that we also have
3.6 T, B =T, D)@ T, Flx,).
Moreover the following equality holds
3.7 Ty, Fao) © (yo) = Vi, © (o).
Proof of (8.7). From the expression of ¥, = g2y + &y and from that of
the generic tangent vector of F(x;) we immediately have
T, Flxy) © {(yo) C Ve @ (o) -

In order to prove the reversed inclusion we consider a vector u of V,, @ (x).
We can write u = v + Axy, where v eV, and A € R. Recalling (3.4), we have to
prove that there exists ce R and weV, such that

v+ 22y = 00y + T (0) vy + V(0w + cyp -

But the second member of the previous equality is equal to
! d ! d ] /
? (|7J|)a v+t || g @0+ (Wol)ag v+t || ;=g w0+ (|00} ) w0+ g0 o+ el vo

, 29(vg, w) 20(vg, w)
=g ——lv’l %o + o —]v’| Vp + o0 %o T cboVo T oW
o 0

2009y, W) 200 9(vy, W)
——Qﬁ + ppo) @ + (——— lvool + o) v + dow
0

= (

where we have put ¢ = ¢'(0), ¢ = ¢'(0).
Since gy # 0 for |v,| sufficiently small, the condition
Mgl — 2009, w)

2009(vy, W)

+ pop = A
o] T

gives o= and the equation in w
@00
2009wy, w) | YAy _2@69(710:’00))),0 =1
| oo 0 lvo| o ’
. V- a
is solved by w = % % where

_ 2 909y, V) — 2004990y, V) + U5 |vg |4
20520 %0 |* — 20600 | 90| % + 2040 |0

We come now to our main result.
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Theorem. A multihelicoid B, associated as in Sec. 1 to a nicely curved
submanifold M, satisfying condition (1.1), of a standard space M of constant
curvature is minimal.

Proof Because of (3.5) and (8.6) we can prove that the mean curvature
vector H of R at y, e R is zero. It suffices to compute the trace of the second

0 —
fundamental form ¢ on R (in M) at y,, by taking orthonormal bases of T, D(vy)
and of T, F(x).
Moreover we prove that

3.8) 8‘3 (X(0), X(0) =0 o (F(0), 70) =0

for each X(0)e T D) and Y0) e T, F(x,), so H is at once zero.
In order to prove the first of (3.8), we recall that

(3.9) Tr (R(0), X)) = Pz (Vza X)),

then we compute explicitly P, r (Vo X). We have

PJ_R(—V—)_((O)X) P_LR(PTM(VX(O)X)) _LR(PTM( Is 0))

5 /B dX d dg
=P.LR(PTM(§°0"&'S—| +vod d8|s=o))
d & 2l
= P.LR (PTM (%0 (VX(O)X + O'M (X(0), X(0)) + &y +— d ‘a— %h 3 ]s=0))
2k + 1
where - E (s) € NyoM. ; 2h 1
From the fact that £(s) = vy, = Zh (s) is parallel in V = ?h M, con-

2h+1 2h+1 L Zhtl
sidered as vector subbundle of TM, we remark that Vy, & =0,ie. & (s)is

parallel, in N M, along 7.

v —
In fact V& = 0 implies V& e V*, being V* the orthogonal bundle of V' (in
TM). Furthermore, using the Frenet equations, we obtain

i 20 +1 2+ 1

VX(s)E VX(s) Eh 4 Eh Vi &

2h +1 2h+1 2R +1

7 oh + 1 oh+1
=§h[— A (), () + Vig & + ouX(s), € ().



{9] MULTIHELICOIDS IN STANDARD SPACES OF CONSTANT CURVATURE 171

R 2h +1 2h +1 2h N 2h+ 1 2h +1 2h + 1 N
So, being — Ay (X(s), £ () eNyoyMcV*®, oyX(s), £ (8))e NyyMcV

2h+1 2h+1 2h+1 . 2h+1 2h+1
and VX(S) & € Nx(s)MCV, it must be VX(S) E = 0.

2h+1
Because of such a property of 15 , using the same argument that leads to

d — . d 2h+1 —_ 2h +1
gf = VX(s) s, we have 'a‘s‘ E = VX(S) E .
Then applying the Frenet equations, we have
d 2h + 1 2h +1 2h+1 2h+1 2Rh+1 2h +1 2k +1
I £ == AyX@i), & )+ Vyxy & + auX(s), & (5)
2h +1 2h +1 2h +1 2k + 1
=— AyX(s), & 6N+ ayXs), & (s).

So we have
qd & <& d 2+t 211 d 2h+1 %h+1
T N S + = ] ; & .
3 = ol gy AnX®, )+ 5o ou (), & (6]

Now we observe that, being

d 2h#1 2h+1 — 2h+1 2h+1 0 2h+1 2h+1
s Ay (X(8), & ()|s=0 = Vxoy An(X(8), & (8) + o5 (X(0), Ay (X(0), £ (0))

for each h, when if ¢ =0, and for 2~ =1, when ¢ =1, —1, we have

d 2h+1 % +1 _ k41 oGh+1
s Ay X(8), & (N]s=0= Vxoy AuX(®), £ ().

In faect, if ¢=0, it is g'ﬁ=0 and, if ¢=1, —1, being X(0)e T, M and
2h +1 2k +1 2h 2h +1 2h + 1
Ay X©0), & 0)eN, M, it is X(0) L AyX©O), & (0) for h=1 and
hence

0 2h+1 2h + 1 2h+1 2h+1
oy (X(0), Ay (X(0), & (0) = —cg(X(0), ApX©0), & 0))x;=0.

. d 28 +1 2h + 1 —_ 2h+1 2h+1
Analogously it results 4 Oy (X(s), £ (N]s=0= Vxoy duX(s), & () for
each k> 0.
Then it is

d dz 2htl . 2h+1 2h +1 =  2h+1 2 +1
£~d——s—|s=0= EO:’L[_VX(O) AM(X(S), 3 (3))+VX(0) GM(X(S)y 3 (S))]

— Gy (X(0), Ay (X(0), £O)).
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Applying again the Frenet equations, we have

d 05 = G (X0), Ay (X(0), KO
@EEIS:U' 077 (X(0), Ay » &
7 o 2h+1 2h+2 o
+ zo‘llz Vo Au (X(S), (S)) + Vxe O'M (X(S) (S))

2h 2h +1 2h+1
+(AM (X(O), M (X(O) (0))) — Oy (X(0), Ap(X©0), £ (0O

2h 4+ 2 2h 4+ 2 2h+1 2h +1
- Ay (X(O) ‘s M (X(O), (0))) + o X(0), oy X(©0), & ON).

Now we use the condition VAM =0 for each k (Proposition 1). Then we

have
2h +12h+ 1
X

0= Vo Au ), ) — A o X, F @) — Ay x(0), V)2

2h4+1 2R +1

VX(O) & = 0, as

But it is Vg X = 0, because y is a geodesic of M, and

2h 2h + 2h +1
above observed, so we also have Vyg Ay X(s), £ () =0.

k
Analogously, applying the hypothesis Vo =0, for each %, we have
2h+22h+1
Vu @ (X(S) 5 (S))ZO-

Finally we have - % |0 = cg(X(0), Ay (X(0), £0))) o

[ o+ 1 oh + 1 2 2h + 1 oh+1
+%1L(A1M(X(O)} Ay (X(0), & (0) — o (X(0), Ay (X(©0), & (0))

2h +2 2h +1 2h +1 2h +2 2h +1 2h +1
- Ay X©O0), gy X(©), & (0) + TuXWO0), gy X©O), £ O)).
-1
So, being N,,M =0, we have

I 2h+1

ds
(;is d; |s=0€ Dn xoM@@o) Vx0@<xo>-

Then since we have
X(O) = 09 (Vxp X + O‘M X(0), X(©0)) + G‘M (X(0), X(0))) + gy — i ds [s=

= 5053 (X(0), X0) — 06g(X0), XO) o+t - S|, _g
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0 1
and gy 0y (X(0), X(0)) € N, M, we have
6)‘((0)5( eV, ® (o) = T, F(x,) @ (9o) C T, BR® (%0)

being more precisely ?5((0)5( eV =T, Flxg)cT, B if ¢=0. Moreover, if

¢=1, —1, then y, is orthogonal to T, M, so
P (Vs X) =P, r(Pm(VzpX) = 0.

Hence using (8.9) we have the first of (3.8).
Now we note that P, R((Vy(o)f’) = ( because the leaf F(x;) is a totally
geodesic submanifold of M and then Vyq Y e T, F(xy) ¢ Ty, R.

Let M, M, R satisfy the assumptions of the theorem we have proved. If y is
a geodesic of M, we are interested to the submanifold

RY = {exva}xey,ver n R

obtained by considering the restriction of E to 7v.
For R, the following proposition holds

Proposition 2. R, is a minimal ruled submanifold of M. Moreover, lo-
cally, R is a part of a generalized helicoid.

Proof. R, is foliated by the leaves of E obtained for x € y. These leaves are
codimension 1 totally geodesic submanifolds of M, so R, is just a ruled submani-
fold of M as defined in [1].

In order to prove the minimality of R, we remark that, being y a geodesic of
M, if we above replace D(vy) with ¥, all the results found for the submanifolds
D(vy) and F(xy) of R are valid also for ¥ and for F(x,), considered as submani-
folds of R,.

In particular it results T, ¥ L T, F(x,) and we have now

Ty R, = Ty, 7 ® Ty F(xy).

So, if we prove that O (X(0), X(0)=P,s Pi(VzeX) =0 and
<°7Ry(i’(0), ¥(0)) =P, P (V30 1)) = 0, for X(0) e T, 7 and Y(0) e Ty, Fiewy), we
have that the mean curvature vector of R, at y, is equal to zero, that is R, is
minimal.
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But we already proved that PTM@X«))X) and Py (@y(o)f/) are vectors of
T, F(x,). Since we have T, F(xy) c T, R, ¢ T, M, we get P, (P (V0 X)) = 0
and P, R, (IBTM (?y(o) 7)) =0 as desired.

The last assertion of Proposition 2 is an immediate consequence of Theorem
4.1 of [1] applied to R,.
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Summary

We begin from a wnicely curved submanifold M of a standard space M. We suppose
the derivatives of all fundamental forms on M be equal to zero and we obtain a minimal
submanifold R of M, foliated by totally geodesic submanifolds of M. Since, if dim M = 1,
M s just a curve with constant curvatures and B becomes the helicoid, associated to the
curvature in the semse of {11, we call B a multihelicoid.



