S. M. KHURSHEED HAIDER, V. A. KHAN and S. I. HUSAIN (*)

Reduction in codimension of proper mixed foliated semi-invariant submanifold of a Sasakian space form $\overline{M}(-3)$ (**)

1 - Introduction

Semi-invariant submanifolds of a Sasakian manifold have been introduced and extensively studied by A. Bejancu and N. Papaghiuc [3], [4] etc. We call M a mixed foliated semi-invariant submanifold if $D \oplus \{\xi\}$ is integrable and $h(X+\xi,Z)=0$ for each $X\in D$ and $Z\in D^\perp$. It is easy to see that, given a Sasakian space form $\overline{M}(c)$ of constant ϕ -holomorphic sectional curvature c, in order that it may admit a mixed foliated proper semi-invariant submanifold, it is necessary that $c\leq 1$. This and some other considerations motivate us to study proper mixed foliated semi-invariant submanifods of a Sasakian space form of constant curvature -3. The present paper is mainly concerned with the reduction in the dimension of such an ambient space in which a proper mixed foliated semi-invariant submanifold is immersed.

2 - Preliminaries

Let \overline{M} be a (2m+1)-dimensional almost contact metric manifod with structure tensors (ϕ, ξ, η, g) where ϕ is a tensor field of type $(1, 1), \xi$ is a vector field, η

^(*) Dept. of Math., Aligarh Muslim Univ., Aligarh 202002, India.

^(**) Received January 14, 1992. AMS classification 53 C 40.

is a 1-form and g is the Riemannian metric on \overline{M} . These tensors satisfy [6]

(2.1)
$$\begin{aligned} \phi^2 X &= -X + \eta(X) \, \xi & \phi(\xi) &= 0 & \eta(\xi) &= 1 \\ g(\phi X, \, \phi Y) &= g(X, \, Y) - \eta(X) \, \eta(Y) & \eta(X) &= g(X, \, \xi) \end{aligned}$$

for any vector fields X, Y tangent to \overline{M} . We denote by $\overline{\nabla}$ the Riemannian connection defined by the metric g on \overline{M} . It is known that \overline{M} is a *Sasakian manifold* if and only if

$$(\overline{\nabla}_X \phi) Y = g(X, Y) \xi - \eta(Y) X, \qquad \overline{\nabla}_X \xi = -\phi X.$$

Let M be an m-dimensional Riemannian manifold with induced metric g isometrically immersed in \overline{M} . We assume that the structure vector field ξ of \overline{M} is tangent to M and denote by $\{\xi\}$, the distribution spanned by ξ . Also we denote by TM and $T^{\perp}M$ the tangent and the normal bundles to M respectively.

The submanifold M of the Sasakian manifold \overline{M} is called *semi-invariant* if it is endowed with the pair of distributions (D, D^{\perp}) satisfying the following conditions [3]

 $TM = D \oplus D^{\perp} \oplus \{\xi\}$, and D, D^{\perp} , $\{\xi\}$ are mutually orthogonal, the distribution D is invariant by ϕ , i.e. ϕ $D_x = D_x$ for each $x \in M$, the distribution D^{\perp} is anti-invariant by ϕ , i.e. ϕ $D_x^{\perp} \subset T_x^{\perp} M$ for each $x \in M$.

The semi-invariant submanifold M is called *anti-invariant* submanifold (resp. invariant submanifold) if D=0 (resp. $D^{\perp}=0$). M is called proper if neither D=0 nor $D^{\perp}=0$. It follows that the normal bundle $T^{\perp}M$ splits as $T^{\perp}M=\phi D^{\perp}\oplus u$, where u is the orthogonal complement of ϕD^{\perp} and is a subbundle of $T^{\perp}M$, invariant under ϕ . Assume dim D=2p and dim $D^{\perp}=q\geqslant 2$.

Let ∇ be the Riemannian connection on M, then the Gauss and Weingarten formulas are given respectively by

$$(2.3) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

$$(2.4) \overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N$$

for each N normal to M. h is the second fundamental form and A is related to h by

(2.5)
$$g(A_N X, Y) = g((h(X, Y), N))$$

and ∇^{\perp} denotes the connection in the normal bundle $T^{\perp}M$ of M.

The equations of Codazzi and Ricci are respectively by

(2.6)
$$[\overline{R}(X, Y)Z]^{\perp} = \nabla_X^{\perp} h(Y, Z) - \nabla_Y^{\perp} h(X, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z) + h(\nabla_Y X, Z) + h(X, \nabla_Y Z)$$

$$(2.7) \overline{R}(X, Y, N, N_1) = R^{\perp}(X, Y, N, N_1) - g([A_N, A_{N_1}](X), Y)$$

where $[\]^{\perp}$ denotes the normal component, \overline{R} and R^{\perp} are the *curvature tensors* associated with $\overline{\nabla}$ and ∇^{\perp} respectively.

For a submanifold M, the first normal space N_x^1 and the first osculating space O_x^1 at $x \in M$ are defined by

$$N_x^1 = \{h_x(X_x, Y_x): X_x, Y_x \in T_x M\}$$
 $O_x^1 = T_x M \oplus N_x^1$

where T_xM is the tangent space of M at x. A subspace \overline{U} of $T_x\overline{M}$ is said to define a Lie-triple system if $\overline{R}_x(X_x, Y_x)Z_x \in \overline{U}$ for $X_x, Y_x, Z_x \in \overline{U}$. For a Lie triple system \overline{U} in a symmetric space \overline{M} , there exists a unique complete totally geodesic submanifold M' of \overline{M} such that $T_xM' = \overline{U}$, [8].

The curvature tensor \overline{R} of $\overline{M}(-3)$ is given by [6]

(2.8)
$$\overline{R}(X, Y)Z = \eta(Y) \eta(Z)X - \eta(X) \eta(Z)Y - g(X, Z) \eta(Y)\xi + g(Y, Z) \eta(X)\xi - g(\phi Y, Z) \phi X + g(\phi X, Z) \phi Y - 2g(X, \phi Y) \phi Z.$$

The 2-form Ω on M is defined by $\Omega(X, Y) = g(X, \phi Y)$. Ω is skew-symmetric [3], that is

$$(2.9) g(X, \phi Y) = -g(\phi X, Y)$$

and the covariant derivative of ϕ is defined by

(2.10)
$$(\overline{\nabla}_X \phi) Y = \overline{\nabla}_X \phi Y - \phi(\overline{\nabla}_X Y).$$

The projection morphism of TM to D and D^{\perp} are denoted respectively by P and Q. Using this notation we have

(2.11)
$$X = PX + QX + \eta(X)\xi \qquad \phi N = BN + CN.$$

where $BN \in D^{\perp}$ and $CN \in u$ [4]. The semi-invariant submanifold M is called D-to-tally geodesic if h(X, Y) = 0 for each $X, Y \in D$. It is known that the simply connected manifolds of constant curvature are symmetric [9].

It is worth completing this section with the following result.

Proposition 1. If M is a proper mixed foliated semi-invariant submanifold of a Sasakian space form $\overline{M}(c)$, then $c \leq 1$.

Proof. We take $X, Y \in D$, $Z \in D^{\perp}$ such that $Z = \phi N$ for $N \in \phi D^{\perp}$. Subtracting (1.14) from (1.15) of [4] remarking that CN = 0, we have $\nabla_Y Z = B \nabla_Y^{\perp} N - \phi P A_N Y$. Using this together with h([X, Y], Z) = 0 in Codazzi equation, we obtain $[\overline{R}(X, Y) Z]^{\perp} = h(Y, \phi P A_N X) - h(X, \phi P A_N Y)$. Replacing X by ϕY and using $h(Y, A_N Y) = h(\phi Y, A_N \phi Y)$ we finally have

$$[\overline{R}(\phi Y, Y)Z]^{\perp} = 2h(\phi Y, A_N \phi Y).$$

Furthermore, from the curvature equation of the Sasakian space form $\overline{M}(c)$, $[\overline{R}(\phi Y, Y)Z]^{\perp} = \frac{1-c}{2} \quad g(X, \phi Y)N$. Hence $h(\phi Y, A_N \phi Y) = \frac{1-c}{4} \quad g(X, \phi Y)N$. Taking inner product with N and using the fact that $g(A_N \phi Y, A_N \phi Y) \geq 0$, the assertion immediately follows.

This and some other considerations motivate us to take c = -3.

3 - Reduction in codimension

In the present section we study proper mixed foliated semi-invariant submanifolds of a Sasakian space form $\overline{M}(-3)$. First we give some basic lemmas

Lemma 1. Let M be a mixed foliated semi-invariant submanifold of a Sasakian space form $\overline{M}(-3)$. Then

(3.1)
$$g(\nabla_U Z, X) = g(\phi A_{\pm Z} U, X)$$

for each $X \in D$, $Z \in D^{\perp}$ and U tangent to M.

Proof. $g(\nabla_U Z, X) = -g(Z, \nabla_U X)$. Putting $X = \phi Y$ for $Y \in D$ and using (2.10), (2.2), (2.3) and (2.1) we get

(3.2)
$$g(\nabla_U Z, \phi Y) = g(\phi Z, h(U, Y))$$

which proves our assertion.

Proposition 2. Let M be a proper mixed foliated semi-invariant submanifold of a Sasakain space from $\overline{M}(-3)$. Then $h(X, Y) \in \phi D^{\perp}$ for each $X, Y \in D$.

Proof. The equation (2.8) gives

$$(3.3) \qquad [\overline{R}(X, Y)Z]^{\perp} = -2g(X, \phi Y)\phi Z$$

for each $X, Y \in D$ and $Z \in D^{\perp}$. Using this in (2.6), we get

$$(3.4) -2g(X, \phi Y) \phi Z = h(X, \nabla_Y Z) - h(Y, \nabla_X Z)$$

where we have used h([X, Y], Z) = 0. Taking the inner product with ϕW , where $W \in D^{\perp}$, we get

$$-2g(X, \phi Y) g(\phi Z, \phi W) = g(h(X, \nabla_Y Z), \phi W) - g(h(Y, \nabla_X Z), \phi W).$$

Replacing X by ϕX and using (2.1), (2.5), (3.1) and (3.4) we finally have

(3.5)
$$2g(X, Y) g(Z, W) = g(A_{\pm W} Y, A_{\pm Z} X) + g(A_{\pm W} X, A_{\pm Z} Y).$$

Moreover, $R^{\perp}(X, Y) \phi Z \in \phi D^{\perp}$ because $\nabla_{X}^{\perp} \phi Z \in \phi D^{\perp}$. Therefore for $N \in u$, equation (2.8) together with (2.7) implies that

(3.6)
$$g([A_{cZ}, A_N](X), Y) = 0.$$

Furthermore, we replace X by ϕX and take the inner product with $N \in u$ in (3.4). Then, using similar techniques as in (3.5), we get

(3.7)
$$g(A_N X, A_{\pm Z} Y) + g(A_N Y, A_{\pm Z} X) = 0.$$

Adding (3.6) and (3.7), we have $A_{\phi Z}(A_NX)=0$, $X\in D$. Clearly for each $X\in D$, $A_NX\in D$, replacing X by A_NX in (3.5) and using the fact that $A_{\phi Z}(A_NX)=A_{\phi W}(A_NX)=0$, we obtain

(3.8)
$$2g(A_N X, Y) g(Z, W) = 0.$$

Since M is proper, therefore $(A_N X, Y) = 0$, from which our assertion follows.

Note. We also observe that $h(\xi, X)$, $h(\xi, \xi)$ and $h(X, Z + \xi)$ belong to ϕD^{\perp} for each $X \in D$ and $Z \in D^{\perp}$.

From equation (3.5) it follows

Corollary 1. Let M be a proper mixed foliated semi-invariant submanifold of a Sasakin space from $\overline{M}(-3)$. Then

$$A_{\varepsilon Z}^2 X = X$$
, $X \in D$ and Z is a unit vector in D^{\perp}

$$A_{\diamond Z}A_{\diamond W}X=-A_{\diamond W}A_{\diamond Z}X, \qquad X\in D \qquad Z,\,W\in D^\perp \quad and \,\, Z^\perp\,W.$$

Corollary 2. There exist no D-totally geodesic proper mixed foliated semi-invariant submanifold of a Sasakian space form $\overline{M}(-3)$.

Proof. We take $X, Y \in D$ and $Z \in D^{\perp}$. Then putting W = Z in (3.5) we get

$$g(X, Y) g(\phi Z, \phi Z) = g(h(X, A_{\phi Z} Y), \phi Z)$$

where we have used (2.1) and (2.5). On the contrary, suppose M is D-totally geodesic, then $g(X, Y)g(\phi Z, \phi Z) = 0$, which ensures that either D = 0 or $D^{\perp} = 0$, i.e., M is not proper, which is a contradiction. Thus M can not be D-totally geodesic.

Lemma 2. Let M be a proper mixed foliated semi-invariant submanifold of $\overline{M}(-3)$, satisfying $h(Z, W) \in \phi D^{\perp}$ for $Z, W \in D^{\perp}$. Then $T_x M \oplus \phi D_x^{\perp}$ is the first osculating space at $x \in M$.

Proof. In order to show that $T_xM\oplus\phi D_x^\perp$ is the first osculating space at $x\in M$ it is sufficient to show that

$$\phi D^{\perp} = \{h(X, Y): X, Y \in \mathcal{X}(M)\}$$

where $\mathcal{X}(M)$ denotes the set of all vector fields. By the use of Proposition 2 we get $\{h(X, Y): X, Y \in \mathcal{X}(M)\} \subset \phi D^{\perp}$. In fact equality holds. For otherwise taking a unit vector $\phi Z \in \phi D^{\perp}$ such that $g(h(X, Y), \phi Z) = 0$ for all $X, Y \in \mathcal{X}(M)$ we get $g(A_{\phi Z}X, Y) = 0$ for all Y. In particular if we take X in D and $Y = A_{\phi Z}X$ then $g(A_{\phi Z}X, A_{\phi Z}X) = 0$ which is impossible by corollary (3.1) unless M is anti-invariant. This completes the proof of the lemma.

We are now in a position to state the main result.

Theorem 1. Let M be a (2p+q+1)-dimensional proper mixed foliated semi-invariant submanifold of a simply connected Sasakian space form $\overline{M}(-3)$ of dimension n $(n \ge 2p+2q+1)$ satisfying $h(Z,W) \in \phi D^{\perp}$ for Z, $W \in D^{\perp}$. Then

there exists a complete totally geodesic invariant submanifold M' of dimension 2p + 2q + 1 of \overline{M} such that M is a proper mixed foliated semi-invariant submanifold of M'.

Proof. Using (2.8) and lemma (3.2) it is obvious that the osculating space O_x^1 is a Lie-triple system. Hence by [8] there exists a complete totally geodesic submanifold M' of $\overline{M}(-3)$ of dimension 2p+2q+1. Now, the second fundamental form of M' satisfies the classical equation of Codazzi, and hence, by theorem 3.1 of [4], M' is either an anti-invariant or an invariant submanifold. In our case M' is obviously invariant, In fact M' itself is a Sasakian space form of constant curvature -3, and M is its proper mixed foliated semi-invariant submanifold.

This gives the required reduction.

References

- [1] A. Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] A. Bejancu, CR-submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc. 250 (1979), 333-345.
- [3] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. Stiint. Univ. «Al. I. Cuza» Iasi, Sect. Ia Mat. 1 (1981), 163-170.
- [4] A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian space form, Colloq. Math. 48 (1984), 229-240.
- [5] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Mat. Soc. 193 (1975), 257-266.
- [6] D. E. Blair, Contact manifold in Riemannian geometry, Lecture Notes in Math. 509, Springer, Berlin 1976.
- [7] J. Erbacher, Reduction of codimension of an isometric immersion, J. Differential Geom. 5 (1971), 333-340.
- [8] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York 1962.
- [9] W. Klingenberg, Riemannian geometry, De Gruyter, Berlin 1982.

Summary

A theorem on the reduction in codimension of a proper mixed foliated semi-invariant submanifold of a Sasakian space form $\overline{M}(-3)$ is established.

* * *

