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E. THANDAPANTI (*)

Asymptotic and oscillatory behaviour of solutions of
a second order nonlinear neutral delay difference equation (**)

1 - Introduction

Consider the neutral difference equation
(1) Az(yn + Pn yn—-k) ~qn f(yn—l) =0 n = 07 1, 2,

where {p,}, {¢.} are real numbers, k and [/ are nonnegative integers and 4 de-
note the forward difference operator Ax, = x, ; , — «,. The following conditions
will be assumed without further mention

¢t qg.=z0forn=mny=0

¢, fi R->R continuous and % f(u) > 0 for u = 0.

Let m = max {k, {}. Then by a solution of (1), we mean a sequence {¥,, } of re-
al numbers, which is defined for % = —m and which satisfies (1) forn =0, 1, 2, ....
A solution {y, } of (1) is said to be nonoscillatory if the terms y, are either even-
tually positive or eventually negative. Otherwise the solution is called
oscillatory.

In this paper we study asymptotic properties of nonoscillatory solutions of (1)
and obtain sufficient conditions for all bounded solutions of (1) to be oscillatory.
The results in this paper have been motivated by the results in [1], [2]. For gene-
ral background on difference equations see [3].
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Further, when (9) holds z!=y}— —é—e""’ yi_p,=e% satisfies (2) and
2E=y2 - %—e“’”’ yZ_, = — e satisfies (4); whereas 2] satisfies (3) and 2? satisfies

(5), when (10) holds.
Now we study the behaviour of the solutions of (1).

Theorem 2. Let ey and c4 hold. If theve exist a constant B such that
B < p, < ~ 1, then every nonscillatory solution {y,} of (1) satisfies |y, | — »
as n—> o,

Proof. If {y,} is an eventually positive solution of (1) such that %,, does not
tend to © as #— o, then (2) cannot hold since y, = z,,. Thus by Lemma 1, (3)
holds. Further from the proof of (3) we have (6) holding. But

0< Zn = Yn + PrulYn -k = Yn = Yn -

SO Y, > Y, - which contradicts (6). This completes the proof when {y, } is even-
tually positive. The proof is similar when {y,} is negative.

Remark. Equation E,; also illustrates Theorem 2. A necessary condition
that the assumption about p, be satisfied for E; is that a > 0, which implies that
Yi— o and yZ— — © as n— .

Theorem 3. Assume —1 <A <p, < 0. Assume then that f is increasing
 du

0 f(b)

Assume also that for | = 1 we have Z ( E qr) = o, Then every nonoscillato-

§=Mngp=8-1

and sublinear, in the sense that for every constant « > 0 we have

ry solution {y,} of (1) satisfies either [y,ll - ® or y,—0as n— ®,

Proof. Suppose that the solution {y,} of (1) is eventually positive
and that y, does not tend to zero or increase without bound as n— .
Since 422, = q, f(y,—;) =0, {42, } is increasing and {z,} is monotonic. Now if
Yy T Dy Yn_r =2, <0 for n = ny, then the assumption concerning p, implies
Yn S —A Yy 180 Yp 1S — Ay,. It then follows by induction that for all n = n,
we have ¥, ; . < (—A)"y, for every positive integer m. But the last inequality
implies that ¥, — 0 as m — o, a contradiction to our assumption. Thus we have
#, > 0 for n = n;. Note also that, if there exists n, = n, such that Az,, = 0, then
there exists mg = n, such that 4z, = 4z, >0 for % = n;, which implies that
Yy = &y —> © as n—> o, again a contradietion to our assumption.
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Therefore we have z, > 0 and 4z, <0 for #» = n,. Summing (1) we obtain

n
—Az, > A2y 41— A2, = 2 lq.s Sy

s§=n—
Since f is an increasing function, we have

f(zn—l) s f(zs—{) S5 f(?/s—l)

n
for n=s—1 so —A2, 12 fGuo) 2 Qs or
s=n—1
—Az n
an funl oy gs -

fn_) ~ s<ai
Let us notice that

2y - Zy -
Byl " Rpsr1-1 % ! ds < ! ds

fzy_1) _2,;+{—1 Sz 1) \271+{—l f—@ ’

Using the above inequality in (11) and summing the resulting inequality from N
to n leads to

LA W P

Zpa1-1 f(x) s=Nrnp=8—1

as n — o by the last assumption of our theorem and this contradiets the subli-
nearity of f. This completes the proof for {y, } eventually positive. The argument
when {y,} is eventually negative is similar.

The following result is an immediate consequence of Theorem 3.

Corollary. Under the assumptions of Theorem 3 any bounded solution of -
(1) is either oscillatory or converges to zero as n— .

In the next two theorems we discuss the behaviour of the unbounded solutions
of (1), when p, satisfies either the inequality of Theorem 3 or the inequality

12) 0sp,<sC<1

where C is a constant.
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Theorem 4. If p, satisfies the inequality of Theorem 3, then every umn-
bounded solution {y,} of (1) is either oscillatory or satisfies |y,| — © as

n—> .

Proof. Let {y,} be an unbounded solution of (1) that is eventually positive
and let n; = ny be such that y, _,_, > 0 for n = n,. Since 82z, = 0 for % = n,,
then {4z,} is increasing and {z,} is monotonic. It then follows that z, > 0 for
n = Ny = ny. Otherwise there exists ng = %, such that y, + p, ¥, -1 = 2, < 0 for
n = ng and our assumption implies ¥, < — Ay, _ < ¥, - This implies that {y, }
is bounded, a contradiction.

Now z, > 0 for n = n, and further {4z, ) is eventually positive. Otherwise
{#, ) is decreasing and hence bounded from above, say 0 < z,, < K for some con-
stant K.

Therefore 4, = 2, — Pp Yn 1 < K — Ay, _. Since {y, } is unbounded there is
an increasing sequence {n,} such that », — « and y, — % as m — ® and
Y, = max y,. Hence we have

No €N S Ny

Yu,, <K- Aynm—k s K- Aynm .

So (1 + A)y,, < K for all m, which is impossible in view of the first assumption of
Theorem 3.

Finally observe that {4z, } increasing and eventually positive implies that
2, — ®© as % — « and hence 3, — ®© as n —> ® since y,, = #z,,. This completes the
proof when {, } is eventually positive. The proof for {y, } eventually negative is
similar.

Remark. If0 < ak <log2, then E, satisfies all the conditions of Theorem 4
and has the nonoscillatory solutions %, = +2¢® which all satisfy |y, | — » as

n— ©,

Theorem 5. If (12) holds, then every unbounded solution {y,} of (1) is ei-
ther oscillatory or satisfies |y, | — © as n— .

Proof. Let {y,} be an eventually positive solution of (1), say ¥, __; > 0 for
n = n, =ng. Then 2, =y, + Pu¥Yy -1, > 0 and £z, = 0 for n = n,, so {4z, } is in-
creasing and {z, } is monotonic.

If {42,} is not eventually positive, then Az, <0 for n = n,. Then {z,} is
bounded from above, which contradicts the hypothesis that {y, } is unbounded.
Hence we conclude that {4z, } is eventually positive, which together with the fact
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that {4z, } is increasing implies that z, — © as n— . Since
2y S Yn + Cyn—k = Yun + Czn,—k S Czn + Yn

we have (1 — O)z, < y,, which, in view of (12), implies 7, — © as n — ». The
proof when {y,} is eventually negative is similar.

Remark. The equation

(ea - 1)2e3ul—ak(1 + Zeak.)
2e2an

ye_1=0

E2 Az [:l/n + %yn«k] -

satisfies all conditions of Theorem 5 for any positive integers & and [ and constant
a # 0. Note that v, = ¢™ is a nonoscillatory solution of E, satisfying the conclu-
sion of Theorem 5 for a > 0. It is also interesting to observe that {y, } is a bound-
ed solution of E, for a < 0.

Finally we give sufficient conditions to ensure that all bounded solutions of (1)
are oscillatory.

Theorem 6. If fis an increasing function, L=k 2,( X ¢,) = @, there

n=s~k

are constants D and E such that D <p, < E < —1 and we have

Zodu = du
1 du o du
(13) Dy S 3 Fa

for every positive constant « then all bounded solutions of (1) are oscillatory.

Proof. For the sake of contradiction assume (1) has a bounded solution
{y,} such that |y,_;_;| >0 for n=mn,=mn,. If y,_,_;>0 for n =n; then
Az, > 0. Hence {4z, } is increasing and {z,} is monotonic. We first show that
{#, ) is eventually negative. If there exist n, = n; such that z,, > 0, then by the
inequality concerning p, we get

Yny = Zny — Py Yy — & = = Eyng -k -

If follows then by induction that ¥,, + mx = (— E)"¥,,, which implies ¥y, + mt — ®
as m-—> », a contradiction. Therefore we conclude that z,_,.,<0 for
n = N = n, — k — I, which implies that 4z, _,_; <0 for n = N. We then have
0>z, > Dy, _, from which it follows that y, > 2z, , D ~! > 0. Since fis increa-



112 E. THANDAPANI [8}

sing we see that 4%z, = q,f(z,+:-,D ') and summing we obtain

M
(14) —dzy = A2y o1 — 42y g 2 _Z kqs f(zs+k—lD_1)'
Observe

M M M
z qsf(zs+k—lD_1)Bf(zn—lDal) ZAQSBf(znﬁ—lwlD—l) z qs

s=n-k s=n-k s=n-k

and since [ =2k, —4z,_,= —Az,_;. This together with (14) implies

o

_Aznwl

15) _cdaa 3
f@ye1-/D7Y)  s=u-k

gs -

As in Theorem 3, from (15) we have

Zys1-1D7 d
X
-D f M >

Zn«]D_l f(x) /s=71,_k,qs.

Summing the last inequality from N to n, we are led to

which in view of (13), contradicts an assumption of our theorem and the proof is
complete.

Theorem 7. Under the assumptions of Theorem 2 all bounded solutions of
(1) are oscillatory.

Proof. The proof follows from Theorem 2.

Remark. The equation

8(6 + 1)2 eZn 3
9

E3 Az(yn_<9e—2)yn—2)+ yn-—3=0

satisfies all conditions of Theorem 6 and 7, and hence all bounded solutions of Eg
are oscillatory. Note that ¥, =e "cosnn is a bounded oscillatory solution
of E3.
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Summary

Asymptotic and oscillatory behaviour of solutions of a second order nonlinear neutral
delay difference equation is studied. Some illustrative examples are also included.






