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Natural stabilization for fluids of third grade
and of dipolar type (**)

1 - Introduction

In this paper we investigate two models for convection in a class of general-
ized fluids whose viscosity varies with temperature, namely a fluid of third
grade, and a fluid of dipolar type.

The theory of a dipolar fluid was introduced by Bleustein and Green [1] and
is thought capable of describing a fluid containing long molecules or a suspen-
sion of long molecular particles. These writers took account of microstructure
effects by including both the gradient of velocity and the second gradient of ve-
locity as constitutive variables, and they also found it necessary to introduce an
appropriate stress tensor. Bleustein and Green [1] also solved the problem of
Poiseuille flow in a pipe for a dipolar fluid and showed that a flattened velocity
profile could be expected. Since then other problems have been sucecessfully
solved; Hills [9], solved the problem of slow flow past a sphere for a dipolar
fluid, he established a uniqueness theorem in [10], and demonstrated continuous
dependence on the data in the improperly posed backward in time problem in
[11]. Straughan [16] showed new effects could be predicted in wave motion and
investigated nonlinear stability for the constant viscosity Bénard problem in
[17] where the miero-length associated with the theory of [1] was shown to have
a strong inhibiting effect on thermal convection.
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The appropriate equations for thermal convection in a dipolar fluid are intro-
duced in section 2.

The fluid of third grade arose as a model for incompressible, homogeneous,
viscoelastic flow, when the extra stress is expressed as a function of the Rivlin-
Ericksen tensors. In particular, the fluid of third grade studied here arises from
the study of thermodynamics, stability and instability given by Fosdick and Ra-
Jjagopal [3]. The Bénard problem for a fluid of grade three with constant viseosi-
ty was first studied by Franchi and Straughan [5]. It is appropriate to mention
at this point the work of Dunn and Rajagopal [2] who develop theories for fluids
of fourth and higher grade; their work reveals several novel properties which
may be expected from such models.

The relevant equations for thermal convection in a layer of fluid of third
grade heated from below are desecribed in section 4.

Although the convection studies for a fluid of third grade and a dipolar fluid,
(5], [17], respectively, concentrated on constant viscosity, it was recognised
long ago that of fluid properties, viscosity is the one most affected by changes in
temperature. Hence, we here propose to include the effect of variable viscosity.
Tippelskirch [20] has shown by an experiment with liquid sulphur, that if the
viscosity decreases as the temperature increases then the motion in the convec-
tion cell is one where the fluid rises in the centre and descends at the cell walls,
whereas when the viscosity-temperature dependence is reserved the opposite
fluid circulatory motion is observed. To account for temperature dependence in
a fluid Tippelskirch [20] suggests the following relation for the viscosity, w(T),
namely

Yo

1.1 71 J R E—
4 A0 1+ ol + pT®

for vy, a, 8 constants. We choose the linear viscosity relation of Palm et al. [14]
(which contains the leading terms in a binomial expansion of (1.1)), and
take

(1.2) UT) = vo(1 = AT = Ty))

for y a positive constant, or it is sometimes convenient to use the dynamic vi-
scosity u(T) = w(T) ¢y, where gy is a constant density, for which

(1.3) (1) = (1 = (T — Ty))

with @g = voeo.
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2 - The convection equations in a dipolar fluid

The model of Bleustein and Green [1] consists of the momentum equa-
tion

@.1) Vi = afi + i

the continuity equation

2.2) v, =0

and the rate of work equation

2.3) or — oA + TS+ 8T) — ;i + 73 dyj + S A = 0

where v;, ¢, fi, o5, 1, 4, T, S, q; are, respectively, the velocity, density, macro-
scopic body force, stress tensor, heat supply, Helmholtz free energy, tempera-

ture, entropy, and heat flux. Standard indicial notation is used and a superposed
dot denotes the material derivative. The tensor d; and A are

(2.4) dy = %('Ui, it A=
and the stress tensor has form

(2.5) o5 = T — gk — oF i + el
where 7; is a symmetric stress with form

(2.6) T = —¢d; + 2udy.

¢ is introduced since v; is solenoidal, and 4 is the dynamie viscosity (which here
has form (1.3)). Fy; is the microscopic body force and I'; is the dipolar inertia
whose form, see Green and Naghdi [8], is

@mn Iy = dP[(0;),j = V4, £V =~ Vi, kY6 T Vk, iV 5]

where d%(> 0) is the constant inertia coefficient.

In [17] it is argued that since only the symmetric part Xy, of the dipolar
stress plays any part in the equations it is reasonable to introduce only this part
for any situation which the dipolar fluid will model. We adopt this premise here
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and then the constitutive equations of Bleustein and Green [1] yield

2.8) Xy = — Sy — G + Py S + B (A + Ay + g Ay + vadn T
(29) q; = KT’i + &Aikk‘

The function ¢; arises because v; is solenoidal and %;, y4, K, = are constants which
satisfy inequalities (15.11) of [1]: the only two of which we require here
are

(2.10) k<0 hi+hy3=0

and we suppose these hold in the strict sense.

We now follow the development of [17] except we allow the viscosity to vary
as in (1.3). Hence, suppose the fluid is contained in the infinite layer z e (0, H)
for H > 0. Take F;; = 0 and use a Bousinnesq approximation so that ¢ = ¢, (con-
stant) everywhere except in the body force term in (2.1), for which

(2.11) ofi = ~oogdgll — (T — Tp)]

where ¢ is gravity, Ty is a reference temperature, and « is the coefficient of

thermal expansion. By setting £k = ~ —;fac, with ¢ = T%‘% (constant), it is shown

in [17] that the rate of work equation may be reduced to

2.12) T = kAT

with 4 the Laplacian operator.
Hence, if we now define £, as

(2.13) Zi = 7S Aimm + ha Qpjs + Apa) + hsAy,

then with (1.3) holding we may now show the governing equations (2.1)-(2.3) re-
duee to

(214) 2o (1 - d2A)’U1 + co dz(’l)iy kvk,j + ,Ui, kvj, B ’Uk, ivk,j),j
==~ p0g8a [l — alT — To)l + 2uo {[1 — ¥(T ~ To)1dy },; = Lz — vadT, s
(2.15) Vi i = 0

(2.16) T = kAT

where p =¢ —¢; ; acts like a pressure.
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We now assume that on the boundaries

2.17) ;=0 z2=0,H
and

cf. [1], [9], [16], [17], and further
(2.19) T=T, z=0 and T=T z2=H

with Ty > 7.
The conduction solution to (2.14)-(2.19), whose stability we investigate is

(2.20) 7, =0 T=-p8+T,

where g = (T, — Ty)H .

To study the nonlinear stability of solution (2.20) we let u;, 6, = be perturba-
tions to v;, T and 7, where P is the steady pressure field found from (2.14). The
resulting perturbation equations are non-dimensionalized by choosing (stars be-
ing the dimensionless variables):

x; = wf H w=uiU U=vwH™ 6=T%¢*
Prp . Ugg
# el ot — % —
T = U gC( T =7 P P == H
2BH'g d? 12 vo
R — ( N o W e = —— —— —
ok ¢ H? H2 pPr k

, vo /ﬁ?’czik
¥ =t— Iry=,—— I'=vyBH
q2 d gl Y8

and then (omitting all stars) the non-dimensional perturbation equations become:

(221) (1 - 3.4)’1,{,1 + S(Mi’ kukyj -+ 'l(,j’ kui, ke ’U/k, iuk,j),j
= — i+ 8RO+ 2+ I dy) j — —— S i — Lt s — 27E7 (0dy)
o H B
(222) ui,j =0

(2.23) Pro = Rw + 46
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where the superposed dot denotes the material derivative with respect to ¢ and
dy; = %(ui, j+u; ;). Equations (2.21)-(2.23) now hold on the spatial region

z2e (0, 1) and the boundary conditions are
(2.24) U; = 0 = 2(33)1' =0 2= 0, 1

with «;, 6, = having a «periodic shape» in (z, ¥).

3 - Nonlinear energy stability for solution (2.20)

We are now able to proceed in a direct manner from (2.19)-(2.21), because of
the extra nonlinearities present. In the classical fluid case and in that for a mi-
cropolar fluid, a much more complicated generalized energy approach was
necessary, see [6], [19]. (Further development and uses of generalized energy
methods may be found in e.g. Franchi [4], Galdi [7], Mulone [12], Padula [13],
Rionero and Mulone [15], or the book by Straughan [18].)

Let us now multiply (2.21) by u;, (2.23) by 6, and integrate over a cell of
solution periodicity, V. The dissipation terms may be dealt with by integration
by parts, for details see [17], and we may then show

G L L(fulf+ dVulP) = Rlow)— ddul} - [Vulf ~ 2r(edy dy) + 2 227 (6 )

dt 2
3.2) 2 1 pole = Riwe) — ||VolP
dt 2
where [|-|| and () denote the norm on L2(V) and integration over V, respec-
tively.
It is sufficient to add (3.1) and (38.2), and then defining E, I and D by
33) E= %(Hul[z + Prllo)P + &Vul?)
(3.4) I = 2(6w)
(8.5) D = ||VolP + |Vu|? + 21(ed;; dy; ) + el du?
we obtain
(36) 9E _ Rpr-p+ 258 (4,4,

dt R
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It is precisely the cubic term in (0d;d;) which has caused problems in previ-
ous work. However, we may now argue that defining

1T
3.7) Ry D

where JC is the space of admissible solutions, then

B Bz R LY tod. d..
3.8) i < T D2t (0dydy).

We shall suppose

where Rp defines our nonlinear energy stability boundary. To manipulate the
cubic term we write

2(0d iy ) = (O jui, ;) + (Ous, ju, i)
and then integrate by parts to find
(8.10) 2(0d;; dyy) = — (0 ju; ju; ) — (Ou; dug) — (0 ;5 ;).
It is now necessary to employ the inequality

(3.11) sup |u| < clldul|
%

in (3.10) and we may then obtain

3 1

(3.12)  2(edydy) < 2¢|Vol [Vaul ] + ¢ ol Jaulf < o ( 2= + 2=

Vee  eVPr

where (3.3), (3.5) have been used. Thus, putting (3.12) in (3.8) we obtain

YE*D

1

2:I'Prc, 2

dE Rp—R 1 ¥
(8.13) - < - D+ ( + YE*D.
dt Ry R Ve ¢V Pr
It is now easy to show that if
Re\3(Rg — R) 1

(a) R<Rz and (b) E'%(O)<

1

2° P\/PrcR; 6+ 2\/<Pr

then E(t) -0 as t— o, cf. [18] chapter 2, and hence nonlinear stability is
assured.
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We wish to stress once more, that it is the natural property of the dipolar
fluid equations which have allowed us to proceed to obtain nonlinear stability in
such a direct manner. Thus, this mathematical analysis indicates that the dipo-
lar fluid model has good physical properties for variable viscosity convec-
tion.

4 - The convection equations in a fluid of third grade

The paper of Fosdick and Rajagopal [3] uses the Clausius-Duhem inequality
and by additionally requiring the free energy to be a minimum in equilibrium,
they have shown that the stress relation for an incompressible, homogeneous
fluid of third grade is

4.1) T=—pl+pd+ oAy + o A® + BtrA®H)A
where A and A, are the first two Rivlin-Ericksen tensors, defined by
“2) A=L+L" A, =A +AL+L"A

L being the velocity gradient. We shall assume the normal stress coefficients «,
oy and the coefficient 3 are constant, but we let the viscosity be a linear function
of temperature of form (1.3). We observe from [3] that the coefficients satisfy
the restrictions

4.3) =0 =0 |ay + oo | < V24uB.

We shall assume «; > 0, 8 > 0 and (4.3)3 holds with p replaced by the constant
Yo -

The relevant equations of [3] are then the equations of momentum, continu-
ity, and balance of energy, which are:

4.4) v = of; + Ty, j
(4.5) v, =0
(4.6) pe = TyLy — q;; +or

where f;, ¢, ¢; and r are, respectively, body force, internal energy, heat flux,
and heat supply.
It is sufficient here to set r = 0. Then, we may follow Franchi and Straughan
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[6] and reduce the balance of energy equation, (4.6), to the form

4.7) T = xAT

where x is the thermal diffusivity. We again employ a Boussinesq approxima-
tion as in [6], and so take ¢ constant everywhere except in the body force term
for which

4.8) o= = e0gdll — T — Ty)].

Henece, the equations of motion are (4.4), (4.5) and (4.7), with (1.3), (4.1) and
(4.8) being understood.

To investigate the problem of instability due to heating from below we sup-
pose the fluid is contained in the layer z e (0, H). The stationary solution to
(4.4), (4.5), (4.7) subject to specified constant temperatures on the bound-
aries,

4.9) T=T, z2=0 and T=T z2=H
Ty > T, which also satisfies the no-slip condition

(4.10) ;=0 z2=0,H

is

(4.11) ;=0 T=-0+T,

where = (Ty— T;)H ! and p is found from (4.4).

To investigate the nonlinear stability of (4.11) we put v; =; +u;, T =T + 6,
p =p + = and then from (4.4), (4.5) and (4.7) derive the equations for the per-
turbations (u;, 6, =). The equations are non-dimensionalized according to:

v =arH u; = uFU U=v,H! 6=0=T#
Pry ) Upovg atH'g
# = — % — ¢ —
T _ ga U 7E—ILP P—- H R— ICVQ
. _ poH? o H* _ %
17 T Iy = oy Pr=
t":t_‘_/o_. B: ‘BVO I’:YzH
HZ POH4

where Ra = R?, Pr are the Rayleigh and Prandtl numbers, I';, I'; are absorption
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numbers, I" measures the viscosity variation, and B is a non-dimensional form of
2. The non-dimensional equations for (u;, 6, =) are then (omitting all stars):

;= — 7w ; + 8RO+ 2((1 + I')dy)

412) + 7 (G Ay + Ay Ain Ly + LniAng)

+ A Ui A + BltrA®) 451 ; — 2227 0a) ;
I, R

(4.13) Ui =0

(4.14) Pré = Rw + 40

1
where now sz = Ui, 5y AZ] = Ui, ; + Uj, ¢ and dz] = EAU

We note that u;, 6 vanish on the boundaries z = 0, 1 and assume u;, 6 are pe-
riodic in , ¥ in the sense that the x, y planform has a repetitive plane tiling
shape.

5 - Nonlinear energy analysis for the fluid of third grade

Define our energy in this case by

I T 2 L oae = Loane 2 1 2
G0 B= LulE s o) + 2l = Ll + o) + Ll

We differentiate £ and substitute for the resulting time derivatives using
(4.12), (4.14), and we may then show

daE _ vele— Ly~ L oL L 3
2 — zr(o) - I — Tl - 3 (L + L) eat)
(5.2)
1 I'P :
—§B<|AI4>“W(Zdzjdu)'f'Z“—"RIr(edvdU).

Once again, the cubic nonlinearity in (5.2) may be handled thanks to the B
term. We distinguish two cases

(i) a1+a2=0 and (ﬁ) 0< |a1+a2| < \/24‘8#0.
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The third case |o; + ap | = \/24 8y, is dismissed since it was seen in [5] not to
lead to useful results.

Case (i). This case is of interest since oy + o, = 0 does hold for a fluid of
second grade. Equation (5.2) now reduces to

63) G =2Rou)~[VolF - LIAP - $B(AI*) ~2r(edydy) + 212 (0, 0,).

dt
Define now
1 1
I = 2(6w) D, = §B<IA 1) D = |[Ve|f + jz-llAlf2 + 2Izd; dy;)

and we observe using the Cauchy-Schwarz inequality that

(5.4) 212 (dydy) = L2 0aga) < L2 o144
Defining

1 _ I
(5.5) R, X 3

we assume R < Ry and then using (5.3), (5.4) we find

dE _ _ , Bg- I [pr I [Pr gy,
(5.6) s ( o )D D1+R BEDI\ CD+R BE
where we have defined @ by
(5.7 = ( )D +D;.

E

From (5.6) it is now easy to show £ — 0 as t — =, see e.g. chapter 2 of [18],

provided
T [B R(Rgp—R)
R<Ry and E*(0)< Pr ——-—FRE .

Thus, we have derived sufficient conditions to ensure nonlinear stability.

Again, as in section 8, we stress that we are able to obtain nonlinear stabili-
ty directly using a straightforward energy analysis only because of the extra
stabilization provided by the B term in the equations for the fluid of third
grade.
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Case (i). We use lemma 3 of [3] together with the arithmetic-geometric
mean inequality to prove

(5.8) AP

L, %)(trA3)+B([A14)

2(1_ 1“1‘*‘“2‘ )“A”2 .B.U-O _ ‘U|O‘1+“2[ )<|A|4>

H* VB GH' 20 H*VE

for w(> 0) at our disposal. Select now

\/E(—ﬁﬂ)“*ron)Jr 6( o — oo H?P + (oq + ap

_ .COHZ r«oH
w =
oy + s |
and define ¢ by
(5.9) R M_
2 4wPoH2\/é

Next, we employ (5.8), (5.9), together with (5.4) in (5.2), to find

dF Pr

—— S — — ——
(5.10) 7 RI-D-D,+ R 3 E D,
where now
1
I=2w)  D—|VolE+ AP +2rteddy)  Dy= SB(AI).

We again define

1 I _ Rg—-R

Ry, 25D ®=(—f—)D+D
and then from (56.10) we may obtain

dE Pr

(5.11) 7 < -1 - R 573 E ).

Once again, nonlinear stability is, therefore, obtained provided

o< BB
R<Rpy and E*(0)< Pr T



[13] NATURAL STABILIZATION FOR FLUIDS OF THIRD GRADE... 89

We point out that we do not concentrate on calculating Ry in this paper.
However, for both cases (i) and (ii) Ry exists and is finite and non-zero, and may
be found numerically using e.g. the compound matrix method, described e.g. in
(18], appendix 2. The emphasis here is on showing that one may readily obtain
fully nonlinear stability criteria in a direct manner, without having to resort to
any sort of intricate Lyapunov function.
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Summary

The problem of convection in a dipolar fluid or a fluid of third grade is studied, when

the viscosity is a linear function of temperature. In contrast with other temperature de-
pendent viscosity theories where a generalized emergy approach is mecessary, see
Franchi and Straughan [61, Straughan [19), it is shown that fluids of third grade and of
dipolar type possess just the right kinds of dissipative terms to conirol the extra non-
linearities which arise when the viscosity varies with temperature.
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