G. M. DEHERI (*)

On $(\lambda, \sigma \mu)$ -bases (**)

Introduction

This article is devoted to the study of λ -bases, wherein λ is equipped with the more general topology, called $\sigma\mu$ -topology, introduced by Ruckle [10], μ being an arbitrary sequence space.

We characterize analytically fully- λ -bases and fully- λ -bases.

Efforts have been made to identify topologically a sequentially complete space, having a fully- λ -base (or a fully- λ -base), with a Köthe space, thereby providing a far reaching generalization of the famous classical theorem, which tells that a sequentially complete space with an absolute base is nothing but a Köthe space (cf. [9]).

Most of the results are motivated by their corresponding analogues in the case of traditional normal topology.

1 - Fundamentals

For various terms definitions and notations on nuclearity and sequence spaces we refer, respectively, to [9], [6] and [11]. We know that the *normal* topology $\eta(\lambda, \lambda^{\times})$ on a sequence space λ is generated by the family $\{p_y : y \in \lambda^{\times}\}$

^(*) Dept. of Math., Sardar Patel Univ., Vallabh Vidyanagar 388120, Gujarat, India.

^(**) Received September 18, 1991. AMS classification 46 A 45.

of semi-norms where

$$p_y(x) = \sum_{i \ge 1} |x_i y_i| \qquad x \in \lambda.$$

 λ^{\times} being the Köthe dual of λ .

Towards the generalization of this topology Ruckle [10] introduced the concept of $\sigma\mu$ -topology associated with a sequence space μ on an arbitrary sequence space λ . Indeed, the μ -dual of λ is the subspace of ω defined by

$$\lambda^{\mu} = \{ b \in \omega : ab \in \mu, \ \forall a \in \lambda \}.$$

Similarly, we can define another subspace of ω , namely, the μ -dual $\lambda^{\mu\mu}$ of λ^{μ} , where

$$\lambda^{\mu\mu} = (\lambda^{\mu})^{\mu} = \left\{ c \in \omega \colon bc \in \mu, \ \forall b \in \lambda^{\mu} \right\}.$$

 λ is said to be μ -perfect if $\lambda = \lambda^{\mu\mu}$. To topologize the spaces λ and λ^{μ} , let us assume that D_{μ} is the family of semi-norms, generating the topology on μ . For $b \in \lambda^{\mu}$ and $p \in D_{\mu}$, we define

$$p_b(a) = p(\{a_n b_n\}) \qquad a \in \lambda.$$

Then the topology generated by the family $\{p_b: p \in D_\mu, b \in \lambda^\mu\}$ of semi-norms on λ is called the $\sigma\mu$ -topology and is denoted by $T_{\sigma\mu}$. Similarly the $\sigma\mu$ -topology $T_{\sigma\mu}^*$ on λ^μ is generated by the collection $\{p_a: p \in D_\mu, a \in \lambda\}$ of semi-norms where

$$p_a(b) = p(\{a_n b_n\}) \qquad b \in \lambda^{\mu}.$$

Remarks 1.1.

- (i) For $\mu=l^1$. λ^μ is the *K\"othe dual* (or α -dual) λ^\times (cf. [8]); $(\lambda, T_{\tau\mu})=(\lambda, \eta(\lambda, \lambda^\times))$ and $(\lambda^\mu, T_{\tau\mu}^*)=(\lambda^\times, \eta(\lambda^\times, \lambda))$.
 - (ii) For $\mu = cs$ (convergent series), λ^{μ} is the β -dual λ^{β} (cf. [3]).
 - (iii) For $\mu = bs$ (bounded partial sum), λ^{μ} is the γ -dual λ^{γ} (cf. [3]).

For further informations regarding the topological aspects of $(\lambda, T_{\tau\mu})$ and $(\lambda^{\mu}, T_{\tau\mu}^{*})$ we refer to [4].

3

To begin with, we have

Example 1.2. Let μ be l^{∞} , i.e. the set of all bounded sequences equipped with the usual supnorm topology and λ be φ , the space spanned by the unit vectors $\{e^n \colon n \geq 1\}, e^n = \{0, ..., 0, 1, 0, ...\}$. Then

$$\varphi l^{\infty} = \omega \qquad \qquad \varphi l^{\infty} l^{\infty} = \varphi.$$

Thus φ is l^{∞} -perfect. Observe that the topology $T_{zl^{\infty}}$ is generated by the family $\{p_b\colon b\in\omega\}$, where

$$p_b(a) = \sup_{n \ge 1} |a_n b_n| \qquad a \in \varphi.$$

Since $(\varphi, \eta(\varphi, \omega))$ is nuclear (cf. [6]), using the Grothendieck-Pietsch Criterion we find that for each $b \in \omega$, $b_n > 0$, there exists, $c \in \omega$, $c_n > 0$ such that $\{\frac{b_n}{c_n}\} \in l^1$. Therefore, for $a \in \varphi$

$$p_b(a) = \sum_{n \ge 1} |a_n b_n| \le (\sum_{n \ge 1} \frac{b_n}{c_n}) p_c(a).$$

Consequently

$$(\varphi, T_{\tau l^{\infty}}) = (\varphi, \eta(\varphi, \omega)).$$

Remarks 1.3. The above example reveals that the nuclearity of $(\lambda, T_{\tau\mu})$ does not necessarily imply the nuclearity of (μ, T_{μ}) . Equivalently, (μ, T_{μ}) may not be nuclear but still $(\lambda, T_{\tau\mu})$ may turn out to be nuclear. However, if T_{μ} is the normal topology $\eta(\mu, \mu^{\times})$, then nuclearity of $(\mu, \eta(\mu, \mu^{\times}))$ always imply the nuclearity of $(\lambda, T_{\tau\mu})$ whatever may be λ ; which is a consequence of the following result contained in [12].

Proposition 1.4. The space $(\lambda, T_{\tau\mu})$ is nuclear iff $\lambda^{\mu}\mu^{\times} = l^{1}\lambda^{\mu}\mu^{\times}$.

Following the proof of the above result one can establish

Proposition 1.5. The space $(\lambda^{\mu}, T_{\sigma\mu}^*)$ is nuclear iff $\lambda \mu^{\times} = l^1 \lambda \mu^{\times}$.

Note that for a nuclear sequence space $(\mu, \eta(\mu, \mu^{\times}))$, λ^{μ} is always nuclear.

Remarks 1.6. The example 1.2 also underlines that even the nuclearity of $(\lambda, T_{\tau\mu})$ and of its μ -dual $(\lambda^{\mu}, T_{\tau\mu}^*)$ does not necessarily yield the nuclearity of (μ, T_{μ}) , for in this case $(\lambda^{\mu}, T_{\tau\mu}^*) = (\omega, \eta(\omega, \varphi))$ which is nuclear.

Let E be an l.c. TVS and λ a sequence space carrying the $\sigma\mu$ -topology.

Definition 1.7. A Schauder base $\{x_i, f_i\}$ for E is said to be a $semi-\lambda-base$, if for each $p \in D_E$

$$\{f_i(x) p(x_i)\} \in \lambda \qquad x \in E$$

and it is called a *Q-fully-\lambda-base* if there exists a permutation π such that for each $p \in D_E$ the map $\psi_n^{\pi} \colon E \to \lambda$ is continuous where

$$\psi_p^{\pi}(x) = \left\{ f_{\pi(i)}(x) \, p(x_{\pi(i)}) \right\} \qquad x \in E \, .$$

If π is the identity permutation, one gets what is called a *fully-\lambda-base*. Thus a fully-\lambda-base is a *Q*-fully-\lambda-base. However, the converse is not true. For an example we refer to [2].

The impact of nuclearity of $(\mu, \eta(\mu, \mu^{\times}))$ on λ and λ^{μ} is reflected in the following two results

Proposition 1.8. Let $(\mu, \eta(\mu, \mu^*))$ be a perfect nuclear sequence space. If λ is μ -perfect, then $\lambda = S$, where

$$S = \{x \in \omega : \{x_n y_n z_n\} \in l^{\infty}, \forall y \in \lambda^{\mu}, \forall z \in \mu^{\times} \}.$$

Proof. Let $x \in S$ and $y \in \lambda^{\mu}$, $z \in \mu^{\times}$ be chosen arbitrarily. In view of Remark 1.3 $(\lambda, T_{\tau\mu})$ is nuclear. Thus by Proposition 1.4 we get $u \in \lambda^{\mu}$ and $v \in \mu^{\times}$ such that $\left\{\frac{y_n z_n}{u_n v_n}\right\} \in l^1$. Now there exists M = M(u, v) such that $|x_n u_n v_n| \leq M$ $\forall n$.

From the inequality

$$\sum_{n \ge 1} |x_n y_n z_n| \le M \sum_{n \ge 1} \left| \frac{y_n z_n}{u_n v_n} \right| < \infty$$

it follows that $xyz \in l^1$ for all $y \in \lambda^{\mu}$ and for all $z \in \mu^{\times}$. Thus

$$xy \in \mu^{\times \times} = \mu$$
 $\forall y \in \lambda^{\mu}$

which implies $x \in \lambda^{\mu\mu} = \lambda$, and this completes the proof.

Proposition 1.9. Let $(\mu, \eta(\mu, \mu^{\times}))$ be a perfect nuclear sequence space. Then

$$\lambda^{\mu} = \left\{ z \in \omega : \sup_{n \geq 1} |z_n y_n x_n| < \infty, \ \forall x \in \lambda, \ \forall y \in \mu^{\times} \right\}.$$

Proof. The proof is similar to that of the above result.

Remarks 1.10.

(i) If $(\mu, \eta(\mu, \mu^{\times}))$ is perfect nuclear space and λ is μ -perfect, then $T_{\tau\mu}$ on λ can be generated by the family $\{p_{y,z}\colon y\in\lambda^{\mu},\,z\in\mu^{\times}\}$ of semi-norms where

$$p_{y,\,z}(x)=\sup_{n\,\geq\,1}\big\{\,\big|\,x_n\,y_n\,z_n\,\big|\,\big\}\qquad\qquad x\in\lambda\,.$$

(ii) For a perfect nuclear space $(\mu, \eta(\mu, \mu^{\times}))$, $T_{\tau\mu}^{*}$ on λ^{μ} can be generated by the family $\{P_{x,y}: x \in \lambda, y \in \mu^{\times}\}$ where

$$P_{x, y}(z) = \sup_{n \ge 1} \{ |x_n y_n z_n| \} \qquad z \in \lambda^{\mu}.$$

2 - Analytic characterizations

This section starts with a characterization of fully-λ-bases.

Proposition 2.1. Let $(\mu, \eta(\mu, \mu^{\times}))$ be a perfect sequence space. Suppose λ is a μ -perfect sequence space, such that $(\lambda, T_{\pi\mu})$ is nuclear. Then a Schauder base $\{x_n, f_n\}$ in an l.c. TVS E is a fully- λ -base, iff to each $p \in D_E$, $a \in \lambda^{\mu}_+$ and $b \in \mu^{\times}_+$ there corresponds $q \in D_E$, such that

(1)
$$\sup_{n \ge 1} \left\{ \left| f_n(x) \right| \, p(x_n) \, a_n \, b_n \right\} \le q(x) \,, \qquad \forall x \in E \,.$$

Proof. The *only if* part being obvius, we prove the *if* part. Let $p \in D_E$, $a \in \lambda_+^{\mu}$ and $b \in \mu_+^{\times}$ be choosen arbitrarily. The nuclearity of $(\lambda, T_{\tau\mu})$ yields $c \in \lambda_+^{\mu}$ and $g \in \mu_+^{\times}$, such that

$$M = \sum_{n \ge 1} \frac{a_n b_n}{c_n g_n} < \infty.$$

By the hypothesis we can find $q \in D_E$ such that

$$\sup_{n \ge 1} \left\{ \left| f_n(x) \right| p(x_n) c_n g_n \right\} \le q(x) \qquad x \in E.$$

Since the inequality

(2)
$$\sum_{n \ge 1} |f_n(x)| p(x_n) a_n b_n \le Mq(x)$$

is valid for each $x \in E$, the continuity of ψ_p follows. Also (2) means that

$$\{f_n(x) p(x_n) a_n\} \in \mu \qquad \forall a \in \lambda^p$$

and this implies $\{f_n(x)p(x_n)\}\in\lambda$ as λ is μ -perfect. Thus $\{x_n,f_n\}$ is a fully- λ -base for E.

This result in particular, gives

Corollary 2.2. Let $(\lambda, \eta(\lambda, \lambda^{\times}))$ be a perfect nuclear sequence space. Then a Schauder base $\{x_n, f_n\}$ in an l.c. TVS E is a fully- λ -base, iff to each $p \in D_E$ and $y \in \lambda_+^{\times}$ there exists $g \in D_E$, such that

$$\sup_{n \ge 1} \left\{ \left| f_n(x) \right| p(x_n) y_n \right\} \le g(x) \qquad x \in E.$$

(compare with Proposition 3.7 [7]).

Example 2.3. Let $\lambda(P)$ be a nuclear G_{∞} -space and S be a sequence space, such that S is $\lambda(P)$ -perfect and $S^{\lambda(P)} \subseteq l^{\infty}$. The G_{∞} -character of P yields a $c \in P$ for each pair of a and b in P, such that $a_i b_i \leq c_i$. Now take any $x \in \lambda(P)$, $y \in S^{\lambda(P)}$ and $a \in P$. Then for any $b \in P$ we have the inequality

$$\sum_{i \geq 1} |\langle e_i, x \rangle| p_a(e_i) |y_i| b_i \leq \sup_{i \geq 1} |y_i| \sum_{i \geq 1} |x_i c_i|$$

which implies that $\{e_i, e_i\}$ is a fully-S-base for $\lambda(P)$ as S is $\lambda(P)$ -perfect.

We also have an analytic characterization of fully-λ base.

Proposition 2.4. Let $(\mu, \eta(\mu, \mu^{\times}))$ be a perfect nuclear sequence space. Then a Schauder base $\{x_n, f_n\}$ in an l.c. TVS E is a fully- λ^{μ} -base, iff to each $p \in D_E$, $z \in \lambda$ and $y \in \mu_+^{\times}$ there corrisponds $q \in D_E$ such that

$$\sup_{n \ge 1} \left\{ \left| f_n(x) \right| p(x_n) \left| z_n \right| y_n \right\} \le q(x) \qquad x \in E.$$

Proof. Proof is left out, being similar to that of Proposition 2.1.

In particular, this gives

Corollary 2.5. Let $(\lambda^{\times}, \eta(\lambda^{\times}, \lambda))$ be nuclear. Then a Schauder base $\{x_n, f_n\}$ in an l.c. TVS E is a fully- λ^{\times} -base, iff to each $p \in D_E$ and $y \in \lambda_+$ there exists $q \in D_E$, such that

$$\sup_{n \ge 1} \left\{ \left| f_n(x) \right| p(x_n) y_n \right\} \le q(x) \qquad x \in E.$$

This section ends with

Proposition 2.6. Let $(\mu, \eta(\mu, \mu^{\times}))$ be a perfect sequence space. Suppose λ is μ -perfect and $\{x_n, f_n\}$ is an equicontinuous base for a nuclear space E. Then $\{x_n, f_n\}$ is a fully- λ -base, iff to each $p \in D_E$, $a \in \lambda^{\mu}$ and $b \in \mu^{\times}$, there exists $g \in D_E$, such that

(3)
$$\sup_{n \ge 1} \left\{ \left| f_n(x) \right| p(x_n) \left| a_n b_n \right| \right\} \le g(x) \qquad x \in E.$$

Proof. The proof follows, mutatis mutandis, on lines similar to that of Proposition 2.1, as nuclearity of E is equivalent to the fact that given $p \in D_E$ one can always choose $q \in D_E$ with $\left\{\frac{p(x_i)}{q(x_i)}\right\} \in l^1$ (cf. [6]).

Remarks 2.7. It becomes clear from the above result that, if λ and μ are arbitrary sequence spaces, then an equicontinuous semi- λ -base $\{x_n, f_n\}$ in a nuclear space E is a fully- λ -base, iff for each $p \in D_E$, $a \in \lambda^{\mu}$ and $b \in \mu^{\times}$, there exists $q \in D_E$, such that

$$\sup_{n\,\geq\,1}\,\big\{\,\big|\,f_n(x)\,\alpha_n\,b_n\,\,\big|\,p(x_n)\big\}\,\leqslant\, q(x) \qquad \qquad x\in E\,.$$

3 - Basis Theorem and Application

The result to follow, establishes that sequentially complete spaces with fully- λ -bases are nothing but a particular type of Köthe spaces.

Theorem 3.1. Suppose X is a sequentially complete space having a fully- λ -base $\{x_n, f_n\}$. Let $y \in \lambda^{\mu}$ and $z \in \mu^{\times}$ be such that $y_n \geq \varepsilon > 0$, $z_n \geq l > 0$, $\forall n$, for some ε and l. Then X can be topologically identified with a Köthe space $\lambda(P_0)$ where

$$P_0 = \{ p(x_n) \, a_n \, b_n \colon p \in D_X, \, a \in \lambda_+^{\mu}, \, b \in \mu_+^{\times} \}.$$

Proof. In view of the existence of mapping \mathcal{V}_p the function $\mathcal{V}\colon X\to \lambda(P_0)$, where $\mathcal{V}(x)=\{f_n(x)\},\ x\in X$, defines a linear mapping. It is injective as $\{x_n,f_n\}$ is a Schauder base. To prove the surjectivity, let $\alpha\in\lambda(P_0)$. Then for $p\in D_x$, we have

$$\sum_{n \geq 1} |\alpha_n| p(x_n) \leq \frac{1}{\varepsilon l} \sum_{n \geq l} |\alpha_n| p(x_n) y_n z_n < \infty.$$

Since X is sequentially complete, there exists $x \in X$ such that $x = \sum_{n \ge 1} \alpha_n x_n$ giving $\Psi(x) = \alpha_n$. For proving the continuity of Ψ , let $\alpha \in P_0$. Then $\alpha_n = p(x_n) a_n b_n$ for some $p \in D_X$, $\alpha \in \lambda_+^{\alpha}$ and $\beta \in \mu_+^{\times}$. Thus we get

$$\widehat{p}_{\alpha}(Y(x)) = \sum_{n \geq 1} p(x_n) |f_n(x)| a_n b_n \leq q(x) \qquad x \in X.$$

The continuity of Ψ^{-1} now follows from the inequality

$$p(\Psi^{-1}(\alpha)) \leqslant \frac{1}{\varepsilon l} \sum_{n \geqslant 1} |\alpha_n| p(x_n) y_n z_n = \frac{1}{\varepsilon l} \hat{p}_{y,z}(\alpha)$$

for $\alpha \in \lambda(P_0)$, where $p \in D_X$ and $\hat{p}_{y,z}$ denotes the seminorm on $\lambda(P_0)$ resulting from the sequence $\{p(x_n)y_nz_n\}$.

Remarks 3.2. The above result, which is a far reaching generalization of the classical theorem that a sequentially complete space with an absolute base is a Köthe space (cf. [9]), provides us in particular Proposition 3.8 [7].

The proof of the following result is analogous to that of Proposition 3.1.

Proposition 3.3. Let $y \in \lambda$ and $z \in \mu^{\times}$ be such that $y_n \ge \varepsilon > 0$ and $z_n \ge l > 0$ for all n, for some ε and l. If a sequentially complete space X possesses a fully- λ^{μ} -base, then it can be identified topologically with a Köthe space $\lambda(P_1)$ where

$$P_1 = \{ p(x_n) \, a_n \, b_n \colon p \in D_X, \, \alpha \in \lambda_+, \, b \in \mu_+^{\times} \}.$$

Nuclearity of $(\lambda,\,T_{\tau\mu})$ is strong enough to ensure the nuclearity of a sequentially complete space having a fully- λ -base. This is virtually the subject matter of the following

Proposition 3.4. Let $(\lambda, T_{z\mu})$ be nuclear. Suppose X is a quasi-complete space having a fully- λ -base $\{x_n, f_n\}$. If there exist $y \in \lambda^{\mu}$ and $z \in \mu^{\times}$ with $y_n \geq \varepsilon > 0$ and $z_n \geq l > 0$, for all n, for some ε and l; then X is semi-Montel.

Proof. In view of Proposition 3.1, X can be topologically identified with $\lambda(P_0)$ where

$$P_0 = \{ \{ p(x_n) \, a_n \, b_n \} : \, p \in D_X, \, a \in \lambda_+^{\mu}, \, b \in \mu_+^{\times} \} \, .$$

Thus X is nuclear, iff $\lambda(P_0)$ -nuclear. Since $(\lambda, T_{\pi\mu})$ is assumed to be nuclear, by Proposition 1.4 for each $a \in \lambda_+^\mu$ and $b \in \mu_+^\times$ there exist $c \in \lambda_+^\mu$ and $g \in \mu_+^\times$ with $\left\{\frac{a_n \, b_n}{c_n \, g_n}\right\} \in l^1$. Consider arbitrary $p \in D_X$, $a \in \lambda_+^\mu$ and $b \in \mu_+^\times$. Then $\lambda(P_0)$ is nuclear because

$$\left\{ \frac{p(x_n) a_n b_n}{p(x_n) c_n g_n} \right\} \in l^1.$$

Consequently E is a quasi-complete nuclear space and hence it is semi-Montel by Corollary 3.15.4 [5] (compare with Corollary 4.3 [1]).

Note. This result in particular includes Corollary 4.3 [1] and Proposition 4.3.4 [4].

The following Corollary, which results from the above Proposition in view of Remark 1.3, marks the end of the present article.

Corollary 3.5. Let X be an infrabarrelled quasi-complete space with a fully- λ -base $\{x_n, f_n\}$. Suppose that $(\mu, \eta(\mu, \mu^{\times}))$ is nuclear and that there exist

 $a \in \lambda^{\mu}$ and $b \in \mu^{\times}$ such that $a_n \ge \varepsilon > 0$, $b_n \ge l > 0$ for all n, for some ε and l. Then X is Montel.

References

- N. DE GRANDE-DE KIMPE, On Λ-bases, J. Math. Anal. Appl. 53 (1976), 508-520.
- [2] E. Dubinsky and M. S. Ramanujan, $\Lambda(\alpha)$ -bases and Nuclear Spaces, J. Indian Math. Soc. 36 (1972), 333-345.
- [3] D. J. H. GARLING, The β and γ-duality of sequence spaces, Proc. Cambridge Philos. Soc. 63 (1967), 963-981.
- [4] M. GUPTA, P. K. KAMTHAN and G. M. DEHERI, αμ-duals and holomorphic (nuclear) mappings, Collect. Math. 36 (1985), 33-71.
- [5] J. HORVATH, Topological vector spaces and distributions 1, Addison-Wesley, Reading, Mass., USA, 1966.
- [6] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Dekker, New York 1981.
- [7] P. K. Kamthan, M. Gupta and M. A. Sofi, λ-bases and their applications, J. Math. Anal. Appl. 88 (1982), 76-99.
- [8] G. KÖTHE and O. TOEPLITZ, Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math. 17 (1934), 193-226.
- [9] A. Pietsch, Nuclear locally convex spaces, Springer, Berlin 1972.
- [10] W. H. Ruckle, Topologies on sequence spaces, Pacific J. Math. 42 (1972), 235-249.
- [11] W. H. RUCKLE, Sequence spaces, Research Notes in Math. 49, Pitman, Boston 1981.
- [12] M. A. Sofi, Some criteria for nuclearity, Math. Proc. Cambridge Philos. Soc. 100 (1986), 151-159.

Summary

See Introduction.
