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On 0, s)-hases (%

Introduction

This article is devoted to the study of X-bases, wherein A is equipped with
the more general topology, called su-topology, introduced by Ruckle [10], » be-
ing an arbitrary sequence space.

We characterize analytically fully-)-bases and fully-2*-bases.

Efforts have been made to identify topologically a sequentially complete
space, having a fully-2-base (or a fully-A*base), with a Kothe space, thereby
providing a far reaching generalization of the famous classical theorem, which
tells that a sequentially complete space with an absolute base is nothing but a
Kothe space (ef. [9D).

Most of the results are motivated by their corresponding analogues in the
case of traditional normal topology.

1 - Fundamentals

For various terms definitions and notations on nuclearity and sequence
spaces we refer, respectively, to [9], [6] and [11]. We know that the normal
topology n(x, A*) on a sequence space J is generated by the family {p,: y e 2™ }
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of semi-norms where
py(m): .lexiyil rel.
1=

2™ being the Kothe dual of A

Towards the generalization of this topology Ruckle [10] introduced the con-
cept of su-fopology associated with a sequence space s on an arbitrary sequence
space A Indeed, the u-dual of 2 is the subspace of w defined by

i={bew:abey, Yael}.

Similarly, we can define another subspace of w, namely, the u-dual 2% of 2#
where

=0 ={cew: been, Vber}.

2 is said to be p-perfect if A = A% To topologize the spaces A and ¥ let us as-
sume that D, is the family of semi-norms, generating the topology on w. For
bes* and peD,, we define

Dy (a’) = p({a'n bn }) aei.

Then the topology generated by the family {p,: p e D,, be2*} of semi-norms
on 2 is called the cu-topology and is denoted by T',,. Similarly the su-topology
T on 2* is generated by the collection {p,:peD,, ae2} of semi-norms
where

Pa (b) = p({a’n bn }) b e A",

Remarks 1.1.

(i) For u=1I. A is the Kothe dual (or a-dual) 2 (cf. [8]);
()‘? Tf;_u.) = ()\, 7]()\) )‘x )) and ()\#7 T;Z.) = (AX ’ T/()\X s )\))-

() For u = cs (convergent series), A* is the B-dual 2* (cf. [3]).

(iii) For u = bs (bounded partial sum), A* is the v-dual X7 (cf. [3]).

For further informations regarding the topological aspects of (2, 7,) and
(#, TZ) we refer to [4].
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To begin with, we have

Example 1.2. Let u be [”, i.e. the set of all bounded sequences equipped
with the usual supnorm topology and X be g, the space spanned by the unit vee-
tors {e™: n=1}, e"={0,...,,0,1,0, ...}. Then

o =w 21T =0,

Thus ¢ is 1”-perfect. Observe that the topology 7T,- is generated by the family
{pp: b e w}, where
py(@) = sup |a,b, | aeg.
nzl
Since (g, n(g, @)) is nuclear (cf. [6]), using the Grothendieck-Pietsch Criterion

we find that for each bew, b, >0, there exists, cew, ¢, >0 such that

b
{ = } el'. Therefore, for ae¢

b
pb(a) = Zl Ia'nbn, ] = (nzl C_,, )pc(a')

n =

Consequently (g, Ty=) = (9, (3, ).

Remarks 1.3. The above example reveals that the nuclearity of (., T,,)
does not necessarily imply the nuclearity of (4, T,). Equivalently, (x, T,) may
not be nuclear but still (2, T,,) may turn out to be nuclear. However, if T, is the
normal topology 7(u, «™), then nuclearity of (u, n(x, »™)) always imply the nu-
clearity of (2, T,,) whatever may be 4; which is a consequence of the following
result contained in [12].

Proposition 14. The space (A, T,,) is nuclear iff 2> =1 2%u™.
Following the proof of the above result one can establish
Proposition 1.5. The space (\*, T%) is nuclear iff du™* = 1" 2.

Note that for a nuclear sequence space (g, n(w, ™)), 2* is always nu-
clear.

Remarks 1.6. The example 1.2 also underlines that even the nuclearity of
(%, T,,) and of its u-dual (A%, T,) does not necessarily yield the nuclearity of
(4, T,), for in this case (A%, T7,) = (w, n(w, 9)) which is nuclear.



4 G. M. DEHERI [4]

Let E be an le. TVS and ) a sequence space carrying the su-topology.

Definition 1.7. A Schauder base {x;, f; } for E is said to be a semi-A-base,
if for each pe Dy

{fi@pl)} e rek

and it is called a Q-fully-)-base if there exists a permutation = such that for each
p e Dy the map J5: E— 2 is continuous where

G5 (@) = { fuw (@) placiy) } vek.

If = is the identity permutation, one gets what is called a fully-i-base. Thus a
fully-A-base is a @Q-fully-2-base. However, the converse is not true. For an
example we refer to [2].

The impact of nuclearity of (u, n(@, #)) on A and 2*is reflected in the fol-
lowing two results

Proposition 1.8. Let (g, p(u, #*)) be a perfect nuclear sequence space. If
2 1is p-perfect, then A =S, where

S={recw {®, Y2, €l®, Vyer*, Veepu™}.

Proof. Let xeS and y e 2% 2z eu™ be choosen arbitrarily. In view of Re-
mark 1.3 (2, T,,) is nuclear. Thus by Proposition 1.4 we get w e 2* and ve w’
y'll z?L

un v‘ll

such that {
Vn.
From the inequality

} € I'. Now there exists M = M(u, v) such that |x,u,v,| <M

z
S ez | <M S | Dl
nzl nzl Uy Vp

| <
it follows that ayz el® for all ¥y e 2* and for all zeu™. Thus

yep * =u Vy e A*

which implies x € 2** = 3, and this completes the proof.
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Proposition 1.9. Let (u, n(u, ™)) be a perfect nuclear sequence space.
Then

A= {zewsup |z, y,, | < 0, Veel Yyep™}.

nzl

Proof. The proof is similar to that of the above result.

Remarks 1.10.

@) If (@, nly, #™)) is perfect nuclear space and 2 is p-perfect, then T, ona
can be generated by the family {p,.:ye2* z2ep™} of semi-norms where

py,z(m)z Sug{lxnynznl} relk.
n=
(i) For a perfect nuclear space (u, (¢, #™)), T on A* can be generated by
the family {P, ,: x e, yeu*} where

Pl'v y(z) = sup { |xn,yn 2y [} ze

n=zl

2 - Analytic characterizations
This section starts with a characterization of fully-i-bases.

Proposition 2.1. Let (u, n(p, 1)) be a perfect sequence space. Suppose A
is a p-perfect sequence space, such that (2, T,,) is nuclear. Then a Schauder
base {x,, f, } in an Le. TVS E is a fully-2-base, iff to each p e Dy, a e )% and
beu; there corresponds qe Dy, such that

@® sup { |f, @) | p(x,) @, b, } < ), Veek.

=1

Proof. The only if part being obvius, we prove the if part. Let pe Dy,
a2 and bepl be choosen arbitrarily. The nuclearity of (%, T.,) yields c e 24
and g euy, such that

M=ZM<CD.

nzl Cun
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By the hypothesis we can find g e Dy such that

sup {| f, @) | p(x,) €, 9, } < g() vek.

nzl

Since the inequality

@) 721 | £, @) pe,) @, by, < M)

is valid for each wx e E, the continuity of ¢, follows. Also (2) means that
{fi@p@,)a,}ep Vaex*
and this implies { f, (x) p(x,)} € X as 2 is u-perfect. Thus {x,, f, } is a fully-2-base

for E.
This result in particular, gives

Corollary 2.2. Let (2, (2, 1)) be a perfect nuclear sequence space. Then
a Schauder base {x,, f,} in an lLc. TVS E is a fully-2-base, iff to each p € Dy
and y e ) there exists g e Dy, such that

Sup{]ﬁlr(m)lp(xn)yn} sg(m’) xek.
nzl
(compare with Proposition 3.7 [7]).

Example 2.3. Let A(P) be a nuclear G .-space and S be a sequence space,
such that S is A(P)-perfect and S** ¢ 1. The G.-character of P yields a ce P
for each pair of @ and b in P, such that a;b; < ¢;. Now take any x € A(P), y € S*P
and a € P. Then for any b e P we have the inequality

,21 [{e:, )| palei) |y | b; < SUII) ly; | '21 ;¢ |
1z 1= (-
which implies that {e;, ¢;} is a fully-S-base for A(P) as S is A(P)-perfect.

We also have an analytic characterization of fully-2*base.

Proposition 24. Let (g, n(u, »*)) be a perfect nuclear sequence space.
Then a Schauder base {x,, f,} in an Lc. TVS E is a fully-2*base, iff to each
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peDg, ze X and y en’ there corrisponds qe Dy such that

sup {| f, @) ] p(,) |2, | 4 } < ql) vek.

nzl

Proof. Proof is left out, being similar to that of Proposition 2.1.
In particular, this gives

Corollary 2.5, Let (3™, n(A*,2) be nuclear. Then a Schauder base
{zy, £, } in an Le. TVS E is a fully-)"-base, iff to each p e Dy and y € A, there
exists qe Dg, such that

sup { [f;r (’L‘)I p(xn)yn} S Q(/U) xek.
nzl1
This section ends with

Proposition 2.6. Let (g, n(u, #™)) be a perfect sequence space. Suppose X
is u-perfect and {x,, f, } is an equicontinuous base for a nuclear space E. Then
{wy, £} is o fully-2-base, iff to each pe Dy, aei* and bep”, there exists
g € Dy, such that

®3) sup {| f, @)| p@,)| @, b, |} < g(x) vek.

nzl

Proof. The proof follows, mutatis mutandis, on lines similar to that of
Proposition 2.1, as nuclearity of £ is equivalent to the fact that given p € Dy one

&L
can always choose ¢ e Dy with { —g% }el® (cf. [6]).
Remarks 2.7. It becomes clear from the above result that, if A and u are
arbitrary sequence spaces, then an equicontinuous semi-i-base {z,, f, } in a nu-
clear space  is a fully-2-base, iff for each p € Dy, a € 2* and b e p*, there exists
q € Dy, such that

sup {| f, @) @, b, | p(x,)} < g(z) vek.

nzl
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3 - Basis Theorem and Application

The result to follow, establishes that sequentially complete spaces with fully-
J-bases are nothing but a particular type of Kothe spaces.

Theorem 3.1.

Suppose X is a sequentially complete space having a fully-
rbase {x,, f,}. Let y e 2* and z e u™ be such that y, = <> 0, z, 21> 0, Vn, for
where

some ¢ and I Then X can be topologically identified with a Kothe space A(Py)

Py = {p(xn.)a'nbn: peDy,aelf, bE.U'i}°

have

Proof. In view of the existence of mapping ¥, the function ¥': X — A(Py),
is a Schauder base. To prove the surjectivity, let « e A(Pp). Then for p € D, we

where ¥(x) = {f, (@)}, « € X, defines a linear mapping. It is injective as {z,, f, }

Zl ]an | p(xn) s

o
Q|-

Z |OC" | p(mn)yw Zy < @
nzl

Since X is sequentially complete, there exists @ € X such that x =

Oy Xy gi'
nz=1
ving ¥(x) = o, . For proving the continuity of ¥, let « € Py. Then «, = p(x,)a,b,
for some pe Dy, ae X and bep’. Thus we get

P.CF@) = T pa,)| fy@)] b, < )

xelX.
The continuity of ¥~ now follows from the inequality

p(‘l‘ﬂ_l(a)) s i n§>:1 Ian | Py ) Yu 2y = ':]:l‘ﬁy,z(a)

for « € (Py), where p e Dy and p, ., denotes the seminorm on A(P,) resulting
from the sequence {p(x,)¥, 2, }-

Remarks 3.2. The above result, which is a far reaching generalization of
the classical theorem that a sequentially complete space with an absolute base is
a Kothe space (cf. [9]), provides us in particular Proposition 3.8 [7].

The proof of the following result is analogous to that of Proposition
3.1.
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Proposition 83. Let ye) and zeu™ be such that Y. Z2e>0 and
2, 21> 0 for all n, for some < and I If a sequentially complete space X posses-
ses a fully-2*-base, then it can be identified topologically with o Kéthe space
MPy) where

P, = {p(xn)anbn:pEDX: aE7\+,bE‘U.i}.

Nuclearity of (3, T.,) is strong enough to ensure the nuclearity of a sequen-
tially complete space having a fully-A-base. This is virtually the subject matter
of the following

Proposition 84. Let () T,,) be nuclear. Suppose X is a quasi-complete
space having a fully-2-base {x,, f,}. If there exist ye 1* and zeu™ with
YoZe>0 and z, 21> 0, for all n, for some = and I, then X is semi-Mon-
tel.

Proof. In view of Proposition 8.1, X can be topologically identified with
A(Py) where

Py={{p(@,)a,b,}: peDx,aert, beuX}.

Thus X is nuclear, iff A(P;)-nuclear. Since (3, T,.) is assumed to be nuclear, by
Proposition 1.4 for each a e 2% and beu} there exist ce 2* and g euy with
a‘ll bn
CnGn
clear because

} e 1%, Consider arbitrary p e Dy, o € A and b e u; . Then A(Py) is nu-

P (xn ) ay bn

ell.
(%) € G

{

Consequently £ is a quasi-complete nuclear space and hence it is semi-Montel
by Corollary 3.15.4 [5] (compare with Corollary 4.3 [1]).

Note. This result in particular includes Corollary 4.3 [1] and Proposition
434 [4].

The following Corollary, which results from the above Proposition in view of
Remark 1.3, marks the end of the present article.

Corollary 35. Let X be an infrabarrelled quasi-complete space with a
Sully-2-base {,, f,}. Suppose that (u, 7(u, u*)) is nuclear and that there exist
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aeA* and beup”™ such that a,=:>0, b, =1>0 for all n, for some = and L
Then X 1is Montel.
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Summary

See Introduction.
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