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Special structures on four-manifolds (**)

Introduction

In this note the formalism of spinors is used to analyse properties of almost
complex structures on manifolds in dimension four. The integrability property
of an almost complex structure is, in the presence of a compatible metric, exac-
tly complementary to the condition that the almost complex structure give rise
to a symplectic form. This fact is particularly evident when one studies the situa-
tion of a 4-manifold which possesses two anti-commuting almost complex strue-
tures. The most striking instance of this is when the manifold has a hyperkéhler
metric, and our remarks serve to place these metrics in a more general
setting.

Consequences of the existence of a complex structure for the Riemann cur-
vature tensor are pursued in the last section. A 4-manifold has an abundance of
orthogonal complex structures if and only if it is self-dual, which means that half
of its conformal Weyl tensor vanishes. Thus the material below is closely con-
nected with the more general theory of self-duality.

1 - Two-forms and spinors

Let M denote a 4-dimensional oriented manifold with a Riemannian metric g,
which in general we do not assume is complete. Indeed, much of the initial di-
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scussion is algebraic in nature, and for this purpose we shall work at a fixed
point m of M.

An almost complex structure on M is a smooth endomorphism J of TM sati-
sfying J2 = — 1. The value of such a structure at m is completely determined by
the i-eigenspace T'"° for the action of J on the complexified tangent space
(T,,M)., and there are decompositions

(L1) (T M) =T"° DT (TEM),=A"" A%

where 701 = T%9 and A%! = A1 0 is the annihilator of T'>°. More generally, the
complexified space (N T';i M), of k-forms contains a distinguished subspace A? ¢
isomorphic to NAM?® N A%!, elements of which are called forms of type

(p, @-
An almost complex structure J is said to be orthogonal if

(1.2) gUX, JY)=9X,Y) X, YeT,M.

This condition can be rewritten as g(X — #JX, Y — #JY) = 0, and is equivalent to
the assertion that the subspace T'"° is totally isotropic relative to g. We shall
consider only those almost complex structures which are orthogonal and compa-
tible with the orientation, in the sense that at each point of m there is an ortho-
normal basis {e!, e?, 3, e*} of T M such that

(1.3) AL = span {e* —ie?, e — ie*}.
This is consistent with a dual action of J on 1-forms given by Je!=e?,

Jeb = e,
In terms of the above basis, the fundamental 2-form w defined by

(1.4) wlX,Y)=gX, JY)
equals
el Nel+ePNet= 2%.((61 —ie®) A (e! + ie?) + (e? —ie*) A (e® + ie?))
and is of type (1, 1) relative to J. It follows that
(1.5) (PRT*M),=A2°D A 2D () DAL

where Ay ' denotes the space of (1,1)-forms orthogonal to the span (w) of w.
The decomposition (1.5) exhibits the reduction of structure group to U(2)
that results from the choice of the orthogonal almost complex structure J. How-
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ever, part of this decomposition is already detected by the metric and orienta-
tion without reference to J. For

(1.6) A2 =[A* "D A" D (w) AZ =[AF 1)

are the invariant eigenspaces of the Hodge =-operator. Square brackets here in-
dicate the inverse to complexification: in general if U is a complex vector space
endowed with complex conjugation (ie., an antilinear map o: U—>U with

=1) then we use [U] to denote the real vector space of fixed points (ie.
{we U: ou = u}). The resulting decomposition

(1.7) NTEM =A% @A

is SO4)-invariant.
The origin of the summands A% is rendered clearer using the isomor-
phism

Spin (4) = SUQ@) X SUQ2)

where Spin(4) is by definition the simply-connected double-covering group of
SO(4). This allows one to introduce complex 2-dimensional vector spaces V., V.
such that

(1.8) TiM=[V,®V_]

and in this way spinors, ie. elements of V., appear more fundamental than
1-forms or tangent vectors. The use of spinors to prove statements below is by
no means essential, but their great convenience was made apparent for example
in the extensive paper by Atiyah, Hitchin and Singer [3].

Complex conjugation on 7' M is induced from quaternionic structures on V+
and V_ (so that e =7, ®j_ where j.: V. — V. is antilinear and ji = -1).
' Each V. is also equipped with a real symplectic form ». which trivializes NV,
and these forms satisfy

(1.9) g1 @ wy, v @ wy) = 1y (Vy, V2) N (W, Wp)

for v;, vs € V, and wy, wy € V_. (Here the metric g is extended to be symmetric
and complex linear.) It follows that avl—form is isotropic relative to g if and only
if it is a simple or indecomposable tensor product in (1.8). Moreover

NPT *M= N2V, ®V_1=[S*V, @ APV_IBIAV, @87V 1=[S*V.IDIS*V_]

and we may identify [S2V.] with the space A% of (1.7).
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The set 7 of orthogonal almost complex structures on 7,,M compatible
with the orientation is parametrized, by means of (1.6), by the 2-sphere con-
sisting of elements w of A% of a fixed norm. Given such an almost complex
structure J, the totally isotropic space A necessarily has the form (v) ® V_
for some v e V, determined up to multiplication by a non-zero complex sca-
lar. In this way we see that ¢ is also parametrized by the complex projecti-
ve line P(V,). '

In the sequel it will be convenient to suppose that » is unitary in the sense
that

(1.10) . (v, 0) =1

where v is an abbreviation for jv. In this case, {v, ¥} constitutes a special unita-
ry basis of V, , and the only ambiguity in the definition of v involves multiplica-
tion by e for some 6e [0, 27). In terms of the identification

S2V, = A2 A% 2 @ (w)
we may now take
(1.11) BBl=0wRv) A"2=(@TQT) w=wVD

where vV 7 denotes the symmetric product v® % + 7 Q v.

2 - Complex and symplectic structures

Let us suppose now that M is spin, so that it possesses a principal Spin (4)-
bundle P with the property that P/Z, is isomorphic to the bundle of oriented or-
thonormal frames. This will always be valid if we replace M by a suitable open
set, and such a restriction will suffice for the predominantly local theory below.
Then there exist rank 2 vector bundles over M with fibres V,, V_, and these
vector bundles have connections compatible with the Levi Civita one induced on
T*M via (1.8), so that '

VX(1)®’M)) = Vx’l)®w + ®VXw,

where v, w are sections of the bundles with fibres V., V_ respectively.
Suppose that J is an orthogonal almost complex structure on M correspon-
ding to a 2-form » and a section v of the spin bundle with fibre V. , as above.
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The covariant derivative Vo is a section of

V. ®TiM),=V.V,QV_),
and we may write

Vo = v(vw, + dw,) + T(vws + Dwy)

where w; is a section of the bundle with fibre V_. (Tensor product signs have
been omitted and the bracketing mimics that of the preceding line.)
Assuming that v is normalized as in (1.10), we have

0 =1, (Vo, D) + 1, v, VO) = vw, + vwg + i, —viy = 2 Re (v(w, — wy) ),

S0 W, = 10y, and ¢ = v, + Dw, satisfies ¢ + ¢ = 0. Let o = vwy and B =Ty, $O
that «, 8 are both (1, 0)-forms relative to the almost complex structure J. We
may now write

@.1) Vo = v + a + f).

The almost complex structure J is really determined by the line bundle (v)
generated by the section v, rather than by v itself. The purely imaginary 1-form
¢ represents a canonical Hermitian connection on this line bundle, and if v is re-
placed by e”v for some real-valued function 6 then ¢ is replaced by ¢ + idb. On
the other hand, « + j represents the second fundamental form of (v), and it fol-
lows that the derivative of J is completely determined by the pair («, f).

An almost complex structure is said to be integrable or a complex structure
if there exist complex coordinates z!, 2% in a neighbourhood of each point such
that dz!, dz? are (1, 0)-forms. An obvious necessary condition for integrability is
that the exterior derivative of any form 6 of type (1, 0) has no component of type
(0, 2), or equivalently that

2.2) g(ds, y) =0 for all yea>?.

The sufficiency of this condition is the Newlander-Nirenberg theorem.

Since we are concerned exclusively with orthogonal almost complex structu-
res, we shall say that one of these, J, is symplectic if its fundamental 2-form w
defined by (1.4) is closed.

Lemma 1. In the notation of (2.1), J is symplectic if and only if a« = 0;
J is integrable if and only if B =0.
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Proof. Because the Levi Civita connection has no torsion, dw equals minus
the skew-symmetric part of Vew. Using (1.11) and (2.1), it follows that — idw
equals

Re (d(iv0)) = Re (0N S+ WA (x + ) + Wb A ¢ —ivw A @ + B)
=2Re (W0 A (x+B)) =2Re(@@ A «)

the last equality because 70 spans A*%. Thus dw =0 if and only if « = 0.

Using (1.11) and (2.2), it follows that J is integrable if and only if
9(Vv, vv) = 0, where the induced metric on V, ® V. is calculated in a similar
way to (1.9). The equality amounts to 8= 0.

The condition that J is complex can now be expressed in terms of the line
bundle (v); it is equivalent to saying that (v) is stable by the operator V, when-
ever A is a vector field of type (1, 0). Equivalently, V, B has type (1, 0) when-
ever A, B are themselves vector fields of type (1, 0).

A Riemannian metric g is called Kdhler if it admits an orthogonal complex
structure such that the corresponding 2-form w is closed. This is equivalent to
asserting the existence of an almost complex structure J for which VJ =0 (or
equivalently Ve = 0), since the covariant derivative of J encapsulates both the
obstruction to integrability and dw. Moreover, (v) and the bundle with fibre 70
are then stable by V, for all vector fields A.

If the spinor section v represents a Kihler metric, then 2d¢ is a (1, 1)-form
that equals the curvature of the canonical bundle (v) ® (v) (see (1.11)) which is
well known to represent the Ricci form of the Kihler manifold. Its trace (given
by #(2d¢ A w)) will be proportional to the scalar curvature s of M. In the
Kéhler case, d¢ completely determines the curvature of the spin bundle
(v) @ (), and s determines the semi Weyl tensor W, defined in section 5
below.

3 - Anti-commuting almost complex structures

Let {e', e®, €, ¢*} be a basis of 7% M whose elements are orthogonal and of
equal norm. The associated basis

1) w=e'ANe?+elNet o =e'Ned+elNe? w=eNet+e2Ned

of A% determines a triple J, J', J" of almost complex structures whose dual ac-
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tion on forms is given by

Je! =e? Jed = et
(8.2) J'el=¢e? J'et=¢e?
J'e! = ¢! J'e? = 3.

Observe that J, J', J" are uniquely specified by the property that
(3.3) el — ie? el — ie® el —iet

are forms of type (1, 0) relative to each of them in turn. For the action of (for
example) J on the real 2-dimensional orthogonal complement of ¢! and e? is spe-
cified by the orientation of M.

The equations (3.2) show that

I =J"=—J'J,

reflecting the Lie algebra structure of 3u(2). Indeed, it is easy to see that if two
orthogonal almost complex structures J, J' anti-commute then their associated 2-
forms w, ' are orthogonal. Conversely, if J, J' are any two anti-commuting almost
complex structures on a 4-manifold M then there exists a Riemannian metric and
an orientation on M such that J, J' can be expressed as in (8.2).

Suppose now that J and J' are two complex structures on M corresponding
to the respective sections (v), (v') of the bundle with fibre P(V, ), where

v'=v+

and X is a complex valued function. We may furthermore assume that v satisfies
(1.10), although it is convenient to retain »’ unnormalized. From (1.11), w, o’
are orthogonal if and only if

0=g(V3,@+2®V@E-) =221,

that is, |A] = 1. If JJ'+ J'J = 0, we may always choose v such that J corre-
sponds to A = 1. In this case it is easy to check, using (1.11), that the almost

complex structure JJ' corresponds to A = — 4. (The value — 1 arises rather than
1 because of earlier conventions such as JJ' being the composition of J' followed
by J.)

The next result unifies some previously-known lemmas [2], [15]; it shows
that anti-commuting complex and symplectic structures curiously behave as if
they are assigned the parities even and odd respectively.
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Proposition 1. Let J, J' be anti-commuting almost complex structures on
M. IfJ, J' are integrable, then JJ' is integrable. If J, J' are symplectic, then JJ' is
integrable. If J is integrable and J' is symplectic, then JJ' is symplectic.

Proof. We start with the following general caleulation.
Vo' =vg +Ba+ B+ A(Bg—v@E+p)=v'¢ + 7' (& +8),

where «', 8’ are assumed to have type (1, 0) relative to the almost complex
structure determine by v', and

(1+|A2)¢'=(1—=|2]2) ¢+ A+ B — 1@+ )
(3.4) '
(1+ |A2) ' +B) =a+ B+ 22@+p) — 22¢.

Taking 2 =1 we obtain
Rea' + Repf’ = Rea + Rep Ima' —Impg' = —¢.

Taking A = — 4 and indicating the quantities associated with this value of A by
double primes, we have

o'+ =Ima—ImB+i¢=Ima— Img — i(Ima’ — Imp’).

The conclusion of the proof of all the results rests on Lemma 1 and the following
observation. Two forms 6, 6’ that have type (1, 0) relative to J, J' respectively
and sharing the same real part can be expressed in the form e' — ie2, e! — ie? of
(3.3) with respect to a suitable basis. Then

Im6FiImo = —i(e? ¥ ie?)
has type (1, 0) or (0, 1) relative to JJ' according to sign.

In terms of fundamental 2-forms, the condition JJ' + J'J = 0 translates into
wAw =0. If w, o are both closed then w — iw' is a holomorphic symplectic
Sform for the complex structure JJ'. Indeed, such a complex symplectic structu-
re arises whenever one has two real closed 2-forms w, o' satisfying
woNw=o' AN #0 and o Aw' =0 everywhere. Although spinors provide a
unified approach to Proposition 1, simple proofs of each of the three implications
can also be given using differential forms and the reader is invited to supply

these.
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4 - Examples

Proposition 1 gives rise to three particular classes of 4-manifolds, as
follows:

a - Hyperkdhler manifolds, those which admit anti-commuting almost com-
plex structures J, J' which are both complex and symplectic

b - Hypercomplex (non-hyperkdihler) manifolds, those which admit anti-
commuting almost complex structures J, J' which are both complex (but neither
is symplectic)

¢ - Complex symplectic (non-hyperkihler) manifolds, those which admit
anti-commuting almost complex structures J, J' which are both symplectic (but
neither is complex).

Each of these classes has some elementary compact representatives, formed
by taking the quotient of a flat space by a discrete group preserving the appro-
priate complex or symplectic structures. We describe these basic examples and
comment on the classification of the other members of each class in turn.

a - Euclidean space R* with its standard metric is certainly hyperkéhler sin-
ce there is a triple of closed 2-forms as in (3.1). These forms are translation-in-
variant, and therefore induce a hyperkdhler structure on any torus
T*=R*/Z*. Setting J"=JJ', one obtains a whole 2-sphere

4.1) {aJ +a'J" +a"J" a® + (@'} + (@' = 1}

of parallel complex structures relative to each of which g is therefore a Kéhler
metric, and indeed one with zero Riemann tensor. On the other hand, any com-
pact complex surface admitting a non-flat hyperkahler metric is necessarily a K3
surface, which is a complex surface characterized by b; = 0 and ¢, = 0. Conver-
sely any such surface carries a hyperkihler metric whose existence was proved
by Yau. These facts were explained by Calabi [7], who first coined the name
hyper-Kihler, and discovered (independently with Eguchi and Hanson [8]) such
a matric on the cotangent bundle T *CP2.

Deseribing hyperkihler metrics on compact 4-manifolds explicitly remains a
major problem. Various approximations to the K3 metric were described by
Hitchin [10]; his ideas were developed by Kronheimer [13] who used what is
now a well-established quotient construction to describe complete hyperkéhler
metrics on the minimal resolution of C2%/K, where K is a finite subgroup of
SU(2). These metrics approach the Euclidean metric on C2/K to order O(1/r*).
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Other examples of complete hyperkihler metrics in four dimensions are descri-
bed in [2] which includes a general account of such metries with a 8-dimensional
group of isometries permuting the elements of (4.1).

b - Let 2 be a complex number with |1] # 1, and let I' be the infinite eyclic
group generated by A e C. Then

_RN\0}

X T

is diffeomorphic to S* X S3, and having odd first Betti number b, = 1 cannot ad-
mit a Kihler metric. In contrast to the case of a torus, the discrete group I" does
not act isometrically, but it does preserve the 2-sphere of complex structures
determined by (3.2) and (4.1). Relative to each of these, X is a primary Hopf
surface, that is a complex surfaces covered by C2\ {0} with fundamental
group Z.

In the terminology of G-structures, a hypercomplex structure as defined
above is the same thing as a GL(1, H)-structure admitting a torsion-free connec-
tion; such connections were considered by Obata [15]. If the GL(1, H)-structure
has vanishing curvature tensor then it is integrable in the sense that it admits
compatible affine coordinate systems. Compact complex surfaces admitting such
integrable hypercomplex structures have been classified by Kato [11], and are
all quotients of C2\ {0} by a subgroup I' of GL(1, H). Finite subgroups of SU(2)
again crop up, as I" contains such a subgroup K for which I'/K is infinite eyclic,
and the resulting Hopf surface is diffeomorphic to a S%/K-bundle over S

The above results were extended by Boyer who proved that Hopf surfaces
exhaust the class of compact hypercomplex manifolds which are not hyperkihler
[5]. A key ingredient is a theorem of Vaisman [20] that asserts that only Hopf
surfaces admit metrics that are conformally flat and locally conformally
Kihler. Hypercomplex structures also play a key role in the work of Ashketar
et al. [1]. ‘

¢ - The fundamental example in this case is the nilmanifold cited by Thurston
[18] as an example of a symplectic non-Kéhler manifold. This is based on the
Heisenberg group

1 x P
H={(O 1 y):x,y,zeR].
0 0 1
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Let Y=(FH,\H) xS,

where H, denotes the subgroup of H defined by restricting x, ¥, z to be inte-
gers, and H;\ H is the set of right cosets. The 1-forms

el =dz — xdy e?=dx e? = dy
are left-invariant, and are therefore globally defined on Y. They satisfy

del= —e?ANed de?=0 de®=0.

Let ¢? be a closed 1-form on S', and consider the structures defined by (3.1) and
(8.2). Then w, o' are closed, and J"=JJ' is integrable.

The function p =« — iy defines a holomorphic mapping from Y to a torus
T2 = C/Z? realizing Y as a holomorphic bundle over T2 with tori as fibres. In-
deed, » may be regarded as a moment mapping for the action of a group C*
preserving the holomorphic symplectic form

w— 1w = (! —ie*) A (e® — ie?).

This description of ¥ as a holomorphic bundle with base and fibres elliptic
curves exhibits it as one of a family of non-Kéhler surfaces with b, = 3. The ho-
lomorphic symplectic form trivializes the canonical bundle, and the Hodge num-
ber 2% is non-zero. A moduli space of such complex surfaces on the underlying
smooth structure of ¥ may be obtained by choosing a holomorphic connection for
the fibration p in order to add complex structures on the base and fibres. Mo-
reover, Kodaira’s Theorem 19 in [12] asserts that any manifold of type ¢ above
is of the form C?/L where L is a group of affine transformations leaving inva-
riant the standard symplectic form dz* A dz®.

The manifold Y, and for that matter H; \ H, is a basic example in the theory
of differential algebras in rational homotopy theory [9]. Indeed, the differential
algebra generated by the invariant forms e', e%, €®, e provides a minimal
model for the de Rham algebra of Y; it faithfully represents the cohomology of Y
and is built up in a simple way because of its nilpotency. This minimal model is
not formal as it possesses a non-vanishing Massey triple product {[e?],[¢%],[¢*])
represented by the cohomology class — 2[e! A ¢%] which does not belong to the
ideal in H?(Y, R) generated by [e*]. The existence of such a non-vanishing class
is not possible on a manifold admitting a Kéhler metric.
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5 - Curvature considerations

The Riemann curvature tensor R of M is defined by
(51) R(X, Y)Z = VXVYZ - VYVXZ - V[X, Y]Z

where V denotes covariant differentiation on TM. It may be viewed as an endo-
morphism of the bundle NT*M of 2-forms by means of the formula

(6.2) g(RXAY),ZAW)=g(RX,Y)Z, W).

Well-known symmetries of R guarantee that the definition makes sense. The fol-
lowing result is well known.

Proposition 2. Relative to (1.7), B may be written in block form

1 T
W++1251| B

B |W-+11—2sl

where W.. is a traceless self-adjoint endomorphism of A%, B is a linear map-
ping from A% to A%, and s is a smooth function.

The four quantities W, , W_, B, s represent the four components of R relati-
ve to the irreducible SO(4)-modules constituting the space of curvature tensors,
first deseribed by Singer and Thorpe [17]. The trace of E as an endomorphism
of AT * M equals one half the scalar curvature s = g7 R};; the latter is also the
trace of the Ricci tensor Ry = R}il which at each point is an element of the 10-di-
mensional space S27T% M of symmetric 2-tensors. In general, the traceless part
of the Ricci tensor can be identified with B by means of the isomorphism

SETEM =SV, QV_1=[S*V,.IQS*V_1OR
which implies that
(5.3) Hom (A%, A2) = A% @ A%

is isomorphic to the space SET:M of symmetric tensors orthogonal to g.
The remaining components W, , W_ of R constitute what is effectively the

Weyl tensor, and is conformally invariant in the following sense. If the metric g

is replaced by § = e’g, where f is some smooth function, then the modified
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metric § has W. = e W, . Moreover, there exist local coordinates z!, ..., &*
relative to which g = e /2, da' ® da? if and only if W, = W_ = 0. By analogy to
(6.3) we have

Hom (4%, A%) = [S?V,1®[S*V, =[SV, ]®[S*V.]OR.

The traceless self-adjoint endomorphisms of A% generate the space [S*V, ],
and it is this that contains the semi Weyl tensor W, . The spinor description of
this tensor was exploited in [16].

The following result appears in [19], albeit in a different guise.

Lemma 2. If J is an orthogonal complex structure compatible with the
orientation, then W, has mo component in the space Hom (A%Z, A%0) =
= A2, 0 ® A2, 0.

Proof. This follows immediately from (5.1) and the remarks in the para-
graph after the proof of Lemma 1. To shed more light on it, consider the
curvature

R, eHom(V,,V,)®(RTiM),

of the spin bundle with fibre V', , which is associated to R by means of the natu-
ral inclusion (A% ), <s Hom (V,, V, ) and may be identified with the first column
of the 2 X 2 block matrix in Proposition 2. Formula (2.1) becomes Vv = v$ + ¥a,
and R, (v) equals the skew-symmetric part of V2(v) which is

VoA¢+vdé +ViNAa+Dde=vdp —aNAa)+ (da+ 2a A\ ¢).

The image of the (0, 2)-form 7 e (A% ), under R is proportional to de + 2a A ¢,
where « has type (1, 0) relative to J. Thus the component of type (2, 0) of R(vv),
or equivalently of W, (¥0), equals zero.

The curvature condition of Lemma 2 imposes two real conditions on W, . If
M admits at least three independent complex structures in a neighbourhood of a
point m e M then W, (m) = 0. An oriented 4-manifold is called anti-self-dual or
half conformally flat if W, is identically zero. The powerful integrability theo-
rem of [3] implies that, conversely, if M is anti-self-dual then there exist infini-
tely many orthogonal complex structures compatible with the orientation in a
neighbourhood of any point of M. This characterization of anti-self-duality em-
phasizes that it is a conformally-invariant notion, as a complex structure re-
mains orthogonal when the metric is multiplied by a positive function.
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The manifolds of type a and b above are very special examples with W,
everywhere zero. The remarks at the end of section 2 furnish another important
class, namely complex surfaces admitting a Kéhler metric whose scalar curvatu-
re s vanishes. Separately the conditions VJ = 0 and s = 0 are not conformally in-
variant although their combination is. The theory of these scalar-flat Kdihler
surfaces has been recently developed extensively by LeBrun and Singer [14].

Finally, suppose that M is an oriented Riemannian manifold for which (at
least on some open set) W, is nowhere zero. As a real element of S*V,. the ten-
sor W, may be viewed at each point as a quartic polynomial and its roots deter-
mine four sections {(v), (B), (v'), (v") of the bundle with fibre P(V, ) associated to
almost eomplex structures J, —J, J', —J' relative to each of which R satisfies
the condition in Lemma 2, It is an interesting problem to classify classes of me-
trics in terms of properties of these almost complex structures. In particular, let
us say that W, is degenerate if the pairs =J, =J' coincide; this oceurs if and
only if the self-adjoint endomorphism of A% determined by W, has two coinci-
dent eigenvalues at each point. Such manifolds include the conformally Kihler
surfaces studied by Derdzifiski [6], and also the example Y above.
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