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SYLVESTRE GALLOT (*)

About M. Gromov’s conjectures

on minimal volume and minimal entropy (**)

1 - Statement of the problems

In this paper M is a compact smooth manifold whose dimension, denoted n,
is supposed to be at least 2.

a Rigidity of flow conjugacy and isospectral problems

To each compact riemannian manifold (M, g) (viewed as the configuration
space of mechanics), one associates the dynamical system given by the corre-
sponding unit tangent bundle

U,(M) = {v:veTM and g(v, v) = 1}
and the geodesic flow 9¢,, which is given by
9¢:(w) = ¢, ()

where ¢, is the geodesic whose speed at time ¢ is ¢, (f) and wose initial data is
¢, (0) = v. So the geometry gives the dynamics.

We are interested in the inverse problem: does the knowledge of the dy-
namics (up to coniugaey) give the geometry (up to isometry)? The main problem
comes from the fact that, given two metrics g; and g, such that the total spaces
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of their unit tangent bundles are globally identical as sets and such that their
flows coincide, we cannot deduce from these assumptions that the unit tangent
fibrations are the same maps. (In other words, a flow conjugacy is a homeomor-
phism ¢ from the first unit tangent bundle U, (M) to the second one U, (M)
which satisfies

“hop=pond.

The problem is then to decide if such a flow conjugacy is the differential of some
diffeomorphism from M into itself (and then it satisfies a linearity condition on
each fiber).

Obviously, the knowledge of the dynamics gives some very strong informa-
tion about the global geometry. For instance, the time-periods of the periodic
movements are the geometric lengths of the periodic geodesics. We then define
the marked length spectrum as the application which associates to each homo-
topy class the corresponding time-period, ie. the length of the minimizing
geodesic in the class. When the sectional curvature of (M, g) is negative, the
marked length spectrum conversely gives all the time-periods. We also define
the non-marked length spectrum as the image set of this application. A theorem
of Y. Colin de Verdiere [9] proves that the spectrum of the Laplace-operator of
(M, ¢) gives the non-marked length spectrum when the sectional curvature is
supposed to be negative.

To be more precise we are concerned with the three following conjec-
tures:

Q.. Does the existence of a C* flow conjugacy imply that the corresponding
metrics are isometric? What minimal value of k must be assumed?

Q.. If two metrics have the same marked length spectrum, are they
isometric?

Qs If the two Laplace operators corresponding to the two metrics have the
same spectra, are the two metrics isometric?

Conjectures Q; and Q, are obviously false in general; counterexamples are
given by Zoll's manifolds whose geodesies are all periodic with same length (see
[4]). For this reason, and also because ergodic theory only applies in this case,
one usually assumes the curvature to be strictly negative. Under this assump-
tions, U. Hamenstiidt [17] proved that two metrics which have the same
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marked length spectrum have C%conjugate flows, so conjectures Q; (for a C°
flow conjugacy) and Q, are equivalent.

In dimension 2, C. B. Croke [10] and J. P. Otal [22] proved simultaneously
that conjectures Q; and Q, are true if the curvatures are assumed to be strictly
negative. This result was generalized to the case where the curvature is as-
sumed to be nonpositive by C. B. Croke, A. Fathi and J. Feldman [11].

In higher dimensions, conjectures Q; and Q, remain unproved, except if one
assumes either that the two flows come from two conformally equivalent met-
rics (A. Katok [19]) or that one of the two manifolds is of the type M = S x N
endowed with the product metric (in fact C. B. Croke and B. Kleiner ([12])
proved this in the more general case where there exists a parallel vector field).
One of the main problems about these conjectures (see for instance [12]) is the
following.

Q,. On a given compact manifold M, let g be any metric whose geodesic flow
is conjugate to that of a locally symmetric metric gy. Is g isometric to gy?

We are proving this conjecture here when g, is supposed to be hyperbolic
(i.e. with constant sectional curvature equal to — 1) and when g lies in an expli-
cit C%* neighbourhood ¢ of g.

Conjecture Qs is false in general. Many examples of compact Riemannian
manifolds whose Laplace operators have the same spectra and which are not
isometric have been given since the first ones, due to J. Milnor (cf. [3]). For our
purpose, let us underline that two hyperbolic metrics on the same surface may
be isospectral while not isometric (M. F. Vigneras) and that, in general dimen-
sion, there exist one-parameter families of metries which are all isospectral
while not isometric (C. Gordon and Wilson). However there are no such exam-
ples with negative curvature operator: in fact, V. Guillemin and D. Kazhdan
proved that such C* one-parameter families do not exist if the initial metric is
assumed to be hyperbolic ([16]). Generalizations of this result where then given
when the curvatures of the metrics of the family are assumed to be pinched (V.
Guillemin and D. Kazhdan [16]) and when their curvature operator is negative
(M. Min Oo [21]). Let us remark that this does not prove the non-existence of
isospectral sequences converging to a hyperbolic metric; so it is a natural ques-
tion to decide if, for any hyperbolic metric, there exists a whole neighbourhood
(if possible for the C°-topology, and if possible explicit) containing no metric
isospectral to the hyperbolic one (except the isometric ones). An answer to this
question will come as a consequence of our method.
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In fact, these results are by-products of a stronger result which consists in
giving a positive answer, in a neighbourhood & of any given hyperbolic metrie,
to M. Gromov’s minimal entropy conjecture (see [14], p. 58).

b Minimal entropy conjecture
We are interested in fact by two notions of entropy:

A geometric one, the volume entropy h,,, which is defined as

hoot (M, ) = R]i_I)l’lw R~ Log Vol (B'(z, R))

where the geodesic ball B'(x, R) is taken in the Riemannian universal covering
(M’', g') of (M, g), endowed with the corresponding distance (by the compact-
ness of M, the limit exists and does not depend on the particular choice of the
center ). If (M, g;) is hyperbolic, the volume of the corresponding balls
B'(x, R) is computable and gives

(LD R (M, go) =m — 1.

A dynamical one, the topological entropy hy,,, whose definition is the follow-
ing. Let us consider any metric 4 on U, (M) (as the one induced by g) whose as-
sociated distance is called d and let us call (¢, T)-net any finite set {v; };; in
U, (M), satisfying the condition '

For every v in U,(M), there exists some iel which satisfies
d¢; ) 2¢,(v;)) < & for every t in [0, T].

Let us call 7 (T, ) the minimal number of elements of a (g, T)-net; the topo-
logical entropy is defined as

huop (°¢) = lim Lim Sup (T ~! Log (/(T, ¢))).
£ T w

By the compactness of M the limit does not depend on the particular choice
of the metrie k, but only on the flow 9¢. Roughly speaking, it gives an estimate
of the asymptotic number of informations which are necessary to approximate
any movement up to a given precision. The relations between these two notions
of entropy were given by Dinaburg and Manning (see [20]) who proved the
following '
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Proposition 1 In general, h,y, is less than or equal to hy, . If moreover the
sectional curvature of (M, g) is nonpositive, then they are equal.

One wants to consider these two entropies as functionals on the space N, of
all metrics on a given manifold M. As the entropies are not invariant under the
trivial homothetic changes of the metric (they are in fact homogeneous of degree
—1), we must either rescale the entropy by considering the homogeneous
functionals :

g by ()" Vol (g) and g = hyop (9)" Vol (g)

(where n is the dimension of M) or replace N, by its quotient by homotheties
identified with Ry, (go) = {g: Vol(g) = Vol(go)}, where g, is a fixed reference
metric.

We are now able to recall the two versions of the minimal entropy
conjecture:

Gromov’s minimal entropy conjecture ([14], p. 58). Let M be a man-
ifold which admits a hyperbolic metric gy, then the volume entropy (defined on
Ry (go)) attains its minimum at gy. If yes, in dimension at least 3, is it the
unique minimum (up to isometries)?

Another weaker version of this conjecture was previously formulated, that
is:

Katok’s minimal entropy conjecture. Let M be a manifold which ad-
mits a hyperbolic metric gy, then the topological entropy (defined on Ry (go) at-
tains its minimum at go. If yes, in dimension ot least 3, is it the unique mini-
mum (up to isometries)?

From Proposition 1, it is obvious that Gromov’s minimal entropy conjecture
would imply Katok’s minimal entropy conjecture.

Solving one of these two conjectures and proving the uniqueness of the mini-
mum (up to isometries) would immediately prove conjectures Q, Q,, and Q,
when one ‘of the two metrics is hyperbolic. In fact, it would prove that, if a
metric g is such that

VOI(!]) = VOl (gO) and h’top(M’ g) = htop(Ma gO):

then ¢ is isometric to g,.



72 S. GALLOT [6]

In order to conclude, we only have to notice that the volume and the entropy
are dynamical invariants (i.e. invariant by flow conjugacy). This is, by defini-
tion, obvious for the topological entropy; moreover Margulis (see [8]) proved
that, when the sectional curvature of (M, g) is strictly negative, the topological
entropy only depends on the asymptotic behaviour of the non-marked length
spectrum.

The invariance of the volume by C'-conjugacy has been proved by C. B.
Croke and B. Kleiner [12], the invariance by C%conjugacy when the curvature
is negative is announced by U. Hamenstddt [18]; this last result proves (by [17])
that the volume only depends on the marked length spectrum in this case.

2 - Some results

a Gromov’s approach (see [13])

The first attempt in order to solve Gromov’s minimal entropy conjecture is
due to M. Gromov himself ([13], p. 245) who proved that k., (g)" Vol(g) is
bounded from below by a topological invariant, the so-called simplicial volume,
which is defined as follows.

Let us call [M] the fundamental class of the manifold M. As there are several
manners of representing. this class as a linear span X;7;- o; of simplices with real
coefficients 7;, one defines the simplicial volume SimplVol(M) as the lower
bound of X;|r;| for all the choices of a chain ¥;7;-o; representing [M].

Using an argument of Thurston, M. Gromov proved that, in the above defi-
nition, the simplices may be chosen as ideal regular totally geodesic hyperbolic
simplices (i.e. simplices which are limits of simplices whose vertices go to infini-
ty, whose edges all have the same length and whose k-dimensional faces are to-
tally geodesic) when the manifold admits a hyperbolic metric.

This gave him, in this case, a computation of the value of the simplicial
volume in terms of the volume of the hyperbolic metric (cf. [13], p. 219), this
computation is however theoretical, because one doesn’t know what is the vol-
ume of such simplices in dimension greater than 3). In this case, Gromov’s pre-
vious inequality may be written

Propositon 2 (from M. Gromov [13], p. 245 and 219). Let M be a compact
mamnifold which admits a hyperbolic metric gy, then any other metric g
satisfies

hy (9)" Vol(g) = Cn) - hyy (go)" Vol(gy).
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Unfortunately, the constant C(n) is far from its conjectured optimal value
which, by Gromov’s minimal entropy conjecture, is 1. This is the reason why
M. Gromov asked if it was possible to establish a similar inequality where the
simplicial volume would be replaced by another topological invariant whose
computation in terms of A,y (ge)"” Vol(ge) would lead to a sharp inequality.

b The present approach (for complete proofs, see [6] and [7])

We partially answered M. Gromov’s question by defining a new topological
invariant, the spherical volume, as follows.

Let us consider the universal covering M' of the manifold M and the funda-
mental group I" of M. Let us choose a Hilbert space H, on which I' acts isometri-
cally, and call S its unit sphere.

Considering the set E of all the immersions ¢ from M’ to S which are equi-
variant under the two actions of I"'on M’ and S (i.e. yo¢ = ¢oy), we call g, the
metric defined on M by pull-back of the canonical metric of H (the equivariance
implies that the metric g, is I-invariant on M’ and is then defined on M).

These metrics g, define a subset of the set Ry, of the riemannian metries on
M and we are going to compare the minimal value of a riemannian functional on
Ry, (eventually rescaled) to its minimal value on the subset whose elements are
the metries g..

For instance, let H be the Hilbert space LZ(M') endowed with the regular
action of I': (y, f) = foy~! (the Hilbert structure does not depend on the parti-
cular choice of the measure of M, provided that this measure is Iinvariant and
absolutely continuous with respect to the Lebesgue measure), we get the fol-
lowing examples

Example 1. For every positive real value c, let us call ¢, (x) the function
from M' to R defined by

g, (@) y — exp(— -;—d(x, y)

where d is the distance associated to g. Integrating by parts, one obtains that
4, (x) is an element of L2(M') iff ¢ is greater than A,y (g).

Defining ¢,(x) as the radial projection of ¢, (x) onto the unit sphere S of
L2(M"), one obtains an equivariant immersion. From the fact that the norm of
the gradient (with respect to g) of the function x — d(x, ¥) is equal to 1 and from



74 S. GALLOT [8]

Pythagoras theorem, we deduce, for every u € T, M' and every g-orthonormal
basis {e;} of T.M

C2

@D ldge @)]le < o, w)® 3 (ldge(eplle)? < &
2 1<sisn 4

Example 2. Let us define »,(x) as the function from M’ to R defined by

n@): y— k(t, @, y)°

where k(t, x, -) is the heat kernel corresponding to a given metric g, i.e. the so-
lution of the heat equation with initial data &,.

As this kernel is invariant by the diagonal action of the elements of I" (which
are isometries) and as the time-diffusion preserves its integral, »; is an equivari-
ant application from M ' into S. As the derivatives of k(t, x, y) with respect to the
variable x also satisfy the heat equation with respect to y, it is easy to prove that
some of these derivatives are not trivial and that », is an immersion (see [2] for a
development of this idea).

N.B.: The assumption that the applications ¢ are immersions is not impor-
tant. It has been assumed only to simplify the explanations.

The efficiency of this approach is proved by the

Lemma 1. For any metric g on M, and for any positive e, there exist a
I-equivariant immersion ¢ of M' in the unit sphere of L2(M') which satis-

fies

@ 9 < L) + g

(i) Trace, (g,) < (—;—(hwl( 9+ OF.

Proof. Take ¢ =¢,, where ¢, is given by Example 1, and choose
¢ = Ry (g) + e. The lemma then comes from (2.1).

This lemma means that, when the entropy is not trivial, the minimal value of
any riemannian functional on N, (rescaled by the entropy) is bounded from
below in terms of its minimal value on the subset whose elements are the me-
trics g..
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Unfortunately, a factor # is missing in the inequality (i) in order to get a sharp
inequality. On the contrary, the inequality (i) is sharp and the equality

2
Trace,(9:) = %— for ¢ = &, is attained for any compact locally homogeneous ma-

nifold. This and the positivity of the above crucial examples suggest the

Definitions 1.

(i) For every I-equivariant immersion ¢ of M’ into the unit sphere of
L2(M') and any metric g on M, the LP-energy E,(g, ¢) of ¢ is

E,(9,¢) = J'Traceg(g’é)E dy, = j |dg |, ()P dv,
M M

where |dg|, @)% =2 (ldg(e;)ll,2)* and {e; }y<i<q is a g-orthonormal basis of
Tg; M. Isisn

(i) The spherical energy E,(g) of a metric g is the infimum of £, (g, ¢) with
respect to ¢ (where ¢ is any I-equivariant immersion of M " into the intersection
of the unit sphere of L2(M') with the cone of positive functions). The spherical
energy is a conformal invariant.

(iii) The spherical volume of a manifold M is the infimum of the volume of g,
with respect to ¢ (where ¢ is any I-invariant immersion of M into the intersec-
tion of the unit sphere of L2 (M) with the cone of positive functions). It is also the

infimum of En(g)%_? with respect to g.

From the inequality (ii) of Lemma 1, we deduce the analogous, for the spheri-
cal volume, of M. Gromov’s inequality for the simplicial volume (see Section
2 a).

Proposition 3 ([6]). Let M be a compact manifold, then any metric g
satisfies

(—;—hwl(g))“ Vol(g) = E,(g9) = n® -spherical volume of M.

The main problem is then to compute the spherical volume when M is a com-
pact manifold which admits a hyperbolic metric g,. This computation has been
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performed for surfaces (see [6]) and gives
(%hwl( o))" Vol(go) = E,,(go) = n* - spherical volume of M.
So it proves the

Proposition 4 ([6], [7]). Let M be a compact surface (i.e. n = 2) with genus
greater than 1, then hyperbolic metrics are the only minima of the functional
9 — Ry (@) Vol(g) defined on the set of Riemannian metrics on M.

By Proposition 1, this implies a previous theorem of A. Katok which proved
the same proposition for the topological entropy.

The computation of the spherical volume remains an open problem in higher
dimensions. However, we proved (see also Proposition 16) that, for every locally
symmetric space (M, gy) of noncompact type and of any rank, one has

@2) (5 Pt (903" Vol (g0) = B, (gn)
the following proposition can be deduced from this and from Proposition 3.

Proposition 5 ([6], [7]). Let M be a manifold which admits a locally sym-
metric metric gy of noncompact type and of any rank, then g, is the unique mini-
mum of the functional g — h,,(g)" Vol (g) defined on the set of Riemannian me-
trics on M which are conformal to g,.

By Proposition 1, this proposition implies a previous theorem of A. Katok,
which proved the same proposition for the topological entropy and for rank one
symmetric spaces. The extension to symmetric spaces admitting tangent planes
with curvature zero means that our method is not any more limited by the usual
limits inherent to the use of dynamical systems, which needs a negativity as-
sumption for the curvature.

The main difficulty is then to compare the entropies of gy and g when g lies in
a different conformal class. We solved this difficulty when g is contained in a
C® =-tubular neighbourhood of the conformal class of g, (a subset of R, is called
tubular if, a soon as it contains a metric, it contains its conformal class). We then
get the

Proposition 6 ([7]). Let M be o compact manifold whose dimension is at
least 3 and which admits a hyperbolic metric gy. For every « €10, 1[ there exists
an explicit C®*-tubular neighbourhood § of the conformal class of g, such
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that g, s the unique (up to isometries) minimum of the functional
g = hy (@)" Vol(g) defined on 4.

By (2.2) and the Proposition 3, this proposition is a corollary of the

Proposition 7 ([7D. Under the same assumptions, g, is the unique (up to
conformal equivalence) minimum of the functional g — E,(g) defined on 4.

We shall give later (see Section 3) a proof of this proposition, which is the main
one. Let us first precisely establish its corollaries as announced in Section 1.

¢ Applications to rigidity problems Q;, Q, Qsz, Qq

Let ¢ still denote the tubular neighbourhood of the conformal class of g, de-
fined above. From the equality case in Proposition 6, we deduce the

Proposition 8 ([7]). Let M be a compact manifold which admits a hyper-
bolic metric denoted gy. Then, for any metric g which satisfies

Vol (g) = Vol (gy) and Riop (M, 9) = o (M, go) 5
one has
() if dim M = 2, then g is hyperbolic
(ii) if dim M = 3 and if g € 9, then g is isometric to go.
Proof. By Propositions 6 and 1, we get
oy (M, 9) Z byt (M, ) Z hyo (M, go) = hoy (M, go) -

As the extreme left and right hand sides of this sequence of inequalities are equal,
all these inequalities are in fact equalities and we deduce

Pooi (9)" VO1(g) = hyai (go)" Vol(go).

When dim M =38, the uniqueness of the minimum of the functional
9 — hyo (9)" Vol (9) (ef. Proposition 6) ends the proof. When dim M = 2, we con-
clude by the Proposition 4.

Remark. Let us notice that the geometry of a hyperbolic metric is, by
Proposition 8, characterized by the values of only 2 real parameters and that the
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set 4 is not smaller than the set of negatively curved metrics on M, for it contains
metrics whose curvature takes the two signs.

From Proposition 8 and the fact that the volume and the topological entropy
are invariant by C'-conjugacy (see the end of Section 1), we deduce the

Proposition 9 ([7]). Let M be a compact manifold which admits a hyper-
bolic metric denoted g,. Then any metric g € 9, whose geodesic flow is C-conju-
gate to the one of gy, is isometric to gq.

Let us now assume that g has strictly negative sectional curvature. Then the
volume and the topological entropy only depend on the marked length spectrum
(see the end of Section 1). From this and Proposition 8, we get the

Proposition 10 ([7]). Let M be a compact manifold which admits a hyper-
bolic metric denoted gy. Then any negatively curved metric g € &, which has the
same marked length spectrum, is isometric to g,.

It is otherwise a classical result, by Minakshisundaram-Pleijel’s asymptotic
formula (see for instance [3], p. 216), that the volume only depends on the spee-
trum of the Laplace operator. By Margulis’ estimate (see the end of Section 1),
the topological entropy only depends on the non-marked length spectrum; so, by
Colin de Verdiére’s result (see the beginning of Section 1), it only depends on the
spectrum of the Laplace operator. Applying Proposition 8, we get the

Proposition 11 ([7]). Let M be a compact manifold which admits a hyper-
bolic metric denoted gy. Then, for any negatively curved metric g whose Laplace
operator has the same spectrum as the one of gy, one has

(D) of dim M = 2, then g is hyperbolic
(i) if dim M = 3 and if g € 4, then g is isometric to g,.

In Propositions 8, 9, 10 and 11, the results concerning dimension 2 were al-
ready known; we mention them for the sake of completeness.
d Application to Gromov’s conjecture on minimal volume

Trying to get a generalization to higher dimensions of the Gauss-Bonnet’s for-
mula for surfaces is the origin of many works in Riemannian Geometry, in parti-
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cular Gromov’s work [13]. M. Gromov noticed that a weaker version of Gauss-
Bonnet’s formula, and of its generalization in the even dimensional case by
Chern-Weil-Avez formulas, is the following: as soon as some characteristic class
of the manifold is not trivial, then the function g — Vol (g) is bounded from below
on the set of metrics g whose sectional curvature s, is bounded. So M. Gromov de-
fined the minimal volume of a manifold as

Min Vol (M) = Inf{Vol (M, g): g metric on M such that — 1<, <1}.

M. Gromov then got an analogous to this weaker version of Gauss-Bonnet and
Chern-Weil-Avez formulas, which is still efficient in the odd dimensional case,
that is the

Proposition 12 ([13], p. 220). On any compact manifold M
Min Vol (M) = C(n)- Simpl Vol (M)

where C(n) is an explicit universal constant which only depends on the
dimension.

Another stronger consequence of Gauss-Bonnet’s formula is that, on any sur-
face which admits a hyperbolic metric, the minimal volume (on the set of metrics
g whose sectional curvature satisfies —1 < g, < 1) is attained for hyperbolic me-
trics. So M. Gromov conjectured that this is also true in higher dimension, that is
why this is called Gromov’s conjecture on minimal volume.

Notice that this conjecture is open in any dimension greater than 2 and cannot
be deduced from Chern-Weil-Avez formulas in higher even dimensions or from
Gromov’s Proposition 12 in other dimensions (for these formulas don't give sharp
estimates for the minimal volume). This eonjecture was qualified as «optimistie»
in [13] (p. 221, after inequality (*)) and M. Gromov asked (oral communication) if
it was possible to get first a local version of it, i.e. to prove that a hyperbolic met-
rie is a local minimum of the functional g — Vol (g) on the set of metries g whose
sectional curvature satisfies —1 < g, < 1. To this problem, we get the following
answer

Proposition 18 ([7]). Let M be a compact manifold whose dimension n is
at least 3 and which admits a hyperbolic metric g,. Let & be the C**tubular
netghbourhood of the conformal class of g, mentioned above. Then

ged and Ricci, = —(n —1)g = Vol(M, g) = Vol(M, go).

The equality characterizes gy up to tsometries.
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Let us recall that the Ricci curvature tensor Ricci, is the 2-tensor defined in
each point & from the curvature 4-tensor R, by tracing one time, ie.

Ricei, X, Y)= 2 R,(X,e;, 7, ¢)
lsisn
where {e; }1 << is any orthonormal basis of 7', M and where X and Y are vectors
of T, M. The assumption Ricei, = — (n — 1)g means that every eigenvalue of
Ricei, is greater than — (m — 1). Notice that every hyperbolic metric satisfies
Ricciy = —(n — 1) g.

Remark to Proposition 13. M. Ville ([23]) previously proved the follow-
ing result by means of the Chern-Weil-Avez formula.

Let M be a compact manifold whose dimension n is even and which admits a
hyperbolic metric g,. Let 3, be the C®neighbourhood of g, defined by
—1—-esg;< —1+ e Then there exists some positive  such that

ged, and o, —1 = Vol(M, g) = Vol (M, g,).

Proof of Proposition 138. As ged we get, by Proposition 6
h’vol(g)n Vol (g) = hvol(go )n Vol (90) .

By R. L. Bishop’s comparison theorem, the assumption Ricei, = —(n — 1)g
implies that the volume of the balls of radius R in the Riemannian universal co-
vering of (M, g) is smaller than the volume of the ball of radius R in the hyperbolic
space. By definition of the volume entropy (see Section 1b), this implies

hvol(M, g) s hvol(My go)
So we get Vol(g) = Vol(g,).

Let us notice that the assumption Ricei, = — (n — 1)g is much weaker than
the assumption —1 < g, < 1 of the initial question. It is a natural question to try
to improve Proposition 18 by replacing the assumption Ricci, = — (n — 1)g by
Scal, = —n(n — 1) = Scal,,, where the scalar curvature Scal, is the scalar func-
tion obtained by tracing the Riceci curvature tensor Ricci,. In this direction, we
get the
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Proposition 14 ([6]). Let M be a compact manifold whose dimension is at
least 3 and which admits a metric g, which satisfies at least one of the following
assumptions

() go is Einstein with strictly negative sectional curvature

(i) (M, go) is a quotient of a symmetric non compact irreducible space of any
rank (ie. its sectional curvature is monm positive but may vanish).

Then there exists a C®-tubular neighbourhood 4" of the conformal class of go
such that

ged and Scal, = Scal, = Vol(M, g) = Vol (M, go).

The equality characterizes gy up to tsometries.

Trying to get an integral version of this result, which would be more similar to
Gauss-Bonnet formula, let us consider the Einstein-like functional S, (g), where
S,(g) is defined by

Sp(9) = [ |Scaly | du,
M

and where Scal; (x) = Inf(Scal, (x), 0). We get the following

Proposition 15 ([6]). Let M be a compact manifold whose dimension is at
least 3 and which admits a metric g,, which satisfies at least one of the following
assumptions

() go is Einstein with strictly negative sectional curvature

() (M, go) is a quotient of a mon compact irreducible space of any
rank.

Then there exists a C>-tubular neighbourhood &' of the conformal class of go
such that g is the unique (up to isometries) minimum of the functional g — S, (9)
defined on &'.

Remarks.

1 - Proposition 15 is stronger than Proposition 14 because the inequality
Scal, = Scal,, implies that

S, (g) < Vol (g)(— Seal,,)*

and because, in this last inequality, the equality is attained when g = g,.
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2 - This proposition is related to another conjecture of M. Gromov ([15], p.
117): is S, (g) bounded from below in terms of the simplicial volume of M?

3 - The fact that the minimum is strict in Proposition 15 implies the following
rigidity theorem which characterizes the hyperbolic metric by prescribing only
one real parameter:

ged' and S,(g) =8, (gy) => g isometric to g,.

In fact, a stronger version of Proposition 15 is the following: if d denotes the
H'-distance between classes of homothetically equivalent metrics, we have

Sn(g) - Sn(g()) = Cd(g: 90)2,

where C is a constant which only depends on g, (cf. [6]).

About the proofs. The proof of Propositions 14 and 15 are different from
the proof of Proposition 13. That is the reason why we shall say very little about
them here (see [6] for complete proofs).

We first reduce the problem to the proof of the fact that g, is a strict minimum
of S;, when this functional is restricted to an infinite-dimensional submanifold X
of the space My, of all metries on M, which is a slice transverse to the classes of
conformally equivalent metrics and on which S; =S, (see [5]).

We first have to prove (by algebraic considerations on the associated opera-
tor) that the quotient

2
Q) = <—§t—2—<sl (go + t- 1))y = o |2

is bounded from below by a positive constant, when 4 lies in the Hilbert space
T,,(X) tangent to X at g, and that the negative values of Q(k) are bounded when &
is orthogonal to Ty ().

We then have to control the two perturbations of Q(h) induced first by the

2
perturbation of the operator associated to the quadratic form (—iqt;(Sl (go + t-h)),
which happens when we replace the second derivative at g, by the second deriva-

tive at g, and second by the simultaneous perturbation of the tangent space
Ty, &) In T, (X). From its positivity for ¢{=0, we then deduce that

2
a(—iﬁSl((l—t)g0+t-g) is positive for every te[0,1], provided that ¢ lies in 5.

One of the main problems comes from the fact that we are in a critical situ-
ation for the choice of the Hilbert norm: it must be both weaker than the H'-norm
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in order that Q(k) is bounded from below by a positive constant and stronger than
the H-norm in order that Q(k) is continuous with respect to the above
perturbations.

3 - A rough sketch of the proof

The last proposition to prove is Proposition 7. Using Definitions 1, let us no-
tice that a Cauchy-Schwarz’s argument implies thle convexity of ¢ — &, (go, ¢)
with respect to the variations ¢ — ((1 — ) ¢ + tg’ﬁ)?. A consequence is that any
critical point ¢, is a minimum and realizes the spherical energy, ie.

E.(g90) = £, (g0, %0

We shall first identify what is this eritieal point and then show that, for every
metric g and any Iequivariant immersion ¢ of M’ into the unit sphere of L2 (M),
we have

En(ga ¢) = En(gm ¢0)

There are some similitudes between this problem and the more classical study
of harmonic mappings. Let us however notice that, in the classical problem, the
metric g is fixed and one minimizes with respect to ¢. Here we minimize with re-
spect to the couple of variables (g, ¢).

a Identification of the critical point

In this section, the Riemannian universal covering of (M, g,) is denoted by
(M', go), viewed as the Euclidean unit ball B® endowed with the hyperbolic me-
tric. Its ideal boundary oM’ is then identified with the euclidean unit sphere S
endowed with the usual euclidean probability measure db. Let us call O a fixed
point of M, which we fix as the center of B". All over this section, any applica-
tion ¢ from M’ to L2(@M ') will be identified with the function on M' X M’ de-
fined by #(x, b) = ¢(x)(b).

The Poisson kernel P is a function on M' X @M’ defined as follows: for any
bedM', x — P(x, b) is the unique harmonic function whose data on 3M ' is the
Dirac measure 3.

Let us define the application ¢, from M’ into L2(8M") by

(3.1) $0(@)(b) = ¢ (x, b) = P, b)* .
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As P(x, b) db is the measure which is the limit (when ¢ goes to infinity) of the
measures k; (¢, %, ') dv, [where ky (¢, x, -) is the heat kernel corresponding to the
metric g, (i.e. the solution of the heat equation with initial data ¢&,) and dv, the
canonical Riemannian measure associated to gql, ¢o may be viewed as the limit of
the immersions 7, of the Example 2, where the metric g is replaced by go.

More generally, for any I'equivariant immersion of /' into the unit sphere of
L2(M’), the limit in this sense of the heat-diffusion process with initial data
#(x, b)* when time goes to infinity is the application ¢., from M’ to the unit sphere
of L2(OM') defined by

(3.2) $a (@, OF = [ $(; 2P Pz, ) duy(2).
g

If we define the action of I" on L2(dM') by the formula

GF)B) = for™ ' (B)- P(HO), b)*

the action on L2(8M ") is then the limit of the action on L2(M ') and ¢., is Iequi-
variant (see [7] Proposition 1.1).

By (8.2) and the Cauchy-Schwarz’s inequality, the LP-energy decreases when
replacing ¢ by 4. . This is the reason why, instead of looking for the infimum of
E, (g, ¢) with respect to ¢ (where ¢ is any I-equivariant immersion of M/’ into the
unit sphere of L2(M ")), we shall look for the infimum of E, (g, ¢) with respect to ¢
(where ¢ is any I“equivariant immersion of M' into the unit sphere of
L20M")).

It would have been more rigourous and more simple from a technical point of
view (but less natural from an intuitive point of view) to start from the beginning
defining the spherical volume and energy from I'equivariant immersions ¢ of M’
into the unit sphere of LZ(dM'), as it is done in [7]. We wanted here to explain
how this idea comes naturally in the theory.

The immersion ¢, has the following properties

Proposition 16.

(i) ¢o is homothetic and g = ihwl(go Yo

(i) ¢q s minimal, so it is a critical point (and moreover a minimum) of the
function ¢ — E,(g, ¢).

Remark. These properties can easily be established (by the same proof) on
rank-one locally symmetric spaces, so they prove the formula (2.2) and then the
Proposition 5 in these cases.
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Proofof (i). We refer to [1] for the basic properties of the Busemann func-
tion which are used here. In what follows, all the derivatives are considered with
respect to the first variable x.

On a rank-one locally symmetric space, the Poisson kernel may be writ-
ten

(8.3) P(x, b) = exp (— hyy (go) Blx, b))
where 5 is the Busemann function defined by

34) Bz, b) = g}lﬂ (d(w, y) — d(O, ¥))

where d is the distance associated to g,.

If one identifies the hyperbolic unit tangent bundle UM’ with B™ X S"~!, the
unit vector — VB is identified with (x, b) and the Lebesgue measure du of the
fiber UM'(x) at the point z coincides with P(x, b) db = ¢, (x, b)*db. So a direct
computation gives, from formulas (3.1) and (3.3),

9%, X) = Thu(g0 | dxB@, b o(e, b?db
oM’

1

Z,;Z"h’vol(go )290 (X, X) .

TGl [ 9o, w)du =
UM’ ()

W b

Proof of (ii). Let us call 4 the Laplace operator associated to the metric
9s,- By (i), the go-harmonicity of ¢, (-, b)® implies its g, -harmonicity. Then, apply-
ing the Laplace operator and the differential only to the first variable x, we get
¢o4¢o = |dgo |?, where the norm | - | is the norm on (T, M)* defined by g,,. From
(3.4), the go-norm of dB is equal to 1, then, by (i), the square of its g.-norm is
equal to _——ﬂg—? As (3.3) implies that d¢y = — —2—h,,ol(g0) ¢q-dB, we have

vol \Y 0
Ago = ngy.

By Takahashi’s theorem (or more simply, by considering that the vector mean
curvature of the imbedding in L2 (8M '), equal to 4¢,, is orthogonal to the sphere),
we prove that ¢, is minimal (i.e. is a critical point of ¢ — Vol (g, )). As it is also ho-
mothetic, we deduce that it is a critical point of ¢ — E,,(g,, ¢) for any p. We have
already seen in the beginning of Section 3 that such a critical point is automatical-
ly a minimum.
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b The minimum property

Every metric can be written as g5 (X, Y)=g4e”(X), Y), where x—H, is a field of
symmetric endomorphisms of the tangent fiber. Defining ¥ as the set of all gy such
that the trace and the divergence of H are both trivial, we first prove that X is a local
slice, transversal to the classes of conformally equivalent metries (see [7]).

By Hélder’s inequality and the conformal invariance of £, , it is sufficient to
prove that (gg, ¢¢) is the minimum of (g, ¢) — E;(g, ¢) when g lies in X. Let us
make the change of variables

&, b = (1 + f(@, b)) ¢y (x, D).
As ¢(x) lies in the unit sphere of LZ(OM’), we have

[ fe, b P, bydb =0

aM’
at every point x.

For g = gy, a direct computation (using (3.1), (8.3) and (1.1)) gives the follo-
wing formula, where all derivatives are considered with respect to the first va-
riable x, where all integrals are considered with respect to the second variable b
and the measure db and where (X, Y) =g¢,(X, Y)

4(Trace, g, — Trace, g;,) = [ (e ™7 (VF), Vf) (L + /)" P
aM’
—2(n — 1) j (e H(VB), Vf)-P + (n — 1) j {(e=" = I(VB), VB)-(1 + f)-P.
M’ oM’

We then use the triviality of the trace and of the divergence of A and the fact
that the horocycles of (M', g¢) are totally ombilical (which gives the expression of
the Hessian of the function B) in an integration by parts (this computation is long
and technical and won'’t be done here, see [7]). This leads to

4By (gr, ) — Ea(go, $0)) = f j (e BV, VF)-(L +£)~1-Pdbdy,

MoaoM'

35 —2m—1) j j (le™® — I+ @n)~'(n — 1)- H(VB), Vf)- P db du,

MaM’

+(n - 1)2f j {le™# — I + HI(VB), VB)-(1 + f)- P dbdv,.

MaM’

When H is small enough with respect to the C%-norm, the properties of the ex-
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ponential funetion imply
2(le™# — I + HI(VB), VB) = ([ — «(H)] H(VB), [l — <(H)]1 H(VB)).
As e# — I+ (@2n)"'(n — 1)-H may be written
(n + 1)@n)"' I + O] — «(H)]H,

the right hand side of the formula (3.5) is, by the Cauchy-Schwarz’s inequality,

bounded from below (up to a factor (1 — 2% (n + 1D@n) 1)1 - ¢')) by the sum of
the two following positive quantities:

Q(¢)=j j(Vf, V) (L + )" Pdbdy, = (j J(Vf, Vfﬁpdbdvo)z Vol (g,) "

MoM' MaM'

T(gu, §) = 20— 12 [ [ (HOB), HOVB) b awy.

MaM’

We then get Ey(gy, ¢) = Es(gy, ¢9) which, by Hoélder’s inequality, implies
that B, (g, ¢) = E,,(gy, ¢o) for every g conformally equivalent to gy and ends the
proof.

¢ The minimum is strict

Let us suppose that, for some gy € X, we have Eo(gy) = E5(g,). It means that
there exists a sequence ¢, such that

Jim By (g, ¢) = Ex(go, d0)-

By the above inequalities, it implies that Q(¢,) and T(gy, ¢;) both go to zero. The
first fact implies that the measure ¢ (x, b)®db converges to a harmonic measure
(see [7]). By the uniqueness of the harmonic measure, we conclude that this limit
is

¢o (x, b)2db = P(x, b) db = Lebesgue measure of the fiber UM’ (x).
This implies that

2(n —1)* lim T(gy, ¢) = j j (H(VB), H(VB))P db du, ()

MaoM’

= [ | (Haw, Haw)dudoy @) = L [ 1P dvy @)
M

M UM'(z)
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As this limit is trivial, we have H = 0 and then gy = g,. Applying Holder's in-
equality and the fact that every metric ¢ which lies in a neighbourhood of g, is
conformally equivalent to some gy e X, we end the proof as in [7].
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