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PaoLo DE BARTOLOMEIS (%)

Principal bundles in action (**)

0 - Introduction

The notion of principal bundle represents a fundamental frame in contempo-
rary geometry. It provides both a unitary description and a deeper comprehen-
sion of a large class of phenomena, ranging from existence of further structures
on a differentiable manifold (Riemann, conformal, almost-complex ete.) to the
theory of connections in the modern approach to Differential Geometry.

The aim of this paper is to gather and develop the basic features and results
in the theory of principal bundles and connections on them: we hope in this way
to contribute to fill a gap in the litterature, which, in spite of the increasing role
played by principal bundles, seems to be quite reticent about general exposi-
tions on the subject and, therefore to provide a somehow useful tool.

The plan of the paper is the following:

Chapter 1 is devoted to the general theory of principal bundles. In Section 1
we define principal bundles, we describe some fundamental examples, proper-
ties and constructions, stressing the role of the group action. In Section 2 we ta-
ke care of associated fibre bundles and, in particular, of vector bundles, presen-
ting a principal bundles approach to canonical vector bundles constructions (dual
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bundle, subbundles, direct sum and tensor products, morphisms). Finally, in
Section 3 we consider the gauge group of a principal bundle.

The subject of Chapter 2 is the theory of connections. Section 4 provides the
basic features of the theory of connections, including several standard and non
standard definitions, examples and local explicit descriptions (e.g. (4.10)). In
Section 5 we describe pseudotensorial and tensorial forms and, by means of the
results achieved in Chapter 1, we consider the induced principal bundles view
point of vector bundles values forms. This includes various presentations of the
exterior covariant differential operator, curvature, horizontal/vertieal splitting
on associated bundles and basic geometric interpretations of covariant derivati-
ve. Section 6 recalls some of the results of the holonomy theory and Section 7 is
concerned with the behaviour of connections with respect to bundle morphisms
and some applications (e.g. generalized Codazzi-Mainardi equation (7.1), or re-
duction of connections). In Section 8 we introduce a scalar product on the space
of tensorial forms, we define Hodge’s * operator and covariant codifferential
operator, pointing out some of their fundamental properties, and we describe
the basic gauge-theoretic results in the theory of characteristic classes. Finally,
Section 9 enlights some of the special features of linear connections and Section
10 provides a short account of the theory of moduli spaces of connections.

Manifolds and maps between them will be understood to be C'*. 3M) will
denote the Lie algebra of C* vector fields of the manifold M. Let G be a Lie
group and & be its Lie algebra. Then

Ad(a): G- G is defined by Ad(a)g) = aga !
ad: G — Aut (&) is defined by ad(a) = (Ad(a)). [e]

ad: & - End(®) is defined by «8 = (ad).[e].

Chapter 1 - Principal Bundles

1 - Preliminaries

Let M be an n-dimensional smooth manifold and let G be a Lie group. Typi-
cally G will be a matrix group i.e. a subgroup of GL(m, R) as O(m), SO(m), S*,
Uk), SU(k) ete. G acts freely on the right on M X G in a trivial way

R,(®,9) = (@, 9)a=(x,ga).
This is the local model of a principal G-bundle over M.
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Definition 1. A principal G-bundle P = P(M, ) over M is a smooth ma-
nifold such that:
1 G acts freely on P on the right.
2 P/G =M and the canonical projection =: P— M is smooth.

3 P is locally trivial ie. there exists an open covering (U;);.; of M and dif-
feomorphisms @;: =~ 1(U;) — U; X G, i eI, such that:

a the diagram

@,
Tt—l(Ui)“‘i'}' Ui X G

(1.1) lr: d
9

is commutative
b @, is G-equivariant, ie. for all ue P, a e G
1.2) D, (ua) = 0;(w)a

or, equivalently, @; R, = R, o ?;.

Note that from 3a it follows that @; (=(w), ¢; @) for ¢;: =~ (U;) — G and the-
refore (1.2) amounts to ;(ua) = ¢;(u)a.

U= (U;, D;);; is called a bundle atlas and every @; is called a local triviali-
zation. G is called the structure group.

Example 1 (basic example). Let
P=LWM)= U L)
veM
where L(x) = {ordered basis of T, M}. Then G = GL(n, R) acts freely on the ri-

ght on L(M) in the following way:
If w={X", .., X,}eL@)cL(M) and o= (ay) € GL(n, R), then

wa ={Yy, ..., Y,} with Yj=k2 0y X, l1sjsmn.
-1

Equivalently, % can be interpreted as a linear isomorphism

w: R*—> T, M
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setting u(e;) = X;, 1 <j <n; then ua is just the composition

R" _a>Rn_7L_> T.M
in faet ua(ej) = u( E akjek) = kz aijk = 17]
k=1 F=1

It is clear that GL(n, R) acts transitively on L(x) and so
L(M)/GL(n, R) = M.

Let {X;, ..., X, } be a local frame in the neighbourhood U of the point x € M;
then we can define a bijection

@: =~ 1(U) — U X GL(n, R)
setting D(w) = (=(u), $(u))
where ¢(u) € GL(n, R) is completely determined by the relation
u = A{X; W), ..., X, =)} $(u).

Therefore 4 (u) is the matrix representing the identity map of T, M with re-
spect to the ordered pair of basis {u,{X; (=), ..., X, (z(w)}}. It is easy to
check that @ is GL{n, R)-equivariant and that L(}M) inherits through a collection
of such a @’s the structure of smooth manifold. Therefore L(M) is a principal
GL(n, R)-bundle, called the bundle of linear frames on M.

Examples 2.

a Given a connected (smooth) manifold M, its universal covering M is a
principal =, (M)-bundle M (where =, (M) acts on the right on M by deck
transformations).

b Let G be a Lie group and H a closed subgroup: then H acts on the right
on G by right multiplication; then G is a H-principal bundle over the analytic
manifold G/H.

¢ Consider §?"*1={zeC™*!||z| =1} and let S* act on S**! by com- -
plex multiplication. Clearly S¥**!/S' = P™(C). Let

Ukz{[zl)"';zm+1]EPm(C)|zk¢0} 1$k$m+1

then @k: TT_I(U]C)—% []kXS1
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defined by B, (2) = (=(2), TZ—"T)

k
is a Sl-equivariant diffeomorphism and thus the fibration $2**! 5 P™(C) is lo-
cally trivial and so S#"*! is a principal S'-bundle over P™(C).

d M X @G is obviously a principal G-bundle over M, called the trivial
bundle.

e Let P(M, G) be a principal bundle and let K ¢ M; then P\x ==~ (K) is a
principal G-bundle over K called the restriction to P to K.

f M is a principal {e}-bundle over itself!

Let P be a principal G-bundle over M and let x € M. P, = =" (x) is called the
fibre of P over x. If w € P,, then P, = {ua|a € G} ie. P, is the G-orbit of % and,
since G aets freely, P, is diffeomorphic to G. W, = T, P, = ker =, [u] is called the
vertical subspace of T, P.

The action of G on P induces a map o: & — 2C(P), which is an injection. More
precisely, o is defined as follows.

For every Xe &, u e P, c(X)(u) is the tangent vector at the point £ =0 to
the curve y(f) =wu exp (X). It is clear that «(X)(u) e W,.

X* = ¢(X) is called the fundamental vertical vector field corresponding to X.
We have also that, if t,: G—P. is defined by {,(a)=wua, then
X#(w) = () [e)X) and 7, = (t,): [e]: X X*(u) is an isomorphism between &
and W,.

More in general, if we identify & with the Lie algebra of left invariant vec-
tor fields on G, and so Xe® corresponds to Xed(G) such that
X(a).= (L) (X), then we have

(te)s [@)X(@)) = (b, 0 Lg) s [6)(X) = (te)s [€]X) = X* (ua)
and so X* = (t,): (X).
Note that, for P = L(M), given X e gl(n, R), we have X*(u) = uoX.

Proposition 1. Let P be o principal G-bundle over M; then
a X, Ye®, we have
(1.3) [X*, Y*1=[X, YI*

and so o1 & — IC(P) is an injective Lie algebra homomorphism
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b for every Xe® and every ae G we have

(1.4) olad(a "1)X) = (R, )y (o(X)) and so
(1.5) Tug = (Ra )* 0Ty © ad{a) .

Proof.

a We have

[X*, Y1 = [(t)s B0, () D] = () (X, YD) = (). (X, Y17) = [X, YI*.

b The first relation follows directly from the definition; then, just note
that

Tua X) = e(X)(ua) = (B,)4 (s (ad(@)@)m)(wa) = (B, )+ o 7y o ad(@)X) .

Definition 2. Let P be a principal G-bundle over M and let U c M. A sec-
tion of P over U is a map o: U— P such that moc=1idy.

We have the following

Proposition 2. P admits a section over U if and only if P is trivial
over U.

Proof. Assume o: U—P is a section. Define ¢: =z () —>UXG as
O(u) = (z(u), $(u)) where ¢: =~ (U) — G is uniquely determined by the relation
u = o(n(w) ¢ (w).

Since, for every a e G, we have
ua = o(@@)) pu) o = o(z(ua)) ua) = oz (ua)) @) a

it follows that (ua) = ¢(u)a and thus @ trivializes P over U.

Viceversa, if @: »~1(U) — U X @G trivializes P over U, the o(x) = 07 (2, ¢) is
a section of P over U.

Note also that

1.6) P 1(x, @) =)t
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Corollary 1. A principal bundle admits global sections if and only if it is
trivial.

Let P be a principal G-bundle over M and let U = (U;, @;);<; be a bundle
atlas for P with @; = (z, ¢;). If U;N Uy = 0, then for every ue = L U; N Uy,
a e (G we have

& (ua) g, (ua) ™ = g @) aa " g () = g (u) & ()

therefore ¢ (=(w)) = ¢; (u) ¢y (w)~! is a well defined function ¢;: U; N Up—G.

2| %
E.g. in Example 2¢, we have ¢, ([21, ..., 2, 41D = :zkllz] . The ¢ys are called
ALL

the transition functions of P with respect to U.
By definition we have {5 = {;, ) and

(1.7 (P; o)z, @) = (x, vy (@) a) .

If U; N U;N Uy # @ then the corresponding transitions functions satisfy the so
called cocycle condition

(1.8) iy = €.

The transition functions determine completely the principal bundle. In fact,
we have the following

Proposition 8. Assume we have a smooth manifold M, a Lie group G
and an open covering (U;);<; of M such that, for every pair (j, k) el X I for
which U; N Uy, # 6, a map by U; N U, — G is given so that the cocycle conditions
(1.8) are satisfied (This assignement is called a 1-cocycle with value in G on the
given covering). Then there exists a unique principal G-bundle P over M admit-
ting the yy’s as tramsition functions (with respect to the given covering).

Proof (sketch). For everyiel,let X;=U; X G and let X = ,UIXi. Consi-
e
der on X the following equivalence relation:

(G, x, a)~k, 4, b) ifand only if z=yeU;NU, and a={u@)b.

One can easily show that X/~ is the required principal bundle. The uniqueness
is obvious.
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Definition 3. A (bundle) morphism f: P(M, G) — Q(N, H) between prin-
cipal bundles consists of a pair of maps f= (f', f") where

f':P—Q is a smooth map f": G— H is a group homomorphism
in such a way that, for every u e P, a € G we have
(L9 f'wa) =f'w) ().

Note that (1.9) implies that f' is ﬁbre;pl'esel'ving and so a morphism
f: P— @ induces a map f: M — N.

Definition 4. A morphism f: Q(M, H) — P(M, G) between principal bun-
dles over the same manifold is called a reduction of P to H if f= idy and f” is
injective (and so H is isomorphic to a subgroup of G). A morphism
f: P(M, G)— Q(M, G) between principal bundles over the same manifold with
the same structure group is called an isomorphism if f' is a diffeomorphism,

fr=1idg, f=1idy.

Proposition 4. Two principal bundles P(M, G) and QM, G) over the sa-
me manifold with the same structure groups are isomorphic if and only if for
any pair of bundles atlases U = (U;, D;);c; on P, with transition functions
{4} and 9 =(U;, Z;);icr on Q, with tramsition functions {&,}, for any iel,
there exists a function X;: U;— G such that Jy, = A lga, on U0 U, = 0.

Proof (sketch). Given an isomorphism f: P(M, G)— Q(M, @), define
A U;— G from the relation ‘

Eiof 007 )z, €) = (@, 4 @)).
If the A/s are given, define f': P—@Q on = '(U;) as

Fr) =37 (ww), A (r(w) d; () .

Note that, as special case of Proposition 4, we have that a principal G-bundle
P is isomorphic to the trivial bundle if and only if for any bundle atlas
U = (U;, D;); 1, with transition functions {g;,} for any i e I, there exists a fun-
ction A;: U;— G such that, on U;N Uy 2= 6, gy = A7 A

Let @ = (U;); . be an open covering of M and let Z* (@, G) be the set of 1-co-
cycles on @ with values in G. Consider on Z'(@, G) the following equivalence
relation:

{n}~{&x} if and only if for any ie I, there exists a function 2;: U; —> G
such that l,IJ]'k = )\j—lfjk)\k on L]] N Uk = (.,
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Let HY(a, G) = Z1(@, G)/~. Then H' (M, G) = lg;n H'(@, G) is in 1-1 corre-

spondence with isomorphism classes of principal G-bundles on M.
Note that, in general, H'(M, G) it simply a set with a distinguished element
{¢y = e}, corresponding to the trivial bundle.

Proposition 5. Let P(M, G) be a principal bundle and let H be a Lie sub-
group of G. Then P is reducible to H if and only if there exists a bundle atlas
for P with H-valued transitions functions.

Proof.

a Assume P is reducible to H; therefore there exist a principal H-bundle
Q LM and a morphism f: QM, H) — P(M, G) such that f" = idy and f = idy.
In particular, @ can be considered as a submanifold of P.

Let U= (U;, X;)i.; be a bundle atlas for @ with

oo WU - Uy x H  Z(u) = (ow), &w)).

It is easy to extend X; to =~ (U;). Given v e =1 (U;), we can write v = ua for
uego 1 (U;) and a € G. Therefore

?; (v) = (=(v), ¢ (V) = (=(v), & (w) @)
defines an extension of %; to =~ !(U;). Moreover
G @) g ()7 = & () § ()7

and thus the corresponding transition functions are H-valued.

b Starting from H-valued transition functions, we can construct @M, H) as
in Proposition 8 and then embed @ in P as follows

YU - Ui x H- Uy x G— =~ 1(U;).
Example 3. Let (M, g) be a wn-dimensional Riemannian manifold and
let
0,(M) = {u e LIM) | g(u(2), w(®)) = (, &) for all {, EeR™}.

It is easy to check that (the embedding into L(M) of) O,(M) is a reduction of
L(M) to O(n). O,(M) is called the bundle of g-orthogonal frames over M.
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Viceversa, if Q(M, O(n)) is a reduction to O(n) of L(M), then we can define a
Riemannian metric ¢ on M in the following way:

If weM, take any u € @, and set, for X, Ye T, M,
9X, V) = (w1 X), u (D).

It is clear that @ = O, (M).

Note that, if 4 is another Riemannian metric on M, then O,(M) and O, (M)
are isomorphic. More precisely there is an automorphism of L(M) taking O, (M)
into O,(M). In fact, for any xeM, there exists an uniquely defined
L, e End(T,M) such that

a L, is g(x)-symmetric and g(x)-positively defined.
b For every X, Ye T, M, (X, Y) = g(X), L(Y)).

Because of the unigueness, we can define f: L(M)— L(M) as ‘ fw) =L "ou.
Then

¢ [ is a bijection with inverse map v+ Low.

d For every ueL(M), a e GL(n, R) we have flua) =1L “louoa =fu)a
and so fis an automorphism of L{M). :

e If weO,(M) then f(u)e O, (M). In fact, for every ¢ feR"
R(F@)(©@), f@)E)) = h(L ™ (@), L™ () = gu(®), u@) = (& &).
If M is orientable, we can further reduce O,(M) to SO(n) just setting

S0, (M) = {ue O,(M)|u defines the fixed orientation}.

SO, (M) is called the bundle of oriented g-orthomormal frames on M.
As a special case, consider (S", std); then SO« (S™) = SO + 1). In fact

€1

soofo=( ¢ )errritel= )
Tnt1

andAeSOn +1),A=4A,, .., A,, A, 1) encodesp=A, ;8" and an orien-
ted orthonormal frame of T,S" namely {A4;, ..., 4,}. c o
SO(m) acts on the right on SO(r + 1) via the embedding C »—9( 0 ' 1 ) and it
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is clear that
S* =80 +1)/SOn) and =(4)=Ae,;:.

Consider n = 3; then the map

" 11 2 -y x

Y -z t x Y
fo3 =

2 Y - t z

¢ —x -y -z t

represents a global section of SOgq (S3) which trivializes it via
fr A (Aeylo(Aey) A).

Examples 4.

a The reduction of L(M) to O(1, n — 1) corresponds to the assignement of a
Lovrentzian structure on M. In contrast with the Riemannian case (cf. Corol-
lary 2), this is not always possible. In fact, we have the following result (cf.

e.g. 1D
i) any mon compact manifold admits a Lorentzian structure

i) a compact manifold admits a Lorentzian structure if (and, in the case
it is orientable, only if) its Euler-Poincaré characteristic vanishes.

b The reduction of L(M) to Cn) =R x O(n) corresponds to the assigne-
ment of a conformal structure on M.

¢ Assume n = 2k. The reduction of L(M) to GL(k, C) corresponds to the as-
signement of an almost complex structure J on M i.e. a smooth family of endo-
morphisms J,: T,M — T, M such that JZ = —idr .

In fact, given an almost complex structure J on M, then

Le(M) = {ue LOD |uod, = Jou}

0 -I
(where Jp = ( ; . k )) is a GL(k, C)-reduction of L(M).
k

Viceversa, given a GL(k, C)-reduction @ of L(M), then J, =uod,ou L,
u e Q,, defines an almost complex structure on M.

d Again in the case % = 2k, the reduction of L(M) to Sp (k) corresponds to
the assignement of an almost symplectic structure on M.
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Proposition 6. Given a principal bundle P = P(M, G) and o smooth map
k of a smooth manifold N into M, there is a unique (up to isomorphism) princi-
pal bundle @ = QN, G) with a morphism f= (f', f"): QWN, G) — P(M, G) such
that f=h and " =idg. Q is called the induced bundle and it is denoted by
h*(P).

Proof (sketch). Let @ = {(y, w) e N X P|y) = =(u)}. Then G acts on the
right on @ by (y, w)a = (y, ua).

It is easy to check that this action is free and @ is a principal G-bundle over
N, with projection o @Q—N given by po(y,u)=%. Then just set
'y, w) = o R

If @ N is another principal G-bundle over N and f= (f', idg): @ > Pis a
morphism inducing %, then the map %+ (u(@), f' (@) defines an isomorphism
between @ and Q.

It is easy to check that:

given P=P(M, G) and O —k>N—h—>M, then (hok)*(P) = k* (h*(P))
if h: N— M is an inclusion, clearly 2*(P)= Py
if U= (Us, §;);r1s a bundle atlas with transition functions {¢, }, then f* (P)

is built up from the transition functions {¢;;of} on the open covering

YU Dier-

As a special example of induced bundle, we can consider the so called square
of a principal bundle P ie. =* (P) over P; note that o(u) = (u, %) defines a global
section of =*(P), which is, therefore, always trivial.

We are now in position to outline fundamental homotopy properties of princi-
pal bundles.

Let P(M, G) be a principal bundle, then P X I has an obvious structure of
principal G-bundle over M X I and its clear that:

if py: M xI—M is the first projection, then P X I = pi*(P)
for any tel, Ppyxqy =P.

Definition 5. Given two principal bundles P = P(M, G) and @ = Q(N, @)
with the same structure group, then two morphisms f;, f;: P — Q are said to be
homotopic if there exists a morphism called a homotopy between f; and f;,
F: PXI-—Q such that F(-,0) = and F(-, 1)=£.



[13] PRINCIPAL BUNDLES IN ACTION 13
Now we have the following

Theorem 1. Let P =PWM, G) and @ = QIN, G) be two principal bundles
with the same structure group, let f: P — @ be a morphism and let §: M — N be
a map homotopic to f, via a homotopy K: M X I — N. There exist a morphism
g: P— Q and a homotopy F between f and g such that F = G. Moreover, if
f"=1idg, then F can be choosen in such a way that F" = idg.

Proof. See eg. [T
From Theorem 1, we obtain

Proposition 7. Let S be a principal G-bundle over M X I. Then there
exists a principal G-bundle P over M such that S is isomorphic to P X I

Proof. For tel, let r: M—M XI be defined by 7x)=(z, 1), let
P = 7§ (S) and let f: P — S be the induced map. Then F(z, t) = (x, £) is 2 homoto-
py between 7, and r; and the corresponding homotopy is clearly an isomor-
phism.

Finally, we have

Proposition 8. Let P=PM, &) be a principal bundle and let hy, hy be
two homotopic maps of N into M, then hif (P) and hi(P) are isomorphic.

Proof. Let H be a homotopy between k; and h,, then H*(P) is isomorphic
to P x I for a principal G-bundle P over M. Then setting, for t e I, by = Hor,
we obtain

hEP) =rFH*P) =vf (Px D) =P.
We conclude Section 1 with the following

Definition 6. Let P(M, G) and Q(M, H) be two principal bundles over the
same manifold; then P X @ is a principal G X H-bundle over M X M. We define
the sum of P and @ as

P+Q=1*PXQ

where i: M — M X M is given by i) = (z, ©).
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Note that there are natural bundle morphisms fp: P+ @ — P,
Jfo: P+ Q — Q, defined respectively by fp(u, v) = u and fy (u, v) = v. In general,
neither P nor @ is embedded in P+ Q.

2 - Associated fibre bundles

Let M be an n-dimensional smooth manifold, G a Lie group, # another diffe-
rentiable manifold on which G acts on the left. Therefore, G acts freely on the
right on (M X G) X F' in the following way

(x, g, &a=(z, ga, a18)
and clearly MxXEGXF)/G=MXF.

The previous construction represent the loeal model of the associated fibre
bundle to a principal G-bundle with standard fibre F.

In general, let P> M be a principal G-bundle. Then G acts freely on the
right on P X F' as

(u, &)a = (ua, a71).

Let E=P Xy F=(PxF)/G. From the projection =: P— M a projection
ng: B — M is induced; namely =z([u, &]) = =(u).

In the same manner, a local trivialization of P, &: ="' (U)— U X G,
D(u) = (=(u), Y(u)), induces a local trivialization of E. In fact, we have the follo-
wing commutative diagram:

@, idp)
7N XF—=(UXG®XF

! J
75 () = N X )G > ((UXG) X F)/G=UXF

where y is given as yx([u, £]) = (=(u), $(w)£).

E=FEWM,F, P, @) is called a bundle with standard fibre F' and structure
group G, associated to the principal G-bundle P.

For any x e M, E, = =5 (%) is called the fibre of E over x and, for any U c M,
a section of E over U is a map o: U— E such that ngoo=idy. E =M X F is
called the trivial bundle.
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Example 5. Let F =R" and let G = GL(n, R) act on R" by linear tran-
sformations. Then

E = L(M) Xg R" =TM

is the tangent bundle of M.

Remark 1. Let P = P(M, G) be a principal bundle and let £ = P X F be
an associated bundle. Then, given « € M, we have

1 we P, can be interpreted as a map u: F — E,, simply setting w(%) = fu, £1.
It is clear that

1) u is a bijection;
ii) for any a e G, we have ua(®) = [ua, ] = [u, a&] = u(af).

2 p=[ug, %] € E, can be interpreted as a map p: P, — F defined by the re-
lation [u, p(w)] = p. It is clear that, for any a e G, we have p(ua) = o lpu), ie.
p is G-equivariant.

Viceversa, a G—equivériant map from P, to F' gives rise to an element of E,.
We will greatly generalize this construction (cf. Proposition 25).

Examples 6.

a Let G=GL(r,R) act on R" by linear transformations and let
P = P(M, G) be a principal bundle; then E = P X R" is called vector bundle of
rank r associated to P.

More in general, let V be a r—dimensional real vector space, let G be a Lie
group, acting on V through a representation ¢: G — Aut(V), let P=PM, G) be
a principal bundle and let £ = P X, V. Then, given x € M, E, admits an intrinsic
structure of veector space:

If =(u) = x, then A[u, {1+ plu, £1 = [u, 2 + p&l.

Tt is clear that the map u: V — E, is linear and so, fixing once for all a basis
of V, % can be interpreted as a basis of B, . Therefore, we can proceed exactly as
in Example 1, setting

LE)y= U L,(&)
xeM

with L, (E) = {ordered basis of E,) and show that L(E) is a principal GL(r, R)-
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bundle over M, reducible as P to G. It is easy to realize that
E = L(E) Xgrp,py R”.

The trivial vector bundle of rankr, M x R", will be denoted by 6,(M).

b Let G=0@+1) or G=S80(r+1) and let P=P(M, G) be a principal
bundle. Then

S=Pxs8"

is called a sphere bundle of rankr.

¢ Let H be a closed subgroup of G, let P = P(M, G) be a principal bundle
. and let QM, H) be an H-reduction of P. Then

P=Qxy,G.

d Let G¢ be the complexification of G. Given a principal bundle
P=PM, @), then Pc=P X G¢ is called the complexification of P.

Let E=EWM,F,P,G) be a bundle and ‘let y;: nz'(U;) = U; X F and
xp: 75 (U) » Uy X F be two local trivializations of E with UNU, = 8.
Then

ZjOXk_I:UkXF‘*UjXF

is given by X0 xk (@ &) = (@, i () &).

Therefore we have another possible definition of bundle.

Definition 7. Assume we have a smooth manifold E, called the total spa-
ce, a smooth manifold M, called the base manifold, a smooth map =z: £ — M,
called the bundle projection, a smooth manifold F, called the standard fibre, and
a Lie group G acting on F on the left. Then a bundle atlas of E consists of a
system of local trivializations U = (U;, @;); ., where (U;);.; is an open covering
of M, ¢;: nz'(U;) > U; X F are diffeomorphisms, in such a way that:
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a the diagram

P.
ﬁgl(Ui) — UiXF

lﬁ%
1

U;

is commutative

b if U;NU,= 0, setting ;09 Y, £) = (x, Y (2, £)) and defining gy, (x):
F — F by the relation g (2)(£) = ¢y, (, &), then ¢, (x) € G and the map © = ()
is smooth.

Again, transition functions are enough to build up the bundle; in fact, using
the same argument sketched in Proposition 3, we can prove the following

Proposition 9. Assume we have a smooth manifold M, a Lie group G,
and an open covering (U;);.; of M such that for every pair (j,k)el X I for
which U; N Uy, # 8 a map g2 U; N U — G is given so that the cocycle conditions
(1.8) are satisfied.

Then, if a smooth manifold F is given together with a left action of G, then
there exists a unique bundle E = E(F) over M, with standard fibre F and struc-
ture group G, having the yy’s as transition functions (with respect to the given
open covering). Moreover, for F = G and the action given by left multiplication,
we obtain a principal bundle P = P(M, G) and E = P X F. Finally, it is clear
that E = P xg F is trivial if and only if P is trivial.

The notion of induced bundle extends in an obvious manner to associated
bundles and clearly, if E=P Xg F and f: N—M is a smooth map, then
FH(E) = f*(P) X¢g F.

Remark 2.

1 Let H be a closed subgroup of G, then G acts in a natural way on the left
on G/H; therefore we have P X¢ G/H = P/H through the map [ua, [H]] — [ua].
It is clear that, if H is a normal subgroup of G, then P/H is a principal
G/H-bundle.

2 Given a bundle atlas U = (U;, 9;);.; in terms of local trivializations and
transition functions, a section ¢ of E is given by a collection of maps
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{o;: Uy— F};.; such that, on U;N U, # @ we have
@.1) ——

the relation being the following: on U;, o(x) = &; * (%, ; (x)). Therefore, if vy e F
is kept fixed by G, the constant map o: M — F, o = v, induces a well defined glo-
bal section of E; e.g. the zero section of TM.

Proposition 10. A principal bundle P = P(M, G) is reducible to the clo-
sed subgroup H of G if and only if the associated bundle E = E(M, G/H, G, P)
has global sections.

Proof. Assume P is reducible to H as @ with embedding i: @ — P. Let
u: P— P/H = E be the projection; therefore noi: @ — E is constant on the fi-
bres and so it defines a section o: M — E.

Conversely if o: M — E is a section, set @ = ™! (s(M)). One can easily check
that @ is a H-reduction of P.

Note also that the correspondence between reductions and sections of the as-
sociated bundle is one-to-one.
Examples 7.

a Let M be a 2k-dimensional manifold. We have seen (Example 4¢) that a
reduction of L(M) to GL(k, C) corresponds to the existence of an almost complex
structure J on M. This can be identified with the section of L(M)/GL(k, C) given
by x> [u] where we L(M), satisfies uoJ,ou " =J,; and viceversa.

b A principal bundle is trivial if and only if it is reducible to {e}.

The existence of global sections of a given bundle £ is a general, natural
question. For our purposes, it will be enough to recall the following

Proposition 11. Let E = E(M, F, P, G) be o bundle over a n-dimensional
smooth manifold. Assume

2.2) T (F) =0 for 1sqgsn-—1.

Then E admits global sections.

Proof. See e.g. [2].
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Corollary 2. Any smooth manifold M adwmits a Riemannion structure.

Proof. We have seen that the existence of a Riemannian structure on M is
equivalent to the existence of a global section of E = L(M)/O(n). Now, the stan-
dard fibre of E is diffeomorphic to a cell in R? (p = sn(n + 1)) and so, in parti-
cular, it satisfies (2.2).

More in general, the so called Iwasawa’s decomposition theorem states, in
particular, that any connected Lie group is diffeomorphic to the product of any
of its massimal compact subgroups and a Euclidean space. Therefore, if G is
connected, P = P(M, () can always be reduced to a maximal compact subgroup
H.

Definition 8 (operations on wvector bundles). Let E be a vector bundle
over M of rankr.

1 E* =L{E) Xgre, ry R™)* (Wwhere GL(r, R) acts on the left on (R")* via
the action L, () = o ™!, which is not the dual action; call it std™!) is called the
dual bundle of E.

It is clear that, for each x e M, (E,)* = E¥. Note also that the canonical
bijection T: L(E) - L(E*), T:u—‘'uw~' (e if u={a,,.. a,}, then
T(w) = {af, ..., &} } with af(a;) =3;) is not a bundle isomorphism. In fact
Tua) = Tw)a L.

2 The natural action of GL(r, R) extends to the tensor algebra T(R") and to
the exterior algebra AR”. Therefore we can define

E®p - L(E) XGL(?‘, R (RT)@]J and /\PE = L(E) XGL(T, R) /\PRT.

N (M) will denote the space of sections of N’ T* M, the bundle of exterior p-for-
ms on M.

Let E,, E, be two vector bundles over M of rank; and 7, respectively;
then

3 E\® FE, = (L&) + LE)) Xgrm, Ry x 6Loyr) B 1y
is called the direct swm or Whitney sum of E; and E,. For each xze M,

(By D@ E2), = E, @ E,, and L(E,) + L(E,) is a GL(r;, R) X GL(r5, R)-reduction
of L(E,®E,).
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4 Let U= (U®, ¢?);.; be a bundle atlas on L(E,), with transition fun-
ctions {¢¥}, «=1,2. Define L(E,)®L(E,) to be the principal
GL(ry, R) ® GL(r3, R)-bundle with transition functions {¢{ ® ¢ }; then

E,®@E; = (L) ® L(E2)) XgLe,, By x 6Lewk) BT QR™

is called the tensor product of K, and E,.
We will consider, in particular

Hom (£, Eg’) =E,QEf, End(E) = Hom(E,E) and NT*MQE,

the vector bundle of E-valued p-forms on M. /N’ (&) will denote the space of sec-
tions of NT*M QK.

Note also that End (E) = L(E) X,4 ¢l(r, R) and, more in general, if ¥ is given
as B =P X, V, then End(E) = P Xy End (V).

Definition 9. Let E), E; be two vector bundles over M, and M, respec-
tively. A (bzy,ﬁdle) morphism between E; and £, consists of a pair of smooth
maps (h, h) such that:

h: My — M, and h: E; — E, is fibre-preserving, i.e. g ok = homng and for
each x e My, the restriction f,: By, — Egpyy is linear.

It is clear that, in the case M, = M, = M, sections of Hom (¥, £,) corre-
spond to bundle morphisms inducing the identity map on M.

Note that, eg. if rankE;=rankFE,, then any morphism f=(f', f"):
L(E,) — L(E,) gives rise to a morphism (%, f): E; > E,, simply setting

”(w, £1) = [f" (), £].

But clearly, not every morphism between E; and E; can be obtained in this
way.

Definition 10. A morphism (k, k) between two vector bundles over the
same manifold M is said to be regular if h = idy and rank &, is constant. A regu-
lar morphism is an isomorphism if it is invertible. Given a vector bundle £ over
M, &nd (E) denotes the algebra of sections of End (F) and Aut (&) the group of
invertible elements of §nd (E). Note that the subset of énd (¥) consisting of re-
gular morphisms is nof a vector space.

Definition 11. Let E, F be two vector bundles over M such that £ c F.
Then F is called a vector subbundle of E if the inclusion is a bundle morphism
or, equivalently, for every x e M, F, is a vector subspace of E,.
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Definition 12. Let F be a vector bundle over M and let F c E be a vector
bundle. Assume rank F = and rank £ = » + p. Consider

B

A
L, ,(R) = {( 0 C

) e GL(r + p, R)]

and let AF) = {u e LE)|[uR"™) = Fri }.

then A(F) is a L, ,(R)-reduction of L(E). Let now

1,

Hz{(A B)ELM,(R)} ad K={( )

0 I

,, eL,, (R)} :

They are both normal subgroups of L,, and it is easy to check that
A(F)/K = L(F).

Then E/F = AF)/H Xgpp, p) R?

is called the quotient bundle of E by F.
Note that E = (E/F)@ F, but not canonically.

We have now

Proposition 12. Let E be o wvector bundle of rank(r +p) over M.
Then

a E admits subbundles of rankr if and only if L(E) is reducible to L, ,.
More precisely, the following data are equivalent:

1. a subbundle F c C of rankr 2. a L, ,reduction of L(E)
and the correspondence is one-to-one.

b E splits as direct sum of subbundles E = E, P E, with rankE, =,

rank By = p, if and only if L(E) is reducible to GL(r, R) X GL{p, R). More preci-
sely, the following data are equivalent:

1. a pair of subbundles of E, (E,, E;) with rankE; = v, and rankE, = p
such that £ =E,® E, i

2. o GL(r, R) X GL(p, R)-reduction of L(E)
and the correspondence is one-to-one.
¢ L splits as direct sum of subbundles E = E, @ E, with rank E, =, and

Ey = 0,(M), if and only if L(E) is reducible to GL(r, R). More precisely, the fol-
lowing data are equivalent:
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1. @ pair of subbundles of E, (B, Ey) with rank E; = r, and E; = 0, (M) such
that E = El @ E2

2. a GL(r, R)-reduction of L(E)

and the correspondence is one-to-one.

Proof.

a We have just seen that if F'c £ is a subbundle of rank r, then A(F) is a
L, ,(R)-reduction of L(E); viceversa, given such a reduction @, then
F =(Q/K) Xgr(r, py R" is a subbundle of rankr of E, such that A(F)=Q.

b If E=E,®FE,, we have already pointed out that L(E,) + L(E;) is a
GL(r, R) X GL(p, R)-reduction of L(E). Viceversa, let § be such reduction;
then

Ey=@Q Xgro,n R” E; =Q Xepp,p R?

clearly satisfy £ =FE, @ E, and Q = L(E,) + L(&E,).

¢ Assume E = E, @ E, with E, = 6, (M); then L(E,) is reducible to {e} and
thus, both L(E,) + L(E,) and L(E) are reducible to GL{r, R). Viceversa let @ be
a GL(r, R)-reduction of L(E); then, the corresponding section of L(E)/GL(r, R),
x> [u(x)], represents a set {s;, ..., 5, } of everywhere linearly independent sec-
tions of E, defined by

sj (@) = u(@)er+ ;) 1<sj<p.
Therefore Ey=span(sy, ..., s,)

is a trivial vector subbundle of E. Then just set ;= Q Xgro py R’

Remark 3.

1 If E admits a subbundle F of rank », and so L(E) is reducible to L, ,(R),
then it is further reducible to GL(r, R) X GL(p, R). In fact

L, ,(R)/GL(r, R) X GL(p, R) = M, ,(R) = R™

any such reduction eorresponding to a choice of a subbundle F'c £ of rankp
such that E=F@®F'.
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2 Let G.(R"*?)=GL(r + p, R)/L, ,(R) be the Grassmann manifold of
p-planes in R"*? and let

G,(E) = L(E)/L, ,(R) = L(E) Xg14+ p 1y GrR™*?)

be the corresponding Grassmann bundle. Then G, (¥), is the Grassmann mani-
fold of linear »-subspaces of E,.

Let F'c E be a subbundle of rank r and let Q be the corresponding L, ,-re-
duction of L(). Then @ itself corresponds to a section of G,(E): the one assi-
gning to every ¥ e M, F, e G.(E),. In this sense, we can refer to a subbundle as
the datum of F,cFE,, varying smoothly with .

Corollary 3. Let E be a vector bundle of rank (n + p) over an n-dimensio-
nal smooth manifold M; then E splits as E = E, @ E, with rankF, = n and
Ey = 0,(M).

Proof. Consider the homogeneous space
17,, (R"*?)=GL(n + p, R)/GL(n, R).

Vp (R"*7) is called the Stiefel manifold of p-frames on R"*P.

It is known (cf. e.g. [8]) that Vp (R"*?) satisfies condition (2.2) and therefo-
re, by Propositions 10 and 11, L(¥) is reducible to GL(%n, R) and so E splits in
the desired manner.

Similarly to Proposition 12 we have

Proposition 18. Let E be a vector bundle of rank rp over M; then
E =E, ® E, with rank E, = r and rank Es = p, if and only if L(E) is reducible to
GL(r, R) ® GL(p, R).

The proof of the following proposition is left as an exercise

Proposition 14. Let h: £, — E; be a regular morphism between vector
bundles over M; then ker h, Im h, coker h (obvious definitions) are vector bun-
dles over M.

Definition 13. Let G be a Lie group and let p: G — GL(r, R) be a repre-
sentation; let E be a vector bundle of rank r over M. A (G, p)-structure (or, sim-
ply, a G-structure) on E is the data of a principal G-bundle P over M and of a
morphism f: P — L(E) such that f" =, and f=idy.
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Proposition 15. If a G-structure on E is given, then P X, R" is isosmor-
phic to K.

Proof. We need only to verify that h:P X R"—FE given by
h((u, £]) = [ f(w), £] is a bijection.

h is injective: If f(u) = f(v), then u = vg for some g e G such that o(g) = e.
Therefore

[w, &1 =[vg, &1 =[v, (g V)1 =[v, £

h is surjective: Given [w, £] € E, let € P,y,,. Therefore, w = f(u) a for some
a e GL(r, R) and so [w, £] = K([u, a£]).

Examples 8.
a Reductions are obviously examples of G-structures.

b Among the G-structures which are not reductions, let us simply mention
Spin-structures and Spin‘-structures (cf. e.g. [5]).

¢ Assume g: G — GL(r, R) is the trivial representation, ie. o =¢. Then a
G-structure gives rise to a trivialization of L(¥): define o: M — L(E) as
c(x) = f(w) for any e P,. More in general, a G-structure gives rise to a
G/ker o-reduction of L(E), namely P/kerp.

Remark 4. Exactly the same argument of the proof of Proposition 15, can
be used in the following situation. Let P = P(M, ) be a principal bundle, let F
be any manifold on which G acts on the left and let E = P X F be the associa-
ted bundle. Assume the given action is not effective, ie. the underlying repre-
sentation ¢ G — Diff (F) is not faithful.

Then H = G/ker acts effectively on F, @ = P/kerp is a H-principal bundle
and @ Xy F'is canonically isomorphic to E. Therefore any associated bundle can
be presented as a bundle associated to a principal bundle through a faithful
representation.

Note that, if the action we started with is trivial, then £ = M X F.

We want to conclude Section 2 with two other constructions, which will be
useful in later developments.

Definition 14. We say that a principal bundle P = P(M, G) admits a
flat  structure if there exists a representation o 7 (M)— G such that
P=Mx,G.
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We have the following characterization of principal bundles admitting flat
structures:

Proposition 16. A principal bundle P = P(M, G) admits a flat structure,
if and only if there exists a bundle atlas with constant tramsition fun-
ctions.

Proof. If P=Mx,G, let H=r(M)/kerp; then the induced map
o H— G is a faithful representation and M=M /kerp is a covering space for M
and a H-reduction of P. Clearly the transition functions of ]17!, considered as
transition functions of P, are constant. We will give a short proof of the conver-
se implication in Proposition 38.

Finally, we have

Definition 15. We say that a principal bundle P = P(M, G) admits a pro-
Jectively flat structure if P(P) = P/C(G) (C(G) being the center of G) admits a
flat structure.

3 - The gauge group

Definition 16. Let P = P(M, G) be a principal bundle; the group of ath-
morphisms of P is called the gouge group of P and it is denoted by &(P).

Proposition 17. There is a natural anti-isomorphism between G(P) and
the group of sections of the gauge bundle of P, Gp= P X4y G.

Proof. We have seen (cf. Remark 1,2) that the group of sections of Gp is
identified with the group of G-equivariant (with respect to the adjoint action on
G) maps ¢: P— G ie. those maps such that o(ua) = a lo(u)a.

If ¢ is sueh a map, define fe §(P) as f(u) = uc(u). Viceversa, if fe G(P), then
g: P— G determined by the equation f(u) = uo(u) is G-equivariant.

It is immediate to check that this correspondence is an anti-isomor-
phism.

Definition 17. The bundle Ap=PX,; & is called the adjoint bundle of P.

Assume a representation o: G — Aut(V) is given. Let P = P(M, G) be a prin-
cipal bundle and E =P X, R". Since End (&) =P X, End(V) (cf. Definition
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8,4), then both Gp and Up are naturally mapped in End (E), respectively by
[u, gl [u, o(g)] and [u, X]=>[u, o5 (X)]. Of course, if ¢ is faithful, both these
maps are embeddings.

Examples 9. Let F be a vector bundle of rankr over M.

a Let g be a Riemannian structure on E; then L(E) is reducible to G = O(r)
as

P =0y(E) = {ue LE)| g, w©) = (¢ &) for all {cR"}.

Then the sections of &p are the g-orthogonal elements of Qui(®) and the sec-
tions of Ap are the g-skew-symmetric elements of &nd (E).

b Assume r = 2¢g and let J be a structure of complex vector bundle on & ie.
J e Qut(E) with J2= —idg. Then L(E) is reducible to G = GL(q, C) as

P=LeE) = {ueLE)|uot,=Jou}.

The sections of Gp (resp. of Up) are the elements of Aut (E) (resp. &nd (E)) com-
muting with J.

We have also the following

Proposition 18. The fundamental vertical vector fields on a principal
bundle PM, G) are gauge-invariant, ie., for any Xe®, any fe &(P), we
have

3.1) e X*)=X*

or, more precisely, for any u e P,

S )X (W) = X* (flw)).

Proof. By definition, f, [#]J(X* (u)) is the tangent vector at the point £ =0
to the curve

y(t) = flu exp (X)) = f(u) exp (tX).

This proves our assertion.
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Chapter 2 - Connections on Principlal Bundles

4 - Definitions and examples

Let P(M, G) be a principal bundle and let, as usual, =: P — M be the bundle
projection. Consider

7 (TM) = {(u, £) € P X TM |2 € Ty M}

and let «: TP — #* (TM) be defined as follows:
if ueP and XeT,P, then «(X) = (u, = [u](X)).

Observe that:

G acts both on TP and =* (T'M), the former being the induced actidn, the lat-
ter being R, w) = (ua, &).

o is G-equivariant. -

Clearly, we have:
o is a regular surjective morphism.
“kera =W ={Xe TP|X is vertical}.
Consequently, we have the exact sequence
(4.1) 0—W—TP5z*(TM)—0.
Note also that the map « P X & — W given by
(4.2) o ew, X) = X*(w)

is an isomorphism and so W is canonically isomorphic to a trivial bundle.

Roughly speaking, a connection on P is a G-equivariant splitting of (4.1), ie.
a G-invariant realizatior_l of #*(TM) in TP as direct summand of W.

We have the following

Proposition 19. The following three assignements are equivalent.

1 A G-equivariant regular morphism I': z*(TM)— TP such that
aol = id,—:*(TM) .
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2 A G-invariont subbundle H of TP, such that TP =H & W.

3 A G-invariant GL(k, R) X GL(n, R)-reduction @ of AW), where
k=dimpG and AW) is the Ly ,(R)-reduction of L(P) corresponding to W.

Proof. Assume I' is given; then just set H = I'(z*(TM)). If H is given,
then define I' = («, )71 therefore 1 and 2 result to be equivalent.
Finally 2 and 3 are equivalent because of Remark 3.

We set now a more usual definition, corresponding to the datum of Proposi-
tion 19,2.

Definition 18. A comnection I on P consists of the assignement of a G-in-
variant subbundle A of TP such that TP = H @ W. Therefore, for every € P, a
subspace H, of T, P is assigned, in such a way that:

HoeW,=T,P.
For every a e G, H,, = (R,).. (H,).
" H, depends smoothly on .

H, is called the horizontal subspace (with respect to I') of T, P.

Therefore, if a connection I' is given, let ;: TP — H be the induced projec-
tion; then for every X e T, P, we have the decomposition into horizontal and
vertical components

43) | X=X® 4 x®

with X® = h,.[u](X) e H, and X® e W,.
It is clear also that =, [u] maps isomorphically H, into T, M.

Examples 10.

1 Let M =S8" and P(M, G) = SO.,4(S™) = SO(n + 1) (cf. Example 3). If
P eSO + 1), then

TpSO(n + 1) = {PA|A € so(n + 1)}.

We have the decomposition so(z + 1) = so(n) @ R™ via the embedding

R"—son + 1) EF—>( _Ot; é )
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and so the induced decomposition TpSOm + 1) = Hp @ Wp where, of course,

Hp={P( Ot, z)[geR"} and Wp = {PB|B eso(n)},

defines a connection. In fact, for every A € SO(n), we have

®oeEn =[P Daleerr)=[paa( D )alzer)
={PA(J(£-1£> ﬂlg)'fERn}sz'

Note that T,SO(n + 1) = {AP|A e so(n + 1)}, but {BP|B e so(n)} # Wp.

2 Let P=M X G be the trivial bundle; then at the point (x, a) set
HE ,=T,M x {0} cT¢, M X G. This defines a connection, called the canomni-
cal flat connection.

Definition 19. Assume a connection I is given on P; then let w be the ©&-
valued 1-form on P defined as follows: for we P and Xe T, P set

(4.4) w[ulX) = 7,1 (XY).
w is called the connection 1-form of I

It is clear that w[«](X) =0, if and only if X e H,. Moreover, we have the
following

Proposition 20. The connection l-form o of I' satisfies the following
properties:

(4.5) wX*)=X for every Xe®
w 18 G-equivariant, i.e. for every ae G, we have
(4.6) (R.)* (w) = adla M w

or, more precisely, for every XeT,P,

(Ro)* ())[u](X) = ad(a ™" New[ulX)) .
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Viceversa, if a &-valued 1-form w on P is given in such a way that (4.5) and
(4.6) hold, then there exists a unique comnection I' on P having « as connection
1-form.

Proof. (4.5) is obvious. For ue P and X=X + X® e T, P, we have

(Ro)s (@)X P) = w[ual((Ry) (XM)) = 0 = ad(a ™) o[u)X?)

and, recalling Proposition 1b

(Bo) s ()uIXY) = w[ual((Re)s (X)) = 7 (Ra) (X™))

= ad(e 7 W71 (X)) = ad(e ™) w[ul(X®).

Viceversa, it is easy to check that, given o satisfying (4.5) and (4.6), then
H, = ker w[u] defines a connection I' on P, having » as connection 1-form; the
uniqueness is obvious.

Remark 5. Let w be a connection 1-form on P; then

1 For every u e P, w[u]ot, = 4, the canonical &-valued 1-form on G. This
amounts also to the following: consider the canonical isomorphism
e: P X & — W given by (4.2) and set ¢! = (v, vp) With v; = =y and ve[u] = 7 1.
Therefore wjw = v; and thus a connection 1-form is nothing but a G-equivariant

extension v, to TP.

2 For every ae@G, every Xe T,, P, we have
C%)) olualX) = adle ™) o[ul(R, ). (X)).
Note also that, in general, we have X® = X — (w(X))*.

3 In Example 10,1

w[P1X) = (PX)gum = so(n)-component of ‘PX
K

'

ie if X= P( g ) then w[P)(X) = K.

4 The connection 1-form of the canonical flat connection is simply the trivial
extension of 4 to M 'X G ie.'it is given by ¢ = =§ (&), where nmy: M X G — G is
the natural projection.
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We have the following, easy to prove result (cf. e.g. [3])
Proposition 21. Any principal bundle admits connections.
We denote by @(P) the set of connection 1-forms on the principal bundle P.

Definition 20. Let P = P(M, G) be a principal bundle equipped with a
connection I' and let X € 3¢(M). Then the horizontal lift of X is the element
X € 3(P) characterized by the following two properties

1 TFor every ue P, X(w)e H, ie. X is horizontal
2 7 X)) = X(=(w)).

It easy to prove the following

Proposition 22.

a Given X € 3C(M), there.is a unique horizontal lzﬁ X of X; moreover X is
G- mvafrzant Viceversa,” any horizontal, G-invariant X e 3C(P) is the horizontal
lift of some X € IC(M).
b Let X, Y e 3C(M); then
H X+ =X+7Y
i) If f: M—R and f=for, then (fX)~ =foX
i) [X, Y1™ = [X, YI®.

Remark 6. We want to stress the fact that, in general, X, Y1 is not hori-
zontal and so the distribution of horizontal subspaces is not involutive.

Proposition 23. Let X e ©. If Y e 3C(P) is horizontal, then [Y, X*1 is ho-
rizontal. Moreover if Z e 3C(M), then [Z, X*]1=0.

Proof. Let ue P; then, for every Y e 3((P), we have
Y, Xx*]= (Rexp(tX) )i [(Reaxpn YWY Rep e )W) = 0-
Therefore, if Y is horizontal, then (Regqqx) )« [(Rexp(m )(u)](Y(R&\p(tX))(u)) is hori-

zontal and so is [Y X*1. If Y = Z, then (Rexpx ) [(Rexp(m)(u)](Y(Rexg(tX) W) is
constant and so [Z, X]=0.
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Let P = P(M, G) be a principal bundle, I' a connection on P and o its connec-
tion 1-form. Let U = (U;, 9;);c; be a bundle atlas with transition functions

{i }-
For every tel, let g;: U;— P be the section corresponding to &;, ie.
o; (@) = ;7 (x, e), and set

w; = of (w)

the w/s are called local gauge potentials of I' with respect to U.
Finally, set, for U; N U, = @, Iy = ¢ (#). We have the following

Proposition 24. On U;N U, # 6, we have
(48) Wy = (Zd(k/)jl;l ) @y + &jk .

Viceversa, if for every ie I, a G-valued 1-form w; is given in such a way that
on Uy N Uy #= 0 (4.8) holds, then there is a unique connection I' having the w;’s
as local gauge potentials.

Proof. See e.g. [3].

Example 11. Assume G is a matrix group; then d[A]J(X) = A “'X and the-
refore dy = i (8) = ¢z'dgy and so (4.8) becomes

o = it oy + Gt A = it ooy + Ay
In the special case G is abelian (e.g. G = S1), we have:
‘V dd=0 and so dd;=0 oy, = w; + Iy
and thus F = do, = dw; is a well defined &-valued 2-form on M.

We want to describe » and the horizontal lifting in terms of local trivializa-
tions. Let

@
Y () —~——UxG

%

be a local trivialization diagram for the principal bundle P and let ¢ be the indu-
ced local section. Given a connection 1-form w on P, set wy = o (w). Therefore,
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for every xe U, aeG, teT,M, XeT,G, we have

(@) (), B)]E X) = ols@) al(@y' [z, alE X))
= ad(a™") wlo @ (Re-1)s (@5 [3, al(& X))
= ad(a ™) oo @)D [x, €l(¢ (Bo-1)x (X))
= ad(a ") wy[x)#) + ad(a ™) wle@)(Re-1)x (XN

= (Lg-))s((Bg) w0y [2)E) + X) = ad(a ™) wylx](€) + SlalX).

Therefore $;![x, al( X) is horizontal if and only if X = — (B, )4 wy[x](€) and
so in the given local trivialization, the horizontal lift of &e 3C(M) at the point
(x, a) is provided by

(4.9) £ — (By)s wyle)€)

we have also

(4.10) Ho(®)) = o, [2](€) — (wp[#)EN*.

Example 12. Let O,(M) be the principal bundle of orthonormal frames
over the Riemannian manifold (M, g). Let ¢: =~ (1) — U X O(n) be a local tri-
vialization with induced local section o; therefore o(x) = {9 (®), ..., 7, (@)} is a
orthonormal frame on U; let {nf @), ..., ;i (@)} be the dual frame.

Given a connection I' on O,(M) and its connection i-form w, we have

7 .
@.11) oy =% (w) = 2 I'knf
i=1
where Ty =T eom).

Therefore, for a = (ay) € O(n)
4.12) Hi(w, 0) = ni(@) = 2 I'n (@) a

represents the horizontal lift of #; at the point (¥, a) expressed in terms of the
given local trivialization.
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Remark 7. Let U= (U;, %;);.; be a bundle atlas for P with transition
functions {¢y} and let we @(P). Assume that, for every iel, we have

(4.13) i@y = 9F (0;)

where ¢; is the connection 1-form of the canonical flat connection on U; X G.
(4.13) is equivalent to say that for every j, k e I such that U; N U, # 6, for every
we =" '(U; N Uy), we have

(@ 0 D7) (D, W] Hi o — Hil

ie, for every xe U;N Uy, £e T, M, a e G, we have

(@00 V) [, al(E, 0) = (5 0).

Now (@500 1) [, al(5, X) = (5 (i) [X]@) @ + L3 )5 (XD)

and so (4.13) is equivalent to say that the transitions functions g3, are con-
stant.

5 - Tensorial forms. Exterior differential operator

Let P = P(M, G) be a principal fibre bundle and let V be a finite dimensional
vector space equipped with a representation p: G — Aut (V).

Definition 21. Let ¢ be a V-valued rform on P. We say that 4 is:
pseudotensorial (of type (V, o)) if for every aeG we have (R)*(¢)=cla™1)¢
tensortal (of type (V, o)) if it is pseudotensorial and horizontal i.e.

¢X;, ..., X)=0
whenever at least one X;, 1 sj<7, is vertical

PTT(PM, G), V, o) (or, simpy, £ " (P)) will denote the space of pseudoten-
sorial rforms and " (P(M, @), V, ¢) (or, simpy, 9 " (P)) will denote the space of
tensorial r-forms on P.

Example 13. Given w;, wye C(P), we have a=w; — wye (P, &, ad)
and so C(P) has a natural structure of infinite dimensional affine space having
JYP, ®, ad) as vector space of translations.
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We have the following

Proposition 25. Let £ =P X_V; then

(5.1) JrP) = N(E).

Proof (sketch). For ¢e J "(P), we define L(¢)e N'(E) in the following
way: if xe M and X, ..., X, e T, M, then

(5.2) LI, . X)) = u@luly, ..., X))
where uwen '(x) and X, .., X,eT,P are chosen in such a way that
e wlX) =X;, 1<j<r

One can easily check that L(¢)[x](X;, ..., X,) does not depend on the choice
of u and of the X;’s. Moreover, for ¢ € N'(E), L™'(¢) e I "(P) is defined in the
following way: if ue P and X, ..., X.eT,P, then

(63) L W&, .0 X)) = w7 @lr)]my Xr), o 7 (X))

It is immediate to observe that L: §"(P)— N (E) is a linear isomor-
phism.

Remarks 8.

a For r=0, we have 3°(P) = 3 °(P) and, as we already have seen, sec-
tions of E correspond to maps f: P—V such that, for every aegG,
flua) = gla™t) f(u). In particular, if o e A°(E), then

(5.4) L7 (@) =u"" (o(aw).

Consider two special cases

1. Let P=L(M) and E = TM. Then the previous construction identifies a
vector field in M with the R"-valued function on L(M) assigning to every frame
the n-uple of coordinate of the vector field with respect to the given fra-
me.

2. Let F be a vector bundle of rankr and let P=L(F), E = QF*,
Therefore

E = L(F) Xgrepy R")* Q@ R")*.

Let ¢:(R™)* ® (R")* — R(r) be the isomorphism given by :({® £) = !¢ Conse-



36 P. DE BARTOLOMEIS [36]

quently, we have also
E = L(F) Xgre, ry B(7)

where GL(r, R) acts on R(r) on the left as ¢(@)X =‘a " 'Xa™!.

Then any section & of Z, i.e. any field of bilinear forms on F corresponds to a
map ke I O(LEF), R(), o); therefore it satisfies h(ua) = ‘ah(u)a. It is clear also
that, using Remark 1,1, Z(w) = ¢(u* (h)).

b d: T"(P)— T " (P) but, in general, d does not map J"(P) into
¢¢J—’T+1(P).

¢ Ifae N(M)and ¢ e PTP(P) (resp. ¢ € TP (P)), then z* () A ¢ is well de-
fined and it belong to TP (P) (resp. to TP(P)).

d If ¢ is the trivial representation, and, therefore, £ = M X V, then
AP, V)= PP, V,p)=x*(NM,V))

ie. @P(P, V) is the space of V-valued, horizontal, G-invariant p-forms on P.

e Again for r = 0, we can extend our construction to any associated bundle
E = P X F, establishing a bijection L between g °(P, F) and the set of sections
of E. In particular, for F' = G and G acting on itself through Ad, we recover the
antiisomorphism of Proposition 17.

Definition 22. Let I' be a connection with connection 1-form o on the
principal bundle P=P(M,G). Then, using o instead of I" as index, we define

(5.5) 9,: PTT(P)>T"(P)  as I, () = doh,
(5.6) D,=9C,od: T"(P)—>J " 1(P)
6% V,=LoD,oL™1: N(E)— N*Y(E).

V. is usually called covariant exterior differential operator associated
with I

First of all note that, for any a e N(M), ¢ e IP(P), we have
(56.8) D,G*@)A\N@=a*da) AN+ (1) 7x* () AND,¢.

Then, we have the following
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Proposition 26. For every ¢ € I "(P) we have:
(5.9) D,¢=dé¢+wN¢
where the wedge product is computed by means of the V-valued bilinear form on

@ XV given by (X, v) —p. X)), ie.

LS (@) pn 0K 0) Kotz o Xowrs 1)

14

(5.10) (WADXKy, ..y K1) =

Proof. FixueP and let X, ..., X, . e T, P. Therefore, we have to show
that

(.11 dgX®, .., XO ) = gy, ey Xorr)

+ *,’:_l'" 2 e(0) s (X)) X2y ovs Xotra 1)) -

[

a If all the X’s are horizontal, then (5.11) reduces to the identity
deXy, ..., Xp 1) =deXy, .., X5 1).
b If two or more of the X/s are vertical, then (5.11) clearly becomes
0=d¢Xy, ..., Xp 0 1)-

Now we have

r+1

d¢(XI: (KRS} X’r+1) = _Zl("‘l)i+lXi¢(X1, --~)Xi7 (KRS Xr+1) )
g =

. . [+ o]
+ . E (“1)1+]¢([Xi)‘xti],X1;---)Xi:"-;)(j)---’Xr+l)'
lsi<jsr+1
We can assume to extend the vertical vectors as fundamental vertical vector
fields and so, recalling Proposition 23, we obtain d¢(X;, ..., X, 1) =0.

¢ Finally, assuming X, is vertical and X,, ..., X, are horizontal, we can
extend X; as a fundamental vertical vector field X* and X,, ..., X, ; as horizon-
tal lifts of elements in IC(M); therefore, from Proposition 2.3, we obtain that
(5.11) is reduced to

0 =Xl¢(X2, (3] X7'+1) +P*(w(X1))(¢(X21 ey X‘r+1)-
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Now

Xl ¢(X2’ reey Xr+1) = %Qﬁ((Rexp(tX))* (XZ)) "-’(Rexp(tX))* (Xr+1)){t=0

= L Bag0) ™ ¢z, o X))

= = o (WX N$Xe, .., X i1)).

Remark 9. If o is the trivial representation, then, for every

¥

e TP(P,V, o) we have
D, ¢ =dé.

Assume now a linear differential operator D: TP(P, V, o) = JP*1(P, V, o) is
given with the property that, for any a e N' (M), ¢ e T7(P), we have

DE* (@) AN ¢) == (da) N ¢ + (—1)"=*(a) A Dg.
If we consider 7 =D —d, we immediately have |
TE* () N =(=1"z" () NT(¢)
and so 7T(¢) = A$, where A is an End(V)-valued 1-form on P. Moreover

1 for any Xe ®, we have AX*) =p,(X). In fact, if ce °(P), we ha-
ve

T@X*) = (Do — do)(X*) = —do(X*) = 0, (X*) = 04 (X 0.
2 from the fact that, for every aeG, ¢ 3P (P), we have
(R.)*T($) = pla ™) T(¢)
it follows (R)*A = ad(cla " )A.

Therefore, if the representation ¢ is faithful, then w = ¢;'A defines an ele-
ment of C(P) and of course D, = D. Thus, in this case, the assignement of
we CWP) or the assignement of a linear differential operator
D:g?P(P,V,0)—>JP+*(P, V,¢) with property (5.8), are completely equiva-
lent.

We need the following
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Definition 23. Let N'(P, ) be the space of &-valued k-forms on P.
Given ¢e N'(P, ®) and ¢ e N (P, &), we define [¢, ¢y1e N (P, ) by

[¢s SIJ](Xl PARRRY} m‘l'+1) = -.7'—'13—' 2 S(G)[¢(Xa(l)) ooy Lo )’ ¢(X5(7.+ JSEIRERS Xa(r+s) )] .
A direct computation leads to the following
Proposition 27. Given g¢e N'(P, ®), v e N (P, &) and fe N(P, ®), we
have
[¢, ¢] = (—D"[g, ¢]
b (—D"[[g, ¢, €1+ (1[5 ¢, ¢1+ (=1 [IY, &L, ¢1 =0

dlg, ¢1=[dg, $1 + (=1)"[¢, d¢].

o

o

We can now introduce a crucial definition in the theory of connections on
principal bundles. ’

Definition 24. Let I' be a connection with connection 1-form « on the
principal bundle P = P(M, G). Then Q,=D,w is called the curvature form
of I.

We have now

Proposition 28 (structure equation).

(5.12) 0, =dw + 3w, »].

Proof. We have to prove that, for any X, Ye T, P, we have
do(X®, Y?) = doX, 7) + [X), o(})].
Now
a if both X and Y are horizontal, we have an identity
b assume X =A*, Y=B* for A, Be®; then
doX, ¥) = — (X, YD) = —[4, Bl = —[o(X), o(Y)]

¢ assume X =Z, for Z e 3C(M) and Y = A*, for A e &; then by Remark 6,
again we have that both sides vanish.
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Corollary 4. For every ¢ € T"(P) we have

(5.13) DEs=0,N¢.

Proof. We have
Di¢=D,d¢ + oA =Addé¢+ oA +oAds+wAg)
=doN¢—oNdd+oANdd+ oA\ (AQP.
Now a direct computation shows that
oA @A @) =ilw, 0]\ ¢
and the proof is complete.

Remarks 10.

a If ae J?7(P, ®, ad), then [,] is nothing but the bilinear form induced by
the adjoint representation and therefore (5.9) reduces to

(6.14) D,x=da+ [w, a].
b In more explicit terms, the structure equation (5.12) is
Q,X, Y) = doX, V) + [«(X), o(Y)].
Therefore, in particular, if X, Ye H,, then
Q,X, V) = —o(X, YD

and so, the curvature form measures how much the distribution of horizontal
subspaces fails to be integrable.

¢ (5.13) says that the curvature form measures how much D, fails to give
rise to a complex.

d If w,0eCP) and s0 ® =w + a with xe 5P, &, ad), then
(5.15) Q;=Q0,+D,a+ il a].
In effect
Q= Dzo =do + 3o, ] = do + da + 3o, 0] + [w, a] + 3[a, o]

=Q,+ D, a+ 3o, a].
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e The canonical flat connection on M X G has vanishing curvature. This fol-
lows from the Maurer-Cartan equation

dp = =5(d9) = —375 (9, 9D = —3lp, ol.
Structure equation has another important consequence.

Proposition 29 (second Bianchi’s identity). We have
(5.16) D,Q,=0.

Proof. We have
D,Q, =dQ, + [w, Q2,1 =dde + o, 0)]) + [0, do + 3o, v]]
= 3[dw, w] — [, do] + (o, do] = [de, ] + (o, du] =0.

We consider now some properties of the covariant exterior differential ope-
rator V,,.

Proposition 30. For every ae N (M), ¢ € N (E), we have
(5.17) Vo@Ag=daA¢g+(—1)aAV,¢.

Proof.
Vo (@A$)=LoD,oL HaA@)=LD,(z* @ AL ()
= L{dr* ()AL " Yg) + (=17 ()AL oD,o L B =daA¢+(—1VaAV, .

Proposition 81. Let @: z7Y(U) — U X G be a local trivialization and let
c@)=0"1(x,e) be the induced local section and for any veV set
7, (@) = [a(x), v]. Let-w € C(P) and let wy = o* (w) be the induced local gauge po-
tential. Then

(5.18) (V,o)lx] = a(@) (s (wylaD v).

Proof. If &(u) = (x, 4(u)), then
flw) =L (o,)w) = L™ (g, )o@ $@)) = o™ w)) L~ (o, o))
= o)1) o7 (@)(o, (@)) = p(¢ T (W) w.
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Therefore
(V,5)[@l(®) = LD, Ix)E) = @)D, flo@]Eo @)
= s (@)df le@IEc@)) = o(f+ [c@]EG@))) .
Now (4.10) gives
Ho (@) = o, [2)(E) — (wylw)E)*.
Moreover, since foc = v, we have (foo), =0 and so
Fele@IE@)) = ~ £y [o@](wyz)E)*) .

Finally f.[c@)] = — (po¢)s[c(x)]v and, for every Ze &, ¢, [o(m)](Z*) =2.
Therefore we get

(Vo a))(E) = o@)(fi [@IEE@)N) = o @) s (wy [€1E) v).

Definition 25. Given xeM, Xe T,M and ce N (E)
((V,)x9)@) = (V, )]0

is called the covariant derivative of ¢ at « in the direction X.
It is easy to check that ((V,)x o-)(x) depends only on the restriction of ctoa
curve through x tangent to X

Assume to assign an exterior cevariant differential operator to & ie. a linear
differential operator

V: N(E) —-> NTHE)
such that, for every «a e N'(M), ¢ € N (E) we have
Vie A ¢) = da/\¢+( 1Ya A V.

‘Then, representing £ as E=PX, V (P=PM,3), we can define
D=L"1.VoL: §?(P)—JP*1(P) and, “if-we choose P and G in such a way ¢ is
faithful (cf. Remark 4), we can reconstruct w € C(P) such that V, = V. Therefo-
re, again, if ¢ is faithful, the assignement of w e C(P) or the assignement of an
exterior covariant differential operator are completely equivalent. V
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Note finally that, since A'(E) is locally generated by elements of the form
a® o, for e N (M) and ¢ e N (E), in order to define V it is sufficient to give a
linear differential operator

V: N(E)— N (E)
such that, for every fe C* (M), s e N (E) we have
Vie=df®o +fVs.

We can easily perform some functorial constructions with exterior covariant
differential operators; in fact we have the following

Definition 26. An exterior covariant differential operator V on £ induces
an exterior covariant differential operator V* on E* defined on N(E*) by
means of the following relation

For every o* e A%(E*), v e A°(E), we have

(5.19) do* (7) = (V*o* )(z) + a* (V7).

Exterior covariant differential operators V; on E;, i =1, 2, induce exterior
covariant differential operators V; ® V, on K, @ E; and V; ® V, on B, ® E, defi-
ned on AY(E, ® E,) and A°(E,® E;) respectively as

(5.20) Vi® V) o1 Do) =V, @ Vo0
(5.21) (V1®V2)(Ul®02) =V1€1®G’2®G1®V20’2.

Definition 27. R, = L(Q,) e N(®p) is called the curvature tensor of w.

One can easily prove that
(6.22) R, (X, V) =[(V,)x, (V,)r] = Vo)x 1n-

Let P = P(M, G) be a principal bundle and let E = P X F be a bundle asso-
ciated to P and let I" be a connection on P. We can define an horizontal distribu-
tion on TE in the following way. Let TP = H @ W be the splitting defined by I
embed H in T(P X F) in the trivial way and let p: P X F'— E be the natural pro-
jection. Since H is G-invariant H E=p.(H) is a well defined subbundle of TE
such that, for every aeE, T,E=HE®T,E_ (-
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In other words, define

for ('u;, E)EPXF H(u’f)zHuX{O}

for p(u, &) = a H = p.[(u, H)He, 5)-
We have now the following

Definition 28. A section ¢ of £ is said to be parallel (with respect to a
given connection on P) if, for every x e M, o, [xl(T, M) = HE,,.

Consider the special case F =V, G acting on V through a representation
e: G — Aut (V). Let ¢ be a section of E and let f= L ~!(c). A direct computation
shows that, for xe M and X e T, M, if w e =~ ' (x), then the horizontal /vertical
decomposition of o, [2](X) is given by

(5.23) a4 1) = p s [, FADIX, 0) + (V,)x ().
Therefore, we have the following

Proposition 82. ce N(E) is parallel if and only if for every x e M we
have (V,)o)x) =0, i.e. o is V -covariant constant.

We want now to establish some basic facts on the action of the gauge group
on the space of connections. First of all we have the following

Proposition 33. Let P = PWM, G) be a principal bundle; then the gauge
group G(P) acts on the right on C(P) by Ri(w) = f*(w).

Proof. We have only to check that, given we G(P) and fe G(P), then
S*(w) € C(P). That is the case, in fact: for every X e &, we have

FH@)X*) = o(fu X*)) = 0X*) =X
and for every a e G, we have
E)* (f* () = (foBy)* () = (Ry of )* (@) = f * (Ry)* ()
=f*(ad(e ") w) = ad(a™*) f*(w).

Let ¢: G — Aut (V) be a representation of G into a finite dimensional vector
space; let fe G(P) and let f be the corresponding element of 5°(P, G) (and so
S) = uf(u)). Since f, maps vertical subspaces into vertical subspaces, if



[45] PRINCIPAL BUNDLES IN ACTION 45
aeJ (P, V,¢) then f*(«) e T (P, V, ¢). Moreover, it is easy to check that
(5.24) @) =@
where f~1: T7(P,V, )= T (P, V, o) is defined as
F )Xy oo X)) =o(F ey, o X
The proof of the following proposition is straightforward
Proposition 34. Let we C(P), fe §(P) and set & =f*(w). Then

ng(fnl)%:(Hf((up)) h&’):(f~1)*ohcu of« 95 =F*09C, o (fTH)*.

Corollary 5. We have
(5.25) Dy=F""oD,of
and consequently

(5.26) s=w+f oD, f Vi=L(F oV, oL(f).

Proof. The only point that deserves some comments is the definition of

FtoD,f.

Consider the adjoint representation ad: G — Aut (&) c End (®) (note that ad
is not faithful, its kernel being C(G)).

G acts on the left on End(®) as

L,6=a6=ada )oboad(@).

This gives a representation ¢: G — Aut (End(®)).
Let o € (P, Aut (End (®)), ¢) be defined by (%) = ad(f(w). Then a direct
computation shows that

(0™ oD, DUIX) = o™ () 0 o [UIX) + ™1 (%) 0 a8 (w[u](X)) 0 0 (%) — ad(w[u](X))
= a8((Lp 10w of 5 [1C0 + ad(F ™1 (W) w[u)(X) — w[w](X)).

Therefore f oD, fe T (P, &, ad) can be defined as

F oD Ju) = Li-10)s of s [u] + ad(F 71 (w)) wlu] — wlul.
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6 - Holonomy groups

Let P=P(M, G) be a principal bundle equipped with a connection I

Definition 29. A smooth curve u:[a, b] — P is said to be horizontal if, for
w'(t) € Hygy .

every t e [a, b],

Definition 80. Let y:[a, b]— M be a smooth curve. A horizontal lift 3 of
y is a horizontal smooth curve y:[a, b] —» P such that for every tela, b,
=(F®) = y(8).

We have the following

Proposition 35. Let y:[a, b1~ M be a smooth curve. For every u e P.,,
there exists a unique horizontal Lift v of y with Y(a) = u.

Proof. See eg. [3].

Definition 81. Let y:[a, b]— M be a smooth curve. The parallel displa-
cement along y is a map
7’: Py(a)—épy(b)
defined as follows:

for every u e P,q, 7(u) = y(b), where ¥ is the unique horizontal lift of y
starting from w.

The proof of the following proposition is left as an exercise.

Proposition 36. Let y:[a, b]— M be a smooth curve; then

1 The parallel displacement along y commutes with the action of G, i.e. for
every aeG we have YoR, = R, oy. In particular, ¥ is a bijection.

2 If vy '® =yla+b-1t), then (")~ =571,

3 Ifv:[b, cl— M 1is another smooth curve such that v(b) = y(b) and v-y de-
notes the composite curve, then (v-y)™ =vo7.

Consider a representation ¢: G — Aut(V) and let & = P X_ V be the associa-
ted bundle. We have the following

Definition 82. Let: x e M, y be a curve in M starting from z, se E,. We
define the parallel transport o of s along y in the following way. Let u € P,, let
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£=1"1(s) and let ¥ be the parallel desplacement along y starting from u. Then
set o(t) = y()(&).

It is clear that ¢ is independent of the choice of u € P,; and that ¢ is cova-
riant constant along y.

Give x € M, let C(x) be the loop space at x, i.e. the set of all closed smooth
curves starting and ending at the point x and let Cy (x) be the subset of C(x) con-
sisting of the loops which are homotopic to zero. Then we set

Definition 33. &(x) = {7
reference point z.

Py (x) = {7]y € Cy (@)} is called the restricted holonomy of I' with reference
point .

y e Clx)} is called the holonomy group of I' with

Both @(x) and 9,(x) can be realized as subgroups of G.

In fact, fix u € P, ; therefore, for any y e C(x), there exists a(y) € G such that
¥(u) = ua(y), which, in virtue of Proposition 36,1, completely describes y. It is
clear that the map ¥+ a(y) maps isomorphically @(x) and P, (x) into two sub-
groups of G, denoted respectively by ®(u) and @, (x) and called the holonomy
group and the vestricted holomomy group with reference point u.

We have now the following

Proposition 37. Consider on P the following equivalence relation:
u~v if u and v can be joined by a horizontal curve.

Then:
1 dw) = {aeGlu~ua}.

2 If v=ua, then O@w) = dda '}Pw)) and Py@)= Aad(a = )Py ().
Therefore O(u) and () (resp. Dy(u) and P (v)) are conjugate in G.

3 If u~v, then Ou) = 0W) and Py(u) = P, ).

Proof.
1!

2 Given be®m), from 1 it follows that wu~ub and so
v = ua~uba = va"'ba, ie. a 'bae () and therefore O(v) = Ad(a ' (Pw)).
Strictly analogous argument for the restricted holonomy groups.
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3 If u~wv then, for every aeG, ua~wa and so, by transitivity,
u~ua <> v~va. Let ¥ be a horizontal curve from % to v. Given a e @, (u), then
there exists a horizontal curve 7 from u to ua such that =(z) € Cy(=(u)). Then,
clearly, (R, o7)-7-7 ! is a horizontal curve from v to va which projects to a loop
in Cy(=(v)) and also so ae@); therefore Py(u)cPy(v) and thus
Dy (u) = Py ().

Corollary 6. The holonomy groups Pu), u e P, are all isomorphic.

Proof. Just note that, given u, v e P, then there exists a € G such that
U~ V.

We gather in the following some basic results on holonomy (see e.g. [3], for
the proofs).

Theorem 2. Let P = P(M, G) be a principal bundle equipped with a con-
nection I and fix u € P. Then O(u) is a Lie subgroup of G, whose identity com-
ponent is Py(u).

Theorem 3. Let P = P(M, G) be a principal bundle equipped with a con-
nection I'. Let u be an arbitrary point of P and let P(u) = {ve P|v~u}. Then
Pu) is a O(u)-reduction of P and I' is reducible to a connection on P(u) (cf. De-
finition 34).

Theorem 4. Let P = P(M, G) be a principal bundle equipped with a con-
nection I'; let Q be the curvature form of I and let w € P. Then the Lie algebra of
O(u) is equal to the subspace of & spanned by all elements of the form
QIX, Y), for ve Plu) and X, Ye H,.

Theorem 5. Let P = PWM, G) be a principal bundle; if dimM = 2, then
there exists a connection I' on P such that, for all we P, P(u) = P.

We are now in position to prove the following

Proposition 38. Let P = P(M, G) be a principal bundle; then the follo-
wing facts are equivalent:

1 P admits a flat structure.
2 P admits a bundle atlas with constant tramsition functions.

3 There exists we C(P) such that Q,=0.
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Proof.

1=2 Cf. Proposition 16.

2=3 OCf. Remark 7 and Remark 10e.

3=1 Cf. Theorems 2, 3 and 4, we have that

P= P(’U;) X([)(u) G.

@, (w) is trivial, ®(w) is discrete and P(u) is a covering space of M. Moreover, we
have a surjective homomorphism p: 7 (M) — Pu). P(u) = M/kerp and so,
P=Mx,G.

7 - Connections and bundle morphisms

We want to describe the behaviour of connections with respect to bundle mor-
phisms (cf. again [3] for the proofs).

Proposition 89. Let f=(f', f"): Py(My, Gy) - Py (M3, Gp) be a bundle
morphism between principal bundles, such that the induced map fi My — M, is
a diffeomorphism. Let I'y be a connection on P; with connection l-form w;.
Then

a There exists a unique connection I's on Py with connection 1-form wy such
that

FHwp) =fiom

and so the horizontal subspaces of I'y are mapped by f into the hovizontal sub-
spaces of I'y.

b If Q, and Q, are the curvature forms of I't and Iy respectively, then
f*(Qz) =f>;<'°~Ql-

¢ Ifu,e Py and uy =f'(wy), then f" maps the I't-holonomy group P(u,) on-
to the Ty-holonomy group ®(uy) and the restricted I'i-holonomy group Dy (u,) on-
to the restricted I's-holonomy group Po(us).

Remark 11. As a consequence of Proposition 39, we have that, given two
principal bundles P = P(M, G) and Q = Q(M, H), an element w € C(P + () uni-
quely determines wpe C(P) an wge C(Q) such that w =fE(wp) +f§(wg).
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PI‘OpOSition 40. Let f= (f,, f”): Pl (Ml7 Gl)'—)Pz (Mz, Gz) be a b?,é'ndle
morphism between principal bundles, such that f": G, — Gy is a group isomor-
phism. Let I'; be a connection on P, with connection 1-form w,. Then

a  There exists a unique connection Iy on Py with connection 1-form w, such
that
SH(w2) = fiowy

and so the horizontal subspaces of I'y are mapped by f into the horizontal sub-
spaces of I'y.

b If Q) and Q, are the curvature forms of I'y and I'y respectively, then
F5@) =fi ol

¢ Ifu,ePyand uy=f'(w), then f" maps the I';-holonomy group ®(u,) on-
to the I's-holonomy group D(us) and the restricted I'-holonomy group Po(u,) on-
to the restricted I's-holonomy group @, (usy).

We have also the following

Proposition 41. Let I's and I'y be connections on the principal bundles
P=PWM, G) and Q = QM, H) respectively and let wp and wq be their connec-
tion 1-forms. Then

a There exists a unique connection I' on P + Q with connection 1-form w,
such, that
w = fE (wp) + f§ (wq)
and so the horizontal subspaces of I' are mapped by fp (vesp. fy) into the hori-
zontal subspaces of I'p (resp. Ig).
b If Qp, Qq, Q are the curvature forms of I's, I'g, I' respectively, then

Q=fEQp) + f§Qq).

¢ Let (u, v) e P + Q. The holonomy group ®(u, v) of I' is a subgroup of the
product P(u) X B(v) of the holonomy groups of I's and I'y and the same state-
ment holds for the restricted holonomy groups.

The following construction is an important application of previous results.
Let (¥, g) be a vector bundle of rankr = p + ¢ equipped with a Riemannian
structure and let ' c £ be a subbundle of rank p. Then F'* is the subbundle of £
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defined by the condition: for every x e M, F;- = (F,)*. In order to simplify our
notations, set S = F'!; it is obvious that rank S = ¢ and £ = F & S. Furthermo-
re O,(F) + 0,(8) is a (O(p) X O(g))-reduction of O, (%) with embedding

it 0,(F) + 0,(S) = 0,(E).

Let fp: Oy(F) + 0,(S) — Oy (E) and fs: O, (F) + 04(S) — O, (E) be the natural
maps. Let w e C(O,(E)). Then i*(w) splits as

1 (w) = + «.
According to the orthogonal decomposition

o(p + q) = [o(p) D o(g)] ® N

0 —tA
where M = {(A 0 )|Aqu,p(R)} =M, ,(R)
we have w e C(O,(F) + 0,(8))
Y = ToR B
and =i 411G = (1" f1e))

for wpe CO,(F)) and wge C(0,(S)). Moreover

aeil(Og(F)+Og(S), M, ad)
(0 =t
and a-(o_ )

for cedt (O, (F) + 0y(8), My, ,(R), ¢)
(where ¢: O(p) X O(g) — Aut (M, ,(R)) is given by (4, B)(X) = BXA -1y,

We can extend w as an element of C(O,(£)) and « as an element of
T O, (B), o(r), ad); then, according to Remark 10d

Q, =0+ Dy + 3la, al.
Therefore, on O,(F) + O,(S), we have

_ f}k'(-Qa,F) - %[td; al _Da,tcr

(7.1 Q,
Do [5Q5) — 3lo/ta]
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(7.1) is called the Codazzi-Mainardi equation. ¢ is called the second fundamen-
tal form of F in E. Therefore —'c is the second fundamental form of S
in K.

It is immediate to check that, if s e A’ (F), then V,,s decomposes according to
the splitting A'(E) = AL (F) ® N (S) as

(1.2) : V,s=V;. s+ L(o)s.

Consider now, as special case of Proposition 389, a reduction
QM, H) c P(M, G).

Definition 34. A connection on P(M, &) constructed from a connection on
QM, H) is said to be reducible to QM, H).

The proof of the following lemma is straightforward

Lemma 1. Let P=PWM,G) be a principal bundle, let @ = QWM, H)
be a H-reduction of P and let I' be a connection on P. If for every u e @ the
horizontal subspace of T, P is tangent to Q, then I' is reducible to a connection

on Q.

We have the following

Proposition 42. Let P=PWM,G) be o principal bundle and let
Q = QWM, H) be a H-reduction of P. A connection I' on P is reducible to H,
if and only if the section of E =E(WM,G/H, G, P) corresponding to Q 1is
I-parallel.

Examples 14. Let E = L(E) Xg1q, gy R" be a vector bundle of rank » and
let I" be a connection on L(&) with connection 1-form w.

a Let g be a Riemannian structure on E and let O, (&) be the correspon-
ding O(r)-reduction of L(E). Then I' is reducible to O,(E) if and only if V,g = 0.
In this case, I' is called a g-Riemannian connection.

b Assume r = 2q and let J be a structure of complex vector bundle on E.
Let Ly (E) be the corresponding GL(g, C)-reduction of L(&). Then I' is reducible
to Le(®) if and only if V,J =0. In this case, I" is called a J-holomorphic
connection.
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8 - Scalar product. Hodge’s = operator. Codifferential

Let E be a vector bundle of rank » over the n-dimensional manifold M. Recall
that

E = L&) Xqo R o= std

E* = L(E) Xgu y RT)* o= std™!
E*QE = L(E) Xgpe, m 9l R) = g e=ad
E* ® E* = L(E) Xq10. 1) 9lr, R) o =tad

(where ‘ad(a)X =‘a~1Xa™!).

Let now % be a Riemannian structure on E and let ke 9 °(L(E), gl(r, R)!ad)
be the corresponding element (Remark 8a). Let (,) be the (pointwise) scalar
product defined on 5 °(L(E), R", std) as

(8.1) (g, 7) = o (u) h(w) v (u)
and on JY(IL(E),(R™)*, std™!) as
(8.2 (%, 7 ) = o* (W) b~ () b+ (u).

Clearly, (o, 7) and (¢*, z*) are well defined functions on M.
Moreover b: 3 °(L(E), R", std) —» T °(L(E),(R")*, std"?), defined by
b(o)(u) = to(u) h(u), satisfies

(8.3) {b(a), b(=)) = (s, 7).
b extends as b: TP(L(E), R", std) — 57 (L(E), (R")*, std~!) simply setting
(84) b(=* (a) ® o) = =* (a) ® b(o).

note also that b~!(c*)(w) = k™! (w) o™ (w).
Then (,) extends naturally to I?(L(E), R", std) and 97 (L(E), (R")*, std™1),
simply setting :

8.5) (7* (@) ® g, z* (b) ® 7) = g(a, b){s, 7).

We can now set the following

Definition 35. Assume M is oriented with volume element du(g). If
a, Be TP(L(E), R", std) (or IP(E),(R")*,std™!)) have compact support,
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then set

(8.6) (e, B) = [{e, B) du(g).

Under the further assumption M is oriented with volume element du(g), we
can also set the following

Definition 36. Define

x 1 TP(LE), R", std) — "~ P(L(E), R")*, std™!)
by means of the relation
8.7) (* o, ) = (« \ B, du(g))

for a e TP (L(E), R", std) and Be 5" P(LE),(R")*, std™1).
Remark 12. If a =7%(a) ® g, then * a =7*(x a) ® b(o).

Definition 37. Let w e C(L(E)). Define
D} gP(L(E), R, std) —» 7~ 1(L(E), R, std)
as

(88) Dj=(—1)p*_loDwo$.

Proposition 43. If M s compact, then for wae JP(IAE), R", std),
Be TPYI(I(E), R", std) we have

89) Do, B) = (o, D).

Proof. We have

JdlaN«p =0= [D,a A\ *p+ (-DPa AD,(x f)
M M
=[D,aN*B+ (—1D)P o A= (DXB)
M

ie. D, B)= [DyaANxB=[a\+ DB = (z, DFB).
M M
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We have also the following two results. We omit the proofs that can be ob-
tained by direct computation.

Lemma 2. If we C(O,(&)), then
(8.10) D, ob=0boD,.

Proposition 44. If we C(0,(E)), then
(8.11) Dia= — OhJ(D.u@w)gha

where {6y, ..., 0, } is the horizontal lifting of a local g-orthonormal frame in
TM, and (D,g.)x s defined as follows

Dy )z (@@ o =7% (V) p0) @ o + 7* () @ (D, 0)(X)
v being the Levi-Civita connection l-form.
Let o e 5°(L(E), gl(r, R), ad). Then define o* e 5 °(L(E), gl(r, R), ad) as
(8.12) o () = h ™1 (w) b (u) h(w)
and, given e J°(L(E), gl(r, R), ad)
(8.13) (o, 7) = tro(uw) =™ (w).

(o, 7) is a well defined function on M and we can set definitions and obtain re-
sults in strict analogy with those established for J°(L(R), R", std).

More in general, we can extend the previous setting to the case of a principal
G-bundle P over a Riemannian manifold (M, g) equipped with a Riemannian
structure on its adjoint bundle Up.

We are now in position to deseribe the basic gauge-theoretic result in the
theory of characteristic classes. We refer to [6] for a general account.

We need some algebraic preliminaries.

Definition 38. Let V be a finite dimensional K-vector space; set
S%(V) = K and, for k = 1, let S*(V) be the K-vector space of k-linear symmetric
maps V X ... X V— K; equivalently, fe S*(V) is a linear map V® ... @ VK
which is invariant under the action of the symmetric group. Set

S = & SHW).
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If fe S¥(V) and g e S*(V), then we can define fy e S***(V) by the formula
Jor, o Vps) = = + )l E JWoqys s Vo) Wse v 15 -s Voo i) -

Clearly this assigns on S(V) the structure of commutative algebra.

Definition 39. A map p: V— K is said to be polynomial if, given a basis
{61, ..., O } of V* then p e K[6y, ..., 8,1, ie. p can be expressed as a polynomial
in 6, ..., 6.

E.g. if V= K(n), then p: X~ det X is polynomial. With respect to the stan-
dard basis {Ej} of V*, we have

P = 2 E(G) Ej(l)l PN Ef(n)n .

Let P = GP P*(V) be the commutative algebra of polynomial functions on V
expressed as (flrect sum of spaces of homogeneous polynomials. We have the
following

Lemma 8.

a The map T: S(V) — P(V) given by T(f)v) = flv, ..., v) is an algebra iso-
morphism; the inverse map T~ is usually called polarization.

b Let K be d group of linear transformations of V and let Sg (V), P (V) be the
subalgebras of S(V) and P(V), respectively, consisting of K-invariant elements.
Then T induces an isomorphism of Sg(V) onto Py (V).

We are mainly interested in the case V=8, K = G, acting on & via the ad-
joint representation. We have the following fact.

Lemma 4. Let fe SE(®) and let X1, ..., X, Ye &; then

k
(8.14) glf(Xl, LY X, ., X)) =0

Proof. Let g, = exp tY; then by the G-invariance of f, we have

f(ad(gt)le seey ad(gt)Xk) =f(X1’ seey Xk)
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and so, differentiating
k
0= %f(ad(gt)xl, o 0@ X) = 3 s, ¥ X ey X

Let now P = P(M, G) be a principal bundle. A’ (P, &") will denote the space
of &®*.valued p-forms on P (cf. Definition 23 for the case k = 1). Therefore, com-
puting the wedge product by means of the bilinear form &, we have that if
ae NP, &) and pe N(P, &), then a A B e /\P”(}?,,@i’“") is given by

2 @) Xy s Xoy) ®:3(Xs(k FRTRID. SARST B

1
@ADL, - Xie) = Gy 2

It is clear that, if « € A (P, &F) and fe S*(®), then fl«) = foa e N (P), and, in
particular if a=gx*(y) for ye NM) and se AP, ), then
fa) = 7 (y) £s).

The proof of the following proposition is straightforward.

Proposition 45.

a Letae N(P,&),8e NP, &), ye N (P, &) and let f e Skri+l(p @),
Then

(8.15) faNBAY) =(=D*fBAaNY).
b Let ae N (P, &) and fe S¥(®). Then
(8.16) f(de) = df(e) .

Remark 18. From Lemma 4 it follows also that, if o€ NP (P, ®),1 <j <k,
ae NP, ®) and fe SE(®), then

k
(8.17) h}_‘,l(—l)z’x*‘---*‘mf(al ANy eI Ao Aey) =0,

G acts on ©&®* through the tensor product of the adjoint representation, ie.
oX;®...0X) =ad)X; Q... ad(a) X,

Let 77 (P, &, ad) be the space of &®*-valued tensorial p-forms on P. Recall
that, if @ (P) denotes the space of G-invariant p-forms on P, then

1 7 (M) aP(P) is an isomorphism.
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2 For any we C(P), on AP’(P), we have d=D, == odyo(=*)"! (cf.
Remark 9).

We have immediately the following
Lemma 5. If ae 3PP, &, ad) and fe SE(®), then fla) € AP(P).
Then, we have the following remarkable

Proposition 46. For every we C(P), every o TP (P, &, ad) and every
fe SE®), we have

(8.18) df(e) = (D, ).
Proof. It is enough to consider the case a =7z*(y)®8 X ... @5, for
ye N(M) and s;€ T°(P, ©, ad), 1 <j <k. Thus
D,ya=da* (1) Q8 ... Qs + (~1)=x* () D, (5D ... sp)

D,5:0..08)=d5;:®..08) + N5 Q... Qs;)

=d(5,0...Qs;) + é:lsl(@ o Qlw, 5,10 ... Qs
and so the result follows from (8.14).
We have now the following
Proposition 47. For every w e C(P), every fe SE(®), f(QF) is exact.

Proof. Set
k-1
A, ()= anrf(w/\[w, w]" AQE-TL)

(=1 k(- 1)!

ith - .
wit O ok + e — 7 — D!

Then a direct computation shows that dA4,(f) = f(Q*). E.g., consider the case
k=2; then qp=1, a0, = i and so

A () =flwAQ,) - %f(«» Alw, ).
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Now dA,(f) = dfwAQ,) - —é—df(w Alw, o))
= fldw AQ,,) — flo ANdQ,,) — %S—f(d(z) Nlw, w]) + —Eli—f(w ANdlw, w]).

Then do=0,= Lo, 0] dQ,= - 10,01 dlo, o] = 20dw, ol
Therefore, substituting, we obtain

A, (F) = FQu A Q) + 2 flw Alw, 2, = 2 flw, 0] AQ,)
3 ! 3

+ ilgf([w, o] N\ lw, w]) = %f(w Allw, »], w]).

Finally [[w, w], ] = 0 and so, by Remark 13, f([w, w] A [w, w]) = 0 and, again by
Remark 13

fles Ao, Q,1) = flw, @] AQ,) = 0.
We have now

Proposition 48. Asswme Riemannian structure are assigned on M and
Wp. Then for every w e C(P), every a e 37 (P, &, ad) and every fe SE(®), we
have '

(8.19) d*fle) = fID5 o).

~ Proof. Again, it is enough to consider the case « = 7% (y) @ s, for y e N (M)
and se %P, ®, ad). Thus

I fla)=(=1Psd #fl@)=(~ 1P #df(+ @)= (= 1P+ f(D, * x)= (= VP f(+ D+ ) =f(D¥ ).
We have now the following fundamental result
Theorem 6 (Chern-Weil). Let P = P(M, &) be a principal bundle and let

we CP). Let p e SE(®) and set p(Q,) = pQ¥). Then

1 p@Q,) = =* (@(p@,))) for a«(p@Q,)) e N with dx(p(Q,,)) = 0.

2 Themap Wp: Sg(®) = H* (M, K) given by Wp(p) = a(pQ,,)) does not de-
pend on the choice of the conmection and it is an algebra homomorphism (called
the Chern-Weil homomorphism).

3 The image of Wp corresponds to the characteristic classes of P.
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4 Let H c G be a Lie subgroup and let ©: Sg (&) — Sy (®) be the restriction
map. Assume @ is o H-reduction of P; then

(820) Wp = KWQ oT

and so mon zero elements of kert represent a wuniversal obstruction to
H-reducibility.

Proof.

1 It follows from (8.18) and the second Bianchi’s identity (5.6).

2 Let N be any smooth manifold; then a straightforward computation leads
to the following homotopy formula: define Z: N’ (N x [0, 1]) —» N’ ~1(N) in the
following way. If p=0 then Z=0. If e N(N X[0,1]) is written as

1

a=dit \Na+b, then Z(«) = [adt. Then
0
8.21) dZ(a) + Z(da) = if (&) — iff (@)
where %,: N> N X [0, 1] is given by i (x) = (=, t).
Let now g, w; € C(P) and consider @ = (1 — ) wy + tew; € C(P X [0, 1]). It is

clear that if' (@) = wp and i (@) = w; and thus i (Q;) = Q,, and i Q) =Q,,.
Now, for any p e SE(®) we have

d(Z(pQ3)) = i (p(Q3)) — i (p(Q;)) = pQ,,) — pQ,,) -

3 and 4 are direct consequences of definitions and basic results of the theory of
characteristic classes.

9 - Linear connections

Connections on L(M) share special features. Let start with the following

Definitions 40. A linear comnection is a connection on L(M). Let
ne N(TM) be defined by 5(X) = X; then

0=L""(ned (LUM),R")

is defined by 6u)(X) =u (@ [u])(X)). 6 is called the canonical form on
L(M).
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Let now w e C(L(M)). Consider the map
%o: TL(M) — L(M) X R" X gl(n, R)

defined as follows. If X e T\, L(M), then x%,(X) = (u, 0(X), «(X)).
We have the following

Proposition 49. ., is a bundle isomorphism and so, in particular, TL(M)
is isomorphic to a trivial bundle and so L(M) is parallelizable. Moreover y, is
GL(n, R)-equivalent and, for any X e glin, R), we have x,(X* ) = (u, 0, X).

Proof. It is immediate to check that y is a bundle morphism. Moreover, fix
% € L(M); then

1 Let X e T, L(M). If x,(X) = (u, 0, 0), then both X e H;; and 6(X) = 0. Thus
X =0 and so yx, is injective.

2 Given(t, X) e R™ X gl(n, R),then x,, (u, (w(£))™, X* () = (u, £ X),andso x,
is surjective.

The rest is obvious.

We have now

Definition 41. B(E)w) = y, ' (u, & 0) is called the fundamental w-horizon-
tal vector field corresponding to £e R"™.

The proof of the following proposition is straightforward.

Proposition 50.
1 For any ae GL(n, R), £ R™, we have

9.1) (Ry)x (B()) =Ba'¥).

2 If £#0, then B(£) never vanishes.
3 For any Aeglin, R), £ R", we have
(9.2) [A*, B(&)] = B(A?).

Note also that, if {e;, ..., e,} and {Ej.}1<j k< are the standard basis of
R™and gl(n, R) respectively, then {B(e;), ..., Ble,), Efi, ..., Ex, } represents a
global section of L(L(M)).

Definition 42. Given w e C(L(M)), 8, = D, 0 is called the torsion form of »
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and T, = L(O,) e \*(TM) is called the torsion tensor of w. It is easy to check
that

(9.3) T.X, V)=, )xY - (V,)y X - [X, Y].

As a consequence of Proposition 26 and Proposition 28, we have the
following

Proposition 51. We have
(94) B,=dd+w A6
(9.5) D,0,=0,N0 (first Bianchi’sidentity).

A basic result in Riemannian geometry is the following

Theorem 7. Let (M, g) be a Riemannian manifold; then on L(M) there
exists a unique Riemannian connection with vanishing torsion. This connection
is called the Levi-Civita connection.

The exterior covariant differential operator of the Levi-Civita connection of
(M, g) is usually denoted by V¥.

In general, given a vector bundle £ equipped with an exterior covariant diffe-
rential operator V, we can consider the tensor product V=V QYV:
N(NE)— N(NE). We have immediately

o P
©6)  (VxXy, ., X,) = Veo Ky, ooy X)) = Loy, VK, ., Xp)

j=

and therefore
4 . o
0.7 (VolX, .., X,) = .20('—1)JVXJ_G(XO, v Xy oy X))
i<

. o} Q
+ 2 (DX, X ) Koy oy Koy ey Xy s Xp)

O0si<ksp

p — (o]
= 2 (D (Vga&y, . X, 0 X).
i
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10 - Moduli spaces

We want to give a very brief aceount on moduli spaces; for a more detailed de-
seription and proofs, we refer to a forthcoming paper.

Let P be a principal G-bundle over a compact Riemannian manifold (M, g) and
let ¢ be a Riemannian structure on its adjoint bundle Up = P X,y G. Set

@, (P) = LE-completion of the gauge group G(P)
£2(P, G) = L%-completion of J7(P, G, ad)
£2(P, g) = L%-completion of 7P, &, ad)
(with respect to g ® ¢). Fixing w; e C(P), define
C,(P) = wy + £L(P, ®).
Therefore Q: C(P) — ££_,(P, ®)
z\md Qulwl: a—=>D,a.

G, +1(P) acts smoothly one the right on G (P). This action is not effective; in
fact ' ;

fio—w for every weC(P) « feClG)CGsii(P).

Therefore, if we set ¥, (P) = G;,1(P)/C(G), then Gf,,(P) acts effectively on
C,(P). Set £*, (P, G) = £2, (P, ®/CG).

Proposition 52. Let w e G (P); then, the following facts are equivalent
a D, £ (P, &) — (P, ®) has a non trivial kernel

b w is a fixed point for some fe G¥.(P).
Definition 43. o is said to be simple if a (or b) does not hold. Set
C,(P) = {we C(P)|w is simple}

thus GF,,(P) acts freely on @s (P).
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Note that, for any we és (P), we have
Tw(g‘;k+1(P)w) =Dw"e2+1(P) @j)-
We have the following

Proposition 53. Let wye C, (P). Then, there exists a netghbourhood of 0 in
wy + ker DY, such that U = G¥, 1 (P)V is a neighbourhood of w, in C,(P) diffeo-

morphic to VX ¥, (P). More precisely, there exists a smooth map
a: U~ G¥, 1 (P) such that

a For every welU, clw)weV

b Z:U—-V X & (P) given by Z(w) = (c{w) v, olw)) is a GF, (P)-equiva-
riant diffeomorphism (where G¥.,(P) acts on the right on V X G¥, ((P) as
9w, ) = (v, g 7' f).

Note that ¥ corresponds to the following map in a usual principal bundle
struecture:

Given a local trivialization @: 7z Y(U)—>U X G, &) = (=(u), @), let
s(x) = ¢~ (x, e) be the associated section. Then Z: =~ (1) — s(U) X G is given by
D) = (™ (), ¢~ ().

Theorem 8. I, (P) = @s P)/g¥,1(P) is a Hilbert manifold and
C(P) = M, (P) is a principal GF, | (P)-bundle.
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