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A decoding method for planar near-ring codes (**)

Introduction

Let N be a near-ring and n, m e N. Define an equivalence relation = on N by
n=mifkn = kmfor all k € N. Then N is called planar if there are at least 3 equi-
valence classes w.r.t. =and every equation of the form xn = wxm + k, where
n, m, k€ N, n#m, has a unique solution.

To construet a planar near-ring on a group G is nothing else than to construct
a group of fixed point free automorphisms on G. For if N is planar and % € N,
n#0, then ¢,: N> N, ¢,(k)=kn, keN,s a f.p.f. automorphism, i.e. if
$n (k) = k for some k € N then k = 0 or ¢, is the identity map on N. Moreover,
@ = {¢,|n # 0} forms a group. The order of @ is equal to |N/= |, the number of
equivalence classes w.r.t. =. Conversely, if & is a f.p.f. group of automorphisms
onagroup G and R = {y;|i € I} is a (not necessarily complete) set of representati-
ves of the orbits @y, then (G, +, ¢) forms a planar near-ring if we define
vré=0ford¢ U{Py;liel} and y-5 & = (), if d € Oy, for some i e T and ¢ € D is
the (unique) automorphism which maps y; into &. All of these results are well-kno-
wn and mainly due to Ferrero [2];.

Example 1. As a specific example due to J. R. Clay [1]; let F be a finite
field and let U be a subgroup of F*. Then U acts as a group of £.p.f. automorphi-
sms by right multiplication. The nonzero orbits are just the cosets of U in F'*. By
our construction above we obtain a planar near-ring.

Due to several connections with geometry and combinatorics planar near-rin-
gs have received a lot of interest. In all of the following we let N be a finite inte-

(*) Indirizzo: Department of Mathematics, Johannes Kepler University, A-4040
Linz.
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gral planar near-ring and let @ denote the f.p.f. automorphism group associated
with N. Also, N* shall denote the set N\ {0}. Then N gives rise to a balanced in-
complete block design as follows.

Theorem 2 (Clay [1], Thm. 2). Let N be a finite integral planar near-ring
and B = {nN*+m|n, me N, n#0}. Then (N, B) is a BIBD with parameters
v —-1)

v=IN, k=lol = N/, b= =

, r=v—1, A=Fk~1.

Sets of the form nN* + m are called blocks. The number of blocks b in Theo-
rem 2 is evident from the following result.

Theorem 3 (Clay [1] Prop. 1). Let nN*+m, pN*+q be blocks. Then
aN* +m = pN*+q if and only if m = q and nN* = pN*,

There are several other ways to obtain a BIBD from a planar near-ring. For in-
stance, it was shown by Ferrero [2], that (N, B) with B = {nN +m|n € N*} «of-
ten», but not always forms a BIBD.

We now associate two different codes to the BIBD obtained in Theorem 2.

(1) The row code @ (N).

Here we associate to each block B =nN*+m a function cg: N — {0, 1},
where cg(p)=1 if peB and cg(p) =10 otherwise. Then
CN)={cz|BeB}c{0, 1}¥. Al cge@(N) have  weight £,
Le.|{ples(p) =1} = k.

(2) The column code Co(N).

For the column code we associate to each point peN a function
cp: B—{0,1}, where ¢,(By=1 if peB and ¢,(B)=0 otherwise. Then
CN) = {c,|p e N} ¢ {0,1}%. All ¢, € G(N) have weight r.

A study of these (nonlinear) codes has been initiated in [3] and [4]. In this pa-
per we are concerned with decoding methods for ¢ and C,.

First we consider the row code & WN). Let N={p,..,p,} and
B = {B1,...,By} be any enumeration of the points and the blocks. Later on we
find it convenient to work with a special enumeration of the points. The b X v inci-
dence matrix A = («;) of the design (N, ) is then defined by «; = 1if p; € B; and
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a;; = 0 otherwise. Thus each codeword cp € € (N) can be represented as a row of
the incidence matrix A. It is easy to find the minimal distance min and the error-
correction capability of @ (V).

Proposition 4 ([3], Prop. 1.1). Let u=max {|B,nB,||By, Be B, Bi#B}.
Then: (1) dun=2(k—w). (@) e<k—pu—1 errors can be corrected.

Now suppose that we send a codeword cz, B = nN* +m, n+# 0, through a
channel. The receiver on the other side of the channel obtains a possibly different
sequence ¢ € {0, 1}". His task is to determine #, m. For each p € N such that
¢(p) =1 one obtains an equation p = nl+ m = ¢;(n) + m for the unknown pair
(n, m). Let E denote the set of all those equations. If errors have occured in the
transmission, then E will be inconsistent. But from Proposition 4 we know that if
the number of errors is less than or equal & —u — 1, then n, 7 can be recovered.
Thus we have to look for a solvable subsystem whose unique solution is (n, m).
For a real number « let [x] denote the least integer z = x.

Proposition 5. Let ¢ denotes the received sequence and let
z = |{ple(p) = 1}|. Suppose that not more than k — u — 1 errors have been made.
2+p+1

5 ]
has at most one solution (s, t). (3) There exists a solvable subsystem E' ¢ E with
ZH+u+1

2
where B =nN* +m, has been sent.

Then: (1) 2k—p—1=22=p+1. (2) Every subsystem E'c E with |E'| =[

|E'|=[ 1 If (n, m) is the solution of any such system E’, then cg,

Proof. Let cg, B=nN*+m, n+#0, denote the transmitted codeword.

(1) If2<p+1, then cg(p) = 1 and ¢(p) = 0 for more than k —p — 1 points
p, since cg has weight k. If 2> 2k — . — 1, then cz(p) = 0 and c(p) = 1 for more
than k& —u —1 points p.

(2) Suppose (s1, t;), (83, %) are both solutions of E'. Then there exists at

z+;+1] points p such that pe(s;N*+t)n(s,N*+1,). By (1)

2+u+1

least [

z2Zu+1, hence [ 1=p+1, a contradiction.

(3) Let 2’ <z denote the number of points p such that cg(p) =c(p)=1.
Then the number e of errors made in the transmission is given by
2+u+1

e=z—2'+k—-2' <k-—p—1. Thusz' = )

1. These 2’ points determine a
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set E' ¢ E of equations for which (n, m) is the (unique) selution. It sufficies to
show that the distance d(¢, ¢g) between ¢ and cgis less thanorequal to & —p — 1.

Since (n, m) solves E’, there are at most z— [ﬁ—%—ﬂ] points p such that
z4+u+1 .

c(p) =1 and cg(p) = 0. Also there are at most k — [—‘2———] points p such that

c(p)=0 and cg(p) =1. Consequently dlc, cg)sz— [_z__—i:_;_i_l_]

+k—[z+;+1]\k—y—1

The following example shows that in general we have to take a solvable sub-

z24u+

system E' with at least [ 5 1] equations in order to decode correctly.

Example 6. Let F denote the prime field with 13 elements and
U={8, 12, 5, 1} < F*, According to Example 1 we obtain a planar near-ring N
and therefore a BIBD with parameters (v, b, r, k, 2) = (13, 39, 12, 4, 3) by
Theorem 2. Thus G, (N) consists of 39 codewords of length 13 and weight 4. By
Table I1I in Clay [1], N is a «circular» planar near-ring which means that 8 points
determine a unique block. Consequently » = 2 and G, (V) is a single error-correc-
ting code. Consider the block B:=2N*+1=2-U+1= {4, 12, 11, 3}. If we let
p1=0, po=1,...,013 =12, then cz corresponds to the sequence 0001100000011.
Suppose that we receive 0011100000011, i.e. one error has been made. Then the
three equations 2 =3,(s) +t, 3 =¢(s)+1, 11 = ¢3(s) +¢ form a solvable sub-
system E’. Since 2, 3, 11e€3-U and N is circular 3-U #2-U + 1 is its unique
2+p+1

5 ]=4 equations to decode correc-

solution. Thus we need at least [
tly.

Now let §= {F'} be a fibration on the group (N, +), i.e. F has the following
properties:

(1) Each F € Fis a subgroup of (N, +) and F # {0}. (2) u {F|F € F} = G.
(8) For each F, F' € & either FF=F' or F nF' = {0} holds.

Further we require that & is @-invariant, i.e. ®(F) ¢ F for every F' € F. Thus,
each F € &is a union of orbits w.r.t. the action of @. It will be evident from our
next results that the number of orbits in each fiber F € & should be as small as
possible. Once we have chosen such a suitable fibration = {F, ..., F,}, where
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Fi=0U{nzN|1<j<j;}, 1<i<t, we can list the points blockwise as follo-
ws

According to this enumeration of the points we define the b X v incidence matrix
of our design (N, B). As far as the row code is concerned one can use any enume-
ration of the blocks.

Now suppose that cg, B = nN* + m is the transmitted codeword and that ¢
has been received. As before let E = {ple(p)=1}={p;...p,}. Also let
E*={p e Elc(p) = 1is correct} and ¢; = |{p € F;|c(p) = 1}|, 1 <i<t. Using the
above enumeration of the points it is easy to determine whethern n, m belong to
a common fiber or not.

Theorem 7. Ifmn, m belong to a common fiber, then ¢; = [ ——— ¢ +M +1 1for so-
Z2+u+1

5 1, then n, m e F;.

me 1<j<t. Conversely, if e;=|

Proof. If m,meF; then cz(p)=0 for all p¢ F;. By Proposition 5

+

|E*| = [M ﬁ—g+—1]. Now suppose that e; = [z——*.—‘;—l],
but either n or m is not an element of F;. Let p;, p, € MN* +m) nF;, say
P1=¢1(n) +m, py = ¢5(n) +m. Then p, —p, = (3, — ¢, )(n) € F;. If n ¢ F;, then,
since all fibers are @-invariant, we have that (¢; — ¢,)(n) = 0, hence Py =po. If
7 € F;, then by our assumption m ¢ F;, hence (nN* +m) N F; = ¢, since m # 0.

1, hence ¢; =

In any case |[(nN*+m)nF;|<1. Since IE*[B[E-%LI], we obtain that
z=[E[>[z+#+1]+[z+“+1]—1>z+,u>z, a contradiction. Consequen-
tly », m e F;.

After this preliminary result, we show how 7, m can be recovered. Let
pi€kl, 1si<z and let E;=E —p; If p;e E*, then p; = é(n)+m for some
¢ € 9, hence E* —p; c nN* — ¢(n). Suppose that n € F. Since |[E* —p;| = |E*|
> [-z—+—*2‘il] it follows that |E;nF| = [—zi‘;ﬂ
the existence of 1 <i<zand F € Fsuch that |E;nF|=[
ve the following

]. Thus we have established
z+up+1

5 1. We now ha-

2H+u+l

Theorem 8. If |E;nF|=[ 5

1 for some 1 <i<z, then there exists
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Z2+u+

exactly one f e F such that |(E;+f)naN* 5 ! 1 for some a e N*. In

this case m = —f+p; and aN* = nN*,

=1

Proof. We can write p; as p;=¢(b)+m for some beN. Then
E#*—p;cnN*—¢0b). If b ¢ F, we can proceed like in the proof of Theorem 7 to
show that [(nN* — 4(b)) N F| <1 and get a contradiction. Thus ¢(b) € F' and we
have established the existence of f € F' as claimed in the statement of the theo-

rem. Now suppose that [(E;+f) naN*|= [Ej—‘u—t—l—] for fe F and a € N*.

If p e E*, then p —p; +f € nN* — $(b) + f, hence |(E; +f) n(mN* — 4(b) + 1)
2+ut+1

=[ 2 ]. Suppose that aN*#nuN* or f#¢(b). Then [aN*n(nN*
—¢(b)+ 1) <p by Theorem 3. By our assumption |(E,-+f)maN*]>[z+‘;+1 1,

2+u+1 2+u+1l
2 1+l 2

Consequently aN* =nN* and ¢(b) = f, hence —f+p; = m.

hence |E;+f|=|E|=2=] ]—u=z+1, a contradiction.

Provided that all fibres are small, the element f € F in Theorem 8 can be readi-
ly found. Finally we turn to the columm code @, (N). Its error-correction capabili-
ty is given by the following

Proposition 9 (3], Prop.1.2). (1) dyn=2(r—2). @) esr—2a—1 errors
can be corrected.

Now suppose that the codeword ¢, € G;(N) has been emitted and that ¢ is the
received message.

Let E = {B|c(B) = 1}. For each B € E, B =nN*+m we obtain an equation
p = ¢(n) + m for the unknown point p. Let us denote this set of equations also by
E. The following result is similar to Proposition 5, so its proof shall be
omitted.

Proposition 10. Let z=|E| and suppose that not more than r—21—1
errors have been made. Then: (1) 2r—x—1=z= 2+ 1. (2) Every subsystem
E' ¢ E with |E'| = [?ig—”
re exists a solvable subsystem E' ¢ E with [

1 equations has at most one solution q € N. (3) The-

z+2r+1
2

ution of any such system E', then the codeword c, has been sent.

1 equations. If p is the sol-

Proposition 10 leads us to the following decoding algoritm: Let
E = {Ble(B) =1} =t {m; N*+my,...,n,N*+m,} and E* = {B|c(B) =1 is cor-
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rect}. Consider the set of propositions
(*) Hny) +my—mg e ngN* .. ¢(ny) +my—m, € n,N*

where ¢ € @. By Proposition 10, n; N* +m,; € E* if and only if there exists an ele-

ment ¢ € @ such that ¢ solves at least [Ej—%—t}—] propositions from (*). In this ca-
se Proposition 10 (3) tells us that p = ¢(n,;) + m, is the unknown point, i.e. ¢, has

z+2+1

been transmitted. If it is impossible to solve [ ] equations for any ¢ € &,

then N*+my¢ E* Thus one can vreplace c(N*+my)=1 by
e(n, N*+m,;) = 0 and move on to the next block n, N* 4+ m, in order to repeat
the same procedure, etc. If || (and therefore every orbit) is reasonably small,
then the above method turns out to be fairly quick.
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Abstract

Using planar near-rings J. R. Clay and G. Ferrero constructed BIB-designs of kigh ef-
ficiency. For instance, if N is a finite integral planar near-ring, then the set of blocks
B = {nN*+mln, meN, n+0}alwaysforms a BIBD. By taking either the rows or the co-
luwmmns of the incidence matriz of such a BIBD one can obtain nonlinear codes. The purpose
of this paper is to develop decoding algorithms for these codes.






