JERZY J. KONDERAK (*)

An example of an almost hermitian flat manifold which is not hermitian (**)

1 - An almost hermitian manifold which is not hermitian

We consider the space \mathbb{R}^4 as a differentiable manifold. Let $x=(x^1,\,x^2,\,x^3,\,x^4)$ be a point of \mathbb{R}^4 and let T_x be the tangent space of \mathbb{R}^4 at the point x.

Let $\{e_j\}$ be the natural basis defined by $e_j = \partial/\partial x^j$. We consider the canonical metric g on \mathbb{R}^4 given by $g_{ij} = g(e_i, e_j) = \delta_{ij}$. The manifold \mathbb{R}^4 with the Riemannian metric g becomes a riemannian manifold.

In the vector space T_x we consider the basis $\{E_j\}$ defined by

(1)
$$E_1 = e_1 \qquad E_2 = e_2 \cos x^1 + e_3 \sin x^1,$$

$$E_4 = e_4 \qquad E_3 = -e_2 \sin x^1 + e_3 \cos x^1.$$

We note that the basis, which we have constructed, is orthonormal i.e. $g(E_i, E_j) = \delta_{ij}$.

Then we define an almost complex structure. In fact, the following identities

(2)
$$J(E_1) = E_2$$
 $J(E_2) = -E_1$ $J(E_3) = E_4$ $J(E_4) = -E_3$

define in each T_x a homomorphism J. It is immediate that J is an isomorphism and that $J^2 = -1$. Hence in this way \mathbb{R}^4 becomes an almost complex manifold.

 $^{(*)\,}$ Indirizzo: Dipartimento di Matematica, Università di Bari, via Re
 David, I-70125 Bari.

^(**) MR classification: 53B35. - Ricevuto: 28-VI-1991.

We also observe that for each point x of \mathbb{R}^4 we have

$$g(E_i, E_j) = g(JE_i, JE_j).$$

This implies that the almost complex structure J is compatible with the metric structure g, i.e. for any vectors X, Y on \mathbb{R}^4 we have

(3)
$$g(X,Y) = g(JX,JY).$$

It is also easy to observe that both structures J and g are smooth as x varies on \mathbb{R}^4 . Hence it follows that \mathbb{R}^4 with the introduced structures is an almost hermitian manifold.

Since with respect to the coordinates x^k (k = 1, 2, 3, 4) the coefficients of g_{ij} of the metric g are constant, then the curvature tensor R vanishes at each point x of \mathbb{R}^4 . It means that \mathbb{R}^4 with the introduced structure is an almost hermitian flat manifold.

As the point x varies in \mathbb{R}^4 , equation (1) defines four vector fields also denote by E_j . In such a way get four basic C^{∞} -vector fields on \mathbb{R}^4 . It is an easy computation to get the following relations

(4)
$$[E_1, E_2] = E_3 [E_1, E_3] = -E_2 [E_1, E_4] = [E_2, E_4] = [E_3, E_4] = 0.$$

At this point it is convenient to recall the Nijenhuis tensor N which expresses the torsion of an alomst complex structure J, defined by

$$\frac{1}{2}N(X,Y) = [JX,\ JY] - [X,\ Y] - J[JX,Y] - J[X,\ JX]$$

where X, Y are arbitrary C^{∞} -vector fields on the manifold (cf. [2], p. 123). In our case, applying (2) and (4), we get

$$\frac{1}{2}N(E_1, E_4) = [JE_1, JE_4] - [E_1, E_4] - J[JE_1, E_4] - J[E_1, JE_1]$$

$$= -[E_2, E_3] - [E_1, E_4] - J[E_2, E_4] + J[E_1, E_3] = -JE_2 = E_1 \neq 0.$$

It follows that $N \neq 0$. So we conclude that the almost complex structure J is not integrable. Therefore \mathbb{R}^4 with the given structure is not a hermitian manifold.

2 - Remarks

The example, we constructed in the first part of the paper, permits us to make some remarks.

First of all we recall that a manifold M is called $para-k\ddot{a}hler$ (cf. G. B. Rizza, [3], p. 51) iff for each point $x \in \mathbb{R}^k$ and for each X, Y, Z, W vectors of the tangent space T_x we have

(5)
$$R(X, Y, Z, W) = R(X, Y, JZ, JW).$$

This identity is known as the Kähler identity.

We recall also that, if M is a hermitian manifold, then for each point $x \in M$ and for each vectors X, Y, Z, W of the tangent space $T_x(M)$ we have

(6)
$$R(X, Y, Z, W) - R(JX, JY, Z, W) - R(X, Y, JZ, JW) + R(JX, JY, JZ, JW) - R(X, JY, Z, JW) - R(JX, Y, Z, JW) - R(X, JY, JZ, W) - R(X, Y, JZ, W) = 0$$

- (cf. [1], Corollary 3.2, p. 603). Relation (6) is called the A. Gray identity. We are now able to prove the propositions:
 - P₁. There exist para-kähler manifolds which are not Kähler.
 - P₂. There exist almost hermitian manifolds, statisfying the A. Gray identity, which are not hermitian.

In fact, the almost hermitian manifold (\mathbb{R}^4 , g, J), we constructed in 1 provides an example for both P_1 and P_2 . Since the metric structure is flat, i.e. R=0, then identities (5) and (6) obviously hold. On the other hand since $N \neq 0$ then the manifold (\mathbb{R}^4 , g, J) is not hermitian. Therefore it cannot be a Kähler manifold neither.

We would like to underline that proposition P_1 was already known (cf. e.g. [4], p. 249). However the example in the first part of this paper appears much more simpler than the one in [4].

As a final remark we would like to note that proposition P₂ suggests the study of the almost hermitian manifolds the which satisfy Gray's identity.

References

- [1] A. Gray, Curvature identities for hermitian and almost hermitian manifolds, Tohoku Math. J. 28 (1976).
- [2] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 2, Interscience Publishers, New York 1969.
- [3] G. B. RIZZA, Varietà parakähleriane, Ann. Mat. Pura Appl. 98 (1974), 47-61.
- [4] F. TRICERRI and L. VANHECKE, Flat almost hermitian manifolds which are not Kähler manifold, Tensor 31 (1977). 249-254.

Abstract

In the present paper we construct an almost hermitian flat manifold which is not hermitian. This example demonstrates that there exist para-kähler manifolds which are not Kähler, and that there exist almost hermitian manifolds satisfying the A. Gray identity, which are not hermitian.
