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Locally conformal Kiahler manifolds
with pointwise constant antiholomorphic sectional curvature (%)

1 - Introduction

In [5}; and [10]; G. T. Ganéev and O. T. Kassabov classify the nearly-Kihler
and the almost Kihler manifolds whose antiholomorphic sectional curvature is
(pointwise) constant.

The aim of this paper is the study of the locally conformal Kihler (1.c.K.) mani-
folds whose antiholomorphic sectional curvature v is pointwise constant.

To this purpose, the authors use the decomposition in suitable subbundles
{9} of the vector bundle K(M) on an almost hermitian manifold (M, g, J), who-
se sections are the algebraic curvature tensor fields on M (see [13]).

It is well known that a 2n-dimensional Kéhler manifold, with » = 3, has poin-
twise constant holomorphic sectional curvature H iff it has pointwise constant an-
tiholomorphic sectional curvature v = (1/4)H.

Moreover, such a manifold satisfies the Schiir’s lemma of holomorphic (antiho-
lomorphie) type.

These results dont’s hold for a 2n-dimensional l.c.K. manifold, %= 3.

Indeed, when the antiholomorphic sectional curvature is (pointwise) constant,
then the holomorphic sectional curvature is pointwise constant iff the manifold is
a generalized complex space form. Moreover, the l.c.K. manifolds satisfy the
Schiir’s lemma of antiholomorphie type; in [3], it is proved that they dont’ satisfy
the Schiir’s lemma of holomorphic type.

(*) Indirizzo: Dipartimento di Matematica, Campus Universitario, Via E. Orabona 4,
1-70125 Bari.
(**) This work has been partially supported by M.U.R.S.T.
M.R. classification: 53C55. —~ Ricevuto: 7-VI-1991.
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In the section 3, it is proved that, if n» =3, a 2n-dimensional 1.c. K. manifold
with v (pointwise) constant is either a globally conformal Kéhler manifold or a flat
Kahler manifold or, possibly, its sectional curvature is constant and negative.

Finally, a classification of the 4-dimensional l.c. K. manifolds with v (pointwise)
constant and parallel Ricci tensor is obtained.

1 - Preliminaries

Let (M, g, J) be an almost hermitian (C*-differentiable) manifold, with real
dimension 2n and fundamental 2-form Q, such that Q(X, Y)
=g(X, JY).

According to [13], (M, g, J) is said to be a Ry-manifold (RK-manifold, AH;-
manifold) if its riemannian curvature R satisfies

R(X,Y, Z, W)=R(JX ,JY, JZ, JW),X Y, Z, W e X(M).

Moreover, C(R), ¢, ¢¥, 7, «* denote the Weyl tensor, the Ricci tensor, the

*-Ricci tensor, the scalar and the *-scalar curvature of R.
For a given (0, 2)-tensor field S on M, ¢S and S are the (0, 4)-tensor fields
defined by

SX, Y, Z, W=gX, HST, WM+9&, WMSKX, Z)
—9&X, WS, 2)-9¥, 2)SX, W);
-y WSX, Y, Z, Wy=20X, NSZ, IW)+20Z, W)SX, JY)
+QX, Z)SY, JIW)+QY, MSX, JZ)
—-QX, WS, JZ2)-QF, 2)SX, JW).

Moreover, =; and =, are the tensor fields such that 2z; = ¢g, 2=y = {g.
A (0, 2)-tensor field S on M is said to be J-invariant (J-anti-invariant) if

S, N=SUX, JY)  O&X71)=-SUX, JT)).

Let V be the Levi-Civita connection on (M, ¢). Then, for any (0, 2)-tensor
field S, by a direct calculation, one has

12) (WX, Y, Z, W) =¢(VyS)X, Y, Z, W)
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L3 (VWwWSX, Y, Z, W)=uVyS)X, Y, Z, W)+29(X, IV)SZ, (VyIW)

+29(X, VW Y)SEZ, IW)+29(Z, IW)SX, (Vv )Y) +29(Z, (Vy)W)S(X,JY)

+9(X, JO)SEX, (V)W) +gX, (Vv )Z)SY, JW)+g(¥, W SX, (Vy))Z)

+9¥, VWwHWSKX, JZ)—gX, WS, (VvNZ)—g9X, Ve IW)ST, JZ)
9, JO)SX, (Vv HW)—g¥, (WwNZ)SX, JW).

Moreover, when S is J-invariant, one has

149 (VySJX, JV) = (VyS)XX, ) -S(Vy ) X, JY)—SUX, (Vi) Y).

Let now (M, g, J) be a l.c.K.-manifold; {U,};.; denotes an open covering of
M such that

(1.5) gi=e gy, jed

is a local Kihler metric. The Lee form o =

= 1(Q)(dQ) satisfies

(1.6) w|U]_=doj jed dQ=wAQ dw=0.

M, g, J) is a globally conformal Kihler (g.c.K.) manifold iff  is exact;
M, g, J) is a Kdihler manifold iff o = 0.

Foranyjeld, let ,Ej , ng be the operators defined as in (1.1) with respect to g;-
Then, (1.5) implies ¢; = e 5@y, &5 = ™ Vlxgy-

The Weyl connection V on (M, g, J) is defined by

@ V¥ = VxY - 5 @D Y+eMD+ 19X, DB

where B is the vector field associated with » by means of g.
The following formulas hold

(1.8) (VxHY=— %(w(Y)JX—w(JY)X’*"Q(X, WB-gX, Y)JB)
(19) I(X, Y; Z’ W)=(¢“—§‘,’)P(X’ Y7 Z; W)
+2QX, P(Z, JW)+20(Z, WYPX, JY)

(1.10) p—o*=2m—2)P+P+tr Py
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(L1D) e =4@n-1)tr P=4(n— 1)(@—2-1- ol — % div B)

where
(1.12) MX, Y, Z, W=RX, Y, Z, W-REX, Y, JZ, JW)
(1.13) P=—%—(Vm+-21—w®w)+é“cunzg

and P is the J-anti-invariant part of P (3]s, [9D.

Then, by means of (1.9), (M, g, J) turns out to be a Rg-manifold, iff P is J-in-
variant, iff o is J-invariant ((9], [14D.

Moreover, for any j € J, the riemannian curvature Rj such that

RiX, Y, 2, W=§RX, DZ, W)
where R is the curvature of V, satisfies
(1.14) e R; = (R —¢P)|y, .
This implies
(1.15) g=p—2n—-DP—-trPy e 937U;=(r—2@n—1)tr P)[Uj

where 3, 7 are the Ricci tensor and the scalar curvature of B ([3],, [14]).
PFinally, the explicit expression of the projections {p,(R)} of B on {39} is
given in [3],.

2 - On the antiholomorphic sectional curvature of a l.c.k. manifold

Let (M, g, J) be an almost hermitian manifold. A 2-plane « in 7, M, x € M, is
said to be antiholomorphic if « and Ja are orthogonal. The manifold M has poin-
twise constant antiholomorphic sectional curvature if the sectional curvature
K(x; «) relative to o does not depend on the antiholomorphic 2-plane « in 7', M,
xelM.

In this case, we put v(x) = K(x; «), for any x € M. In particular, M has con-
stant antiholomorphic sectional curvature if the function v is constant.

Moreover, we recall that, when n = 2, a 2n-dimensional Rz-manifold has poin-
twise constant antiholomorphic sectional curvature v, iff its riemannian curvature
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is given by

@.1) R= %¢p+ml— 2”?;‘ Lo (see [5);).
This formula implies

@.2) 8% — (n+ 1)p = -55(37*—<n+1)f)g;

(2.3) @n+1)7—87% = 8n(n®—1)v;

Proposition 2.1. Any l.c.K. manifold (M, g, J) with pointwise constant
antiholomorphic sectional curvature is a Rg-manifold.

Let (X, Y} be an orthogonal basis of an antiholomorphic 2-plane « in T, M,
@ € M. Then, in the hypothesis of the statement, using (1.12), (1.9) and (1.1), one
has

0=xX, V)-aJX, JX)=¢P(X, Y, X, V) =|X|PP¥, V) +|V|FPX, X)

where MX, V)=)(X, Y, X, 7).

Therefore, one has |X|PP(Y, V) +|Y|PP(X, X) = |X|PPUY, JY)
+HYIFPX, X) =0 B

Hence, P is J-invariant; this, together with the J-anti-invariance of P, gives
P=0.

Then, as a consequence of the Theorem 2 in [10];, one obtains

Corollary 2.1. If nZ38, any connected 2n-dimensional l.c.K. manifold
with pointwise constant antiholomorphic sectional curvature has constant an-
ttholomorphic sectional curvature.

Propositions 2.2. Let (M, g, J) be a l.c.K. manifold, with dim M Z6.
The following statements are equivalent:

(@) (M, g, J) has pointwise constant antiholomorphic sectional curvature v
(b) ps(R) = pg(R) =0, o+ 6P =2(n+1)vg.

In the hypothesis (a), the Proposition 2.1 implies that M is a ®s-manifold, so
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ps(R) = 0. Moreover, (1.11) and (2.3) give

(2.4) T+ 6tr P=4dnn+1)v.

Since n =3, (1.10) and (2.2) imply

t+6tr P

2.5) e+ 6P =
2n

g=2n+1)vg.

Finally, using (2.1), (2.4), (2.5), since we have [3]»

_ 1
4(n + 2)

(2.6) ps() =R G+ —3m—2)P)

z+6tr P

1
—=(8s—¢ e o
2 & ”P+4m+nm+m 1

+71.‘_9_)

we get p3(R) = 0.
A direct computation, together with the hypothesis (b), given, for any x € M
and for any antiholomorphic 2-plane « in T, M

‘o) = — 1 _z+6trP
K(x;a) = PR {(e +6P)X, X)+ (o +6P)Y, Y) St D) te
_zt6tr P (@)
4n(n + 1)

where {X, Y} is an orthonormal basis of «.

Proposition 2.3. Let (M, g, J) be a 4-dimensional l.c.K. manifold. The
following conditions are equivalent:

(@) (M, g, J) has pointwise constant antiholomorphic sectional curvature;

(b) (M, g, J) is a self-dual Rs-manifold.

We recall that, when dim M =4, any symmetric J-invariant (0, 2)-tensor
field S, with tr S =0, satisfies see [13})

@.7) Bs—)S=0.

In the hypothesis (a), M is a RKz-manifold; moreover, (1.11) and (2.3) imply
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+6 tr P =24v. So, (2.1) and (2.6) give

1 t+6tr P 1 1.,
p3(R) = Gt #“@1‘%2)* g+ De- 4 Be—DP
kol 120 PN S NS SR
+ 4.8 (/.1‘*‘/.2) 24 (3¢ (,J)(p 4 g) 0

since P — -i— tr Pg and o — i— satisfy (2.7).

This condition means that M is self-dual, since p; (R) = W_ is the anti-self-dual
component of C(R) [13].
In the hypothesis (b), the condition ps(R) =0 and (2.7) imply

1 t+6tr P
R= EL,’J.D'F —‘——2'4—1—~(7t1+7r2).

So, the Rg-manifold M has pointwise constant antiholomorphic sectional
curvature.

Remark 2.1. For a 2n-dimensional Lc.K. manifold (M, g, J) with pointwise
constant antiholomorphic sectional curvature v, these formulas hold

2.8) o +6P =2(n+1)vg nz3

2.9 t+6tr P=4nn+1)v n=2.

Proposition 2.4. For a l.c.K. manifold (M, g, J) with dim M =6 and
constant antiholomorphic sectional curvature v, the following conditions are
equivalent:

(a) the local metrics {g;}; s have pointwise constant antiholomorphic sec-
tional curvatures;

_ 1 .
(b) P = 2 tr Pg;

(¢) (M, g, J) is a generalized complex space form.

In the hypothesis of the statement, by means of (2.8), (2.1) reduces to

(2.10) R =—yP + () + 7).



302 M. FALCITELLI and A. FARINOLA {8]

Then, (1.14) gives
@1)  Rj=-G+IP- —2—% tr Pg)+ 630 — = tr Py, Goy + ) jed.

Since any §; is a Kahler metric, the condition (a) is equivalent to the request
that any g; has pointwise constant holomorphic sectional curvature. The last con-
dition is equivalent to the vanishing of ps(E;), ps(R;) [8]s. So, the equivalence
between (2) and (b) is a consequence of the relations

pB)=-G+DP -5 trPY R =0

Finally, the equivalence between (b) and (c) is a consequence of (2.10)
[13].

Proposition 2.5. Let (M, g, J) be a 4-dimensional l.c.K. manifold, with
pointwise constant antiholomorphic sectional curvature. Then the local metrics
{G; Yo e s have pointwise constant antiholomorphic sectional curvatures. Moreo-
ver, such metrics have pointwise constant holomorphic sectional curvatures iff

z—=2tr P
—gp=fzatl
° 4

In the hypothesis of the statement, the formulas (2.1), (1.14), (1.15) and (2.9)
give

g.

c—6tr P

- 1 -
@12)  Ry=de+ ”

-, =~ 1, 1 - -
G+ 7)) = —(;)-<,'/p+ 517(7:1-5-7:2).

Thus, any §; has pointwise constant antiholomorphic sectional curvature
1

Vj =
24
Moreover, the holomorphic sectional curvature of g; is given by
X, X)
H; = + = TU:.
(x, X)= (](XX) 6)’5 (x, X) e TU;

So, H; is constant on the fibres of TU;, iff g; is an Einstein metric, iff

o—2P = %ﬁg (see (1.15)).

3 - A classification theorem in the case n=3

Lemma 3.1. Let (M, g, J) be a l.c.K. manifold with pointwise constant
antiholomorphic sectional curvature v. For any local orthonormal vector fields
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X, Y, with g¢X, JY)=0, one has

@3.1) VX, T)
= L{UDUX, 1) = a@¥, V)~ 361)sX, 1) - oX)s(X, 1)

+@2n — Dvo(X) + 2X(v).

When X, Y satisfy the hypothesis of the statement, the J-invariance of e, to-
gether with (1.3), (1.4), (1.8), gives

{0WD)eX, ¥)~0@)eX, X)~uX)e(Y, ) —3u(Y)s(X, ¥)} —8(Vyo)(X, T).

Do joo

Analogously, one has

(33) (VXW2)(JXy Y} JX} Y-)+(VJX"T2)(Y7 X; JX} Y)
HWym)X, JX, JX, ) = = So(X).

Therefore, (3.1) is a consequence of the second Bianchi’s identity and of (2.1),
3.2), (38.8).

Corollary 3.1. In the hypothesis of the Lemma 3.1, for any unit local vec-
tor field X, one has

B4 (VxaX, X)= %{X(f)+w(X)r+(2n~7)w(X).o(X, X) +30(X, B)}

—2@2n — D(n — Dvo(X) —4n — 1) X ().

Let {X, E,, ..., E,, JX, JE,, ..., JE,} be an orthonormal family of local
vector fields on M. The formula (3.1) implies

3.5 3 (e )X, B+ VX, JE)

= = 2u(X, B)~ (1 —4) o(X)o(X, X)— %—woor

+2(n — DE@n — D vo(X) + 4 — 1) X().
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Since
éz {(Ve )X, E)) + (Vg e)X, JE)} + (Vx)X, X)+ (Vix)X, JX) = %X(f)
by means of (1.4) and (1.8) one has

3.6) 3 (e )X, B+ (Vg X, TED)

= 1X0) = Tx &, D+ 30X, D—s(X, B).
Then (3.4) is obtained comparing (3.5) with (3.6).

Lemma 3.2. In the hypothesis of the Lemma 3.1, for any local orthonor-
mal vector fields X, Y, with g¢(X, JY) =0, one has

B.7 (Vxo)¥, V) =—u@)eX, V) — XY, ¥)— é—(p(X, B) + w(X) o(X, X))

+22n — 1) v (X) + 2nX ().
By means of (1.3), (1.4) and (1.8), one obtains
Ve, JY, Y, JIV)+ (Vy(eJY, X, Y, JY)+ (Vy(ge)X, Y, ¥, JY)
=3{2(Vxa)(¥, Y) — 20(JY) (X, JY) — (Vyo)(X, Y)
—(Vpe)X, JY) +oX, B)+ oX)e(Y, Y)}.
Moreover, one has
(Vym)(¥, JY, Y, JV) + (Vym)JY, X, ¥, JV) + (Vg )X, ¥, ¥, JY) = 3u(X).

Then, (2.1) and the second Bianchi’s identity imply
(Vxa)¥, Y) = %{(Vyp)(X, )+ (Viye)X, JY) —(X)o(Y, Y)—o(X, B)}

+w(Y)o(X, JY)+En — 1D vo(X) + 2(n — 1D X().

Then, the Lemma 3.1 leads to the required result.
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Corollary 3.2. In the hypothesis of the Lemma 3.1, for any local unit vec-
tor field X, one has

3.8) (Vxo)X, X) = %{X(f) + o(X) 7 = 3u(X) o(X, X)+(@n—DeX, B)}

—2(n— 1D@n — 1) vo(X) — 4(n — 1)2 X ().

The proof is a consequence of the Lemma 3.1 and is carried out as in the Corol-
lary 3.1.

Corollary 3.3. If(M, g, J)is a l.c.K. manifold with dim M Z 6 and con-
stant anttholomorphic sectional curvature v, one has

3.9 o(X) (X, X) =|X|Pe(X, B) Jor any X e X(M).

In fact, the comparison of (3.4) with (3.8) gives: (n—2) {w(X)e(X, X)
—o(X, B)+4(n—-1)X(v)} =0 for any local unit vector field X.

Theorem 3.1. Let (M, g, J) be a connected l.c.K. manifold, with
dim M = 6 and constant antiholomorphic sectional curvature v. If ||o|f? is con-

stant, then either (M, g, J) is a Kdihler manifold or —% lwlf is the comstant
value of its sectional curvature.

In fact, taking account of (2.8), the formula (8.9) is equivalent to

(3.10) «(X)P(X, X)=|X[FP(X, B) X e (M)
that is
(3.11) (X,%Z)C”(X)P(Y’ Z) =(X§,Z)P(X, B)gY, Z)

since P and g are symmetric. Here o denotes the cyclic sum.
Putting in (3.11) Z = B, one has

3.12) lu|tP = P(B, B)g.
Then, if [|o|f is constant, by means of (1.13), (3.12) reduces to
ol @ + £ lfPg) = 0.

Therefore, (M, g, J) is Kshler manifold or P = — —é«l]wl[2 g- In the last case,
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% tr P=— %Hw“z and R =vm; + (v + i‘”wnz)”z’ that is (M, g, J) is a generali-

zed complex space form. The statement is a consequence of the Theorem 12.7
in [13].

Lemma 3.3. If (M, g, J) is a l.c.K. manifold, with dim M Z6 and con-
stant antiholomorphic section curvature v, then

(3.18) X, B)=~— %X(r) - %{(7&— 1 X(|wlf) + div Bo(X)} X € X(M).
In fact, (2.8) and (1.13) imply
(3.14) o=8(Vo+ %w@w) +@mA+ 1)y — -z-nwnz)g.

Therefore, for any family of local orthonormal vector fields {£;};<p<2,, One
has

2n 2n

—;-X(T) = 3 (V5 )X, B,)=3{ 2 (V5, (Ve))X, E,)+ %w(X) div B).

=1 h=

\ Moreover, since o is closed, then ([6]): oX, B)=—X(iv B) +
hE (Vg, (Vo))X, E,), that is o(X, B)= —X(div B) + —é—X(r)— %w(X)div B.
=1
The formulas (2.9) and (1.11) imply (3.13).

Lemma 3.4. In the hypothesis of the Lemma 3.3, one has
(3.15) ndr=(2xn+Dr+4dnn+1DCn—Dvw

(3.16) 6n.d (Jolf) = (—8nflu|f + 27 — 8n(n + 1) v) w.
In fact, (3.14) implies

@.17) oX, B) = %X(Hm[]z) + (%”w”z + 200+ 1)v) o(X).
Therefore, by means of (3:17), (3.13), (1.11), (2.9), one has

(3.18) 2dr+6(n +2)d(|w|f) = (=8(n + 2) Jl|f — 2¢ + 8(n + 1)(n — 3) V) w.

Moreover, the Lemma 5.8 in {3]; gives

(319 oX, B) = +(XJulf) ~ 3 div Ba(X) - 1 x(iv B+ Z”T‘l o2 (X).
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Therefore, (3.16) is a consequence of (3.19), (8.17), (1.11) and (2.9). Finally,
(3.16) and (3.18) imply (3.15).

Theorem 8.2. Let (M, g, J) be a connected l.c.K. manifold, with
dim M £ 6 and constant antiholomorphic sectional curvature v. Then, (M, g, J)
1s either a g.c. K. manifold of a flat Kdhler manifold or, possibly, its constant sec-

tional curvature is -—% [leofP.

In the hypothesis of the statement, since v is constant, (3.15) is equivalent to

2n+1)
n

diz—-2n@2n—1v)=— (z=2n@2n -1V w.

Therefore, since M is connected and o is locally exact, then o is exact, iff there
exists x € M such that (¢ — 2n(2n — 1) v)(x) # 0. Otherwise, = = 2n(2n — 1) v, and
then (3.16) reduces to 2 d(Jo|f + 4v) = — (|| + 4v) w.

Hence, if v # — %]]w”z, w is exact. When v = — %Hw]lz, lleoll? is constant and the
Theorem 3.1 can be applied. Then, M has constant sectional curvature

v=— %lelz or M is a flat Kéhler manifold, since v =0.
Remark. In the hypothesis of the Theorem 3.2, when M is compact,
(M, g, J) is either a g.c.K. manifold or a flat Kéhler manifold.

Indeed, when v=— %[Iw”z, one has v= ’71; tr P, and so 2n—1)|w|f =2 div B.

Then, the divergence theorem leads to « = 0.
We conclude this section proving a lemma useful in the following

Lemma 3.5. Let (M, g, J) be a l.c.K. manifold, with dimM =6 and con-
stant antiholomorphic sectional curvature. Then, one has

B.20) (Vxo)(Y, Z2)—(Vyp)X, Z) =3u(R(X, Y)Z)+ %(w(Y)(wa)Z —w(X)(Vyw)Z)

-—%(X(HwHZ)Q(Y, Z2) - Y(ll*) 9X, 2)) X, Y, Z, e X().
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Indeed, (3.14) implies
Vxod(Y, Z) = (Vyo)(X, Z) =8{(Vx(Vo))¥, Z)— (Vy (Vo))X, Z)}

DTz ) Z = Ty ) 2}~ 3 (X(ulP)g(Y, 2)- Y(ulP)aX, 2)).

This formula leads to (3.20), since (Vx(Veo))X¥, Z) - (Vy(Vo))(X, Z)
= w(BX, Y)2).

4 - Classification theorems in the case Vo =0

Let (M, g) be a n-dimensional riemannian manifold. @ denotes the vector bun-
dle on M whose sections are the (0, 3)-tensor fields 5, symmetric with respect to
the last two variables, such that

n n
}Eln(X, Eh,Eh)=2’21‘f)(E1“ Ey, X) X e X(M).
h = =

Here {E}}1<,=, is an orthonormal family of local vector fields.
It is well known [7]; that @ = @, ® A, D A3, where, for any i € {1,2, 3}, @, is
the subbundle of @ whose sections satisfy the condition (i), with
1 X X, =0
@ X, Y, 2)=xn¥, X, Z)

=1
® X, Y, 2)= " Dm—1) {n tr 7(X) ¢(¥, Z)

+ % (n—2)(tr x(Ng(X, 2)+tr n(Z)g(X, T))).

The symbol trn stands for the I1-form defined by tr »(X)

= 2> 09X, E,, E,). Moreover, the sections of @; @, are the sections 7 such
h=1

that try=0.
In particular, when M is connected, Ve is section of @, @d,, iff = is
constant.

Theorem 4.1. Let (M, g, J) be a connected l.c.K. manifold, with
dim M =6 and constant antiholomorphic sectional curvature v. The following
conditions are equivalent:

(a) <« is constant;
(b) Vo=0;
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() (M, g) is an Einstein manifold.

In fact, when = is constant, (3.15) and (3.16) become

4.1) . (=202 —Dv)w =0;

4.2) Aol = = 2(olP + 4o
Moreover, (3.17), (4.1), (4.2) give

4.3) o, B) = 5 w(X).

Applying the Corollaries 8.2, 3.3 and the formulas (4.1), (4.3), Ve turns out to
be a section of ;. Moreover, since = and v are constant, the equation (4.1) leads to
the following cases

D w=0 D) ==2n@2rn—1)v.

In the case (1), (M, g, J)is a Kihler manifold with constant holomorphic sectio-
nal curvature, and so Ve =0.
In the case (II), the Corollary 3.3 and (4.3) imply w(X) X, X)

an IXIF w(X), X € %), which is equivalent to

4.4 «l 7)Y, 2) = &3nm o(X)g(Y, Z).

Putting in (4.4) Y = Z orthogonal to X = B, one has

(4.5) w®p=ﬁw®g.

The condition (b) is achieved proving that Vg is a section of @,; the Lemma 3.5 is
applied to this end. In fact, (4.8), (4.5), (2.1) give

oBX, NZ)=RX, Y, Z, B)= vV gX, Z)-uX)g(¥, Z)).

By means of (1.18), (2.8), (4.5) one has
(V) (Vxw) Z — o(X)(Vyw) Z = ( %lel?‘ W@ gX, Z)— oX)g(¥, Z2)).

These formulas, together with (3.20) and (4.2), lead to (Vxo)Y, Z)
—(Vyo)X, Z)=0.

In the hypothesis (b), (4.1) holds. So, when = 0, (M, g) is an Einsten
manifold.
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Suppose now that = = 2n(2n — 1)v. In the case v = 0, the discussion of (4.2),
combined with the formula (4.5), implies that (M, g) is an Einstein manifold. If
v 5 0, suppose that (M, g) is not an Einstein manifold and fix x € M. Since Vo =0,
there exists an open neighbourhood U of « such (U, gl|y) is isometric to the pro-
duct (M;XMzX ...X My, g1+gz+ ... +g;) of Einstein manifolds, such that
elv=wm1g1+ ... +urgr, where gy, ..., u; are different constants [12].

In this way, any M), is a totally geodetic submanifold of U and o(X, Y) = 0, for
any X € TM,,, Y € TM;, with h #j. For any he {1, ..., k}, y € My, Ty M, is the
eigenspace of @, corresponding to the eigenvalue u;,, where @, is the (1, 1)-tensor
associated with g,. The J-invariance of o implies that, for any X eT, M,
Q,(JX) = u,JX; therefore JX € Ty M}, So M, is an almost hermitian submanifold
of U. Then, using (2.1), one has

0=RX, Y, X, )= JX]P|¥P XeTM, YeTM; h+j.
Therefore, v =0, which contradicts the hypothesis.

Corollary 4.1. For a connected l.c.K manifold M, g, J), with
dim M =6, the following conditions are equivalent:

(@) M, g, J) is a generalized complex space form;
(o) (M, g, J) is an Einstein manifold with constant antiholomorphic sec-
tional curvature;

(©) (M, g, J) has constant scalar curvature and constant antiholomorphic
sectional curvature.

Moreover, if one of the previous conditions holds, (M, g, J) is either a Kihler
manifold or its sectional curvature is constant. In the last case, M admits a flat

Hihler metric or has sectional curvature — %[lwl[z

Infact, in the hypothesis (a), since R =p;(R)+ps(R), one has:

p3(R) =pg(R)=0,P = .le tr Pg and (M, g) is an Einstein manifold. Therefore,

the Proposition 2.2 implies (b). The implication (b) = (a) is a consequence of the
Propositions 2.2 and 2.4. The equivalence (b)<>(c) follows immediately applying
the Theorem 4.1.

The proof of the last part of the statement is carried out in the Theorem 4.1,
where it is proved that: R =v(zm+m), when o=0; R =vr, when
= 2n@2n — 1)v.

Note that, if R = vr;, thenv = —715 tr P. So, M admits a flat global Kéhler me-

tric, if v+ —iuwnz ([31, [14]).
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Theorem 4.2. Let (M, g, J) be a connected, 4-dimensional l.c.K. mani-
Jfold, with pointwise constant antiholomorphic sectional curvature v. The follo-
wing conditions are equivalent:

(a) Ve is a section of Ay;
(b) Vo =0;
(¢) Vo i a section of @,.

First of all, the formula (2.9) and Lemma 5.3 in [3]; imply
(4.6) oX, B) = 4X() + bves(X) — -é—X(f) - %W(X).
Let T be the (0, 3)-tensor field defined by
TX, Y, Z)=(Vxe)Y, Z)+ —g—w(X)p(Y, Z)—@2dv+3vew+ —é—m)(X)g(Y, Z).

In the hypothesis (a), = is constant: then (4.6), (3.8) give T(X, X, X)=0,
X € X(M), that is

4.7 (X,?;,Z)T(X’ Y, Z2)=0.
Putting in (4.7) Y = Z orthogonal to X = B and using (4.6), one obtains
4.8) B, B)+ —;—Tuwnﬁ)g(y, Y) - 3ulPo(¥, ¥)=0.
Moreover, putting in 4.7) X =Y =2 = B, one has
4.9) el 6B, B)— Tl = 0.
Then, (4.8) and (4.9) imply
(4.10) lwlfte¥, )= 747:”60”49(17, Y) for any Y orthogonal to B.
Since o — ig is symmetric, (4.9) and (4.10) lead to
(4.11) 0®@p= To®y.
Now, we are going to prove the following formula

(4.12) A2y —7) = — -?2’-(1zv ~Do.
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To this end, consider x € M such that w, # 0. Since ¢, = igx, putting in (4.7)
Y = Z # 0 orthogonal to X, one has 2(dv), = (—i—r — 3u)(e) w,.

Moreover, for a fixed x € M such that w, =0, (4.7) reduces to

g (dv),X)g,(¥,2)=0,
&,%,2)

which leads to (dv), = 0. This completes the proof of (4.12).
Moreover, (4.12) and (4.6) give

(4.13) oX, B) = iwm.

Let X be a local unit vector field and complete it to a local orthonormal frame
{X, JX, Y, JY}. Then (3.1), (3.7, (1.4), (4.11), (4,13) imply that Vxo vanishes
for any choice of two vector fields in the given frame. Therefore, ¢ is
V-parallel

In the hypothesis (¢), 7 is constant. Let X, Y be local orthonormal vector fiel-
ds such that g(X, JY) = 0. Then, the condition (Vxe)}(¥, ¥) = (Vyo)(X, Y) toge-
ther with (3.1), (3.7), (4.6) implies

4.14) dﬂﬂﬁﬂ—d@ﬂ@ﬂ+mWMXJD+%m@h0

Moreover, (4.14) leads to (4.13), since B= (X)X + o(JX)JX + (DY
+w(JY)JY.
The formula (4.12) is a consequence of (4.6), (4.13).

For a fixed # € M, such that w, # 0, let {Y, JY, B J-Bl} be an orthonor-

mal basis of T, M. Then, using (4.13), one has L

lellzer (7, ¥) = Sl —ec (B, BY = Tl -

T

77 implies

This relation, together with (4.13) and the J-invariance of p—
0y ® py = —wy ®g,. Therefore, one has w®p= Zw®yg.
Finally, the condition (a) is an easy consequence of (3.8), (4.11), (4.12),

(4.13).

Theorem 4.3. Let (M, g, J) be a 4-dimensional conneted l.c.K. manifold,
with Vo = 0 and pointwise constant antiholomorphic sectional curvature v. Then
M, g, J) is either a conformally flat Kdihler manifold or is an Einstein mani-
fold. In the last case, (M, g) has constant sectional curvature, iff it is conformal-
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ly flat, otherwise (M, g, J) is a g.c.K. manifold, whose Weyl tensor never
vanishes.

Since Vo =0, (M, g) is an Einstein manifold or is locally isometric to the pro-
duct of Einstein manifolds.

In the first case, the formula (2.1) reduces to R = vm, + 7“1;21) me. Since
CR) =W, = — 7—?1—%—2—"@1 — ), (M, g) is conformally flat, iff R = v, Moreo-

ver, (4.12) implies that (M, g, J) is a g.c.K. manifold when C(R) never
vanishes.

If (M, g) is not an Einstein manifold, let U be an open neighbourhood of a fi-
xed @ € M, isometric to the product M; X M, X ... X M), of Einstein manifolds,
such that oly =u; 9, + ... + G

Then, k = 2, since any M, turns out to be an hermitian manifold (see the proof
of the Theorem 4.1). Thus, given X € TM,, Y € TM,, with ||X]| =|[Y]| =1, one
has

0=R(X, Y, X, V)= 0=R(X, JX,Y, JY) = %(mwz),

that is v|y = 0 and = = 2(u; +pp) = 0. This implies C(R)|y = 0. Moreover, since
ez #0 for any x € U, the formula (4.11) implies w|y = 0.

This proves that in this case (M, g, J) is a conformally flat Kdhler mani-
fold.
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Sunto

Si studiamo le varieta localmente conformi a una varietd, di Kdhler, di curvatura se-
zionale antiolomorfa puntualmente costante. Si caratterizzano le suddette varietd e si
prova un teorema di classificazione. Inoltre, si esaming il caso in cui il tensore di Ricci &
parallelo.



