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J. . SACCOMAN (¥)

Evolution of the geometric Hahn-Banach theorem (*%)

1 - Introduction

If a theorem has a geometrie, analytic or algebraic form, this form is usually a
restatement of the original theorem with appropriate changes in terminology. In
the case of the Hahn-Banach theorem, however, it can be demonstrated that the
geometric form of this theorem evolved independently of the original.

Initially the Hahn-Banach theorem was proved by H. Hahn in 1927 [7] (p. 215)
for normed linear spaces. The analytic version of the theorem, which was proved
by S. Banach in 1932 [2] (p. 27), may be stated as follows [10] (p. 156).

Theorem 1. Let L be a vector space, p a seminorm on L and M a subspace
of L. If f is a linear form on M such that | f(x)| < p(x) for all x € M, then there
exists a linear form F extending f to L such that |F(x)| < p(x) for all x € L.

The following theorem is commonly referred to as the geometric form of the
Hahn-Banach theorem [10] (p. 160).

Theorem 2. Let L be a topological vector space, M a linear variety in L
and A a nonempty convex open subset of L which does not intersect M. Then the-
re exists a closed hyperplane in L containing M and not intersecting A.

The similarity between these two theorems is easy to see. A seminorm p gives
rise to a natural topology on a vector space, i.e., the topology defined by the pseu-
dometric d(x, y) = p(x — y). Conversely, seminorms are readily obtainable in to-
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pological vector spaces, e.g., the gauge of an absorbent or radial disk. Since a
hyperplane H may be represented in terms of a nonzero linear form F, i.e.,
H = {«|F(x) = «}, the existence of a linear form is equivalent to the existence of a
hyperplane. These observations form the basis of the proof that Theorem 1 is
equivalent to Theorem 2 [10] (p. 159). However, in spite of this equivalence bet-
ween the two theorems, it can be demonstrated that the geometric form of the
Hahn-Banach theorem, i.e., (Theorem 2) evolved independently of the analytic
form (Theorem 1) through an analysis of the works of H. Minkowski [9], G. Ascoli
[1] and S. Mazur [8].

2 - Minkowski’s results

In the complete works of Minkowski, published in 1911, there is a paper enti-
tled «Theorie der konvexen Kérper» («The Theory of convex bodies») which was
previously unpublished. The editor’s footnote [9] (p. 131) indicates that this paper
was probably written before Minkowski’s «Volumen und Oberflische» which ap-
peared in 1903. In the «Theory of convex bodies» Minkowski proves the following
theorem in three dimensions [9] (p. 139).

Theorem 3. Through each point of the boundary of a convex body, there
passes at least one support plane of the body.

Minkowski’s definition of a convex body is «a point set which has in common
‘with an arbitrary line either a finite line segment, one point or no points and it
does not lie wholly in a plane» [9] (p. 131). His definition of a support plane for a
closed point set I'" is a plane of the form ax + by + ¢z = d(a® + b% + ¢% = 1) which
contains at least one point of I' and for all points (x, y, 2) in I' the inequality
ax + by + cz < d is satisfied [9] (p. 136).

Theorem 3 is proved in two stages, first for convex polyhedra and then for ar-
bitrary convex bodies. Minkowski did not attach any special significance to this
result but used it to prove the following [9] (p. 141).

Theorem 4. Let I and I'* be two distinct convex bodies which do not have
an interior point in common. Then it is always possible to construct a plane
which has the interior of I" lying wholly on one side and the interior of I'* lying
wholly on the other side.

Theorems 3 and 4 are the original versions of the separation theorems for con-
vex sets. In fact the geometric form of the Hahn-Banach theorem (Theorem 2) is
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a separation theorem. It asserts that every nonempty open convex set A and li-
near variety M not intersecting A can be separated by a closed hyperplane.

Although Minkowski’s results are related geometrically to the Hahn-Banach
theorem, this theorem, as noted above, was not proved until 1927 by Hahn [7]
and generalized in 1932 by Banach [2],. However, neither Hahn nor Banach ma-
kes any mention of a connection with Minkowski’s results given above.

3 - Ascoli’s results

It was until 1932, when G. Ascoli’s paper [1] appeared, that any significant re-
sults related to the geometric Hahn-Banach theorem were published. This can be
determined by the reviews of publications in Analysis and Geometry found in
both the «Jahrbuch iiber die Fortschritte der Mathematik» and the «Revue Se-
mestrielle des Publications Mathématiques».

In the introduction to his paper, Ascoli states that his intention is to synthesi-
ze the known results on abstract spaces in a systematic exposition and embellish
these results with the aid of geometrie intuition [1] (p. 33). In the course of this
exposition he states and proveé the following theorem which he calls a fundamen-
tal theorem for convex sets [1] (p. 205).

Theorem 5. Every convex body I' in a separable space S admits at each
point of its boundary at least one <touching» hyperplane.

Ascoli defines a convex body as a closed convex set with a nonempty interior.
A hyperplane is 2 maximal linear variety, i.e., a translate of a maximal subspace.
By a touching hyperplane Ascoli means a supporting hyperplane in the context of
current terminology. The restriction to separable spaces is by his own choice.
Ascoli wants to develop the material independent of the «Principle of Zermelo»
(1] (p. 59).

Theorem 5 is proved by constructing a sequence of functionals which conver-
ges to a bounded linear functional. Ascoli then shows that this limit functional
leads to the desired hyperplane. As a fundamental theorem for convex sets, Asco-
i uses Theorem 5 to establish some geometric results about separable spa-
ces.

These results, however, are not primarily eoncerned with the geometric
Hahn-Banach theorem. In fact, Asecoli does not mention Minkowski’s «Theorie
der konvexen Korper» although he does refer to his paper «Volumen und Oberfli-
sche» [1] (p. 50). It would seem that Ascoli’s fundamental theorem for convex
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sets (Theorem 5) evolved independently of Minkowski’s result (Theorem 3). In
spite of this, it is clear that Theorem 5 is essentially a generalization of Theorem 3
to arbitrary separable spaces.

Immediately after proving Theorem 5, Ascoli gives an analytic version of this
fundamental result [1] (p. 206). This is done primarily for the sake of complete-
ness.

Theorem 6. Let p(x) be a functional defined on a separable space S with
the following properties:

(@) plx+y) <p@)+py).
(b) pOx) =2plx) for 2>0.
(¢) There is a K> 0 such that p(x) < Kl|z| for all = in S.

If xg is any point in S, then there is a continuous linear functional F(x) such that
Sfor each x, F(x) < px) and F(xy) = p(zy).

This result is related to a theorem proved by Banach in 1929 [2], (p. 226) Asco-
li, however, seems unaware of that result although footnotes indicate he was
aware of some of Banach’s earlier results [1] (p. 34, 38, 43, 46).

Banach’s classic text «Opérationes Linéaires», in which the original analytic
version of the Hahn-Banach theorem appears, was published in 1932. It is this
theorem which is readily transformed to a geometric form. Since Ascoli’s results
were also published in 1932, one would not expect him to be aware of the connec-
tion between his fundamental result and Banach’s version of the Hahn-Banach
theorem. However, Ascoli was belatedly aware of Hahn’s work with regard to
the Hahn-Banach theorem.

Ascoli’s paper appears in two parts. At the end of the first part is an additional
note submitted after the paper and before its publication [1] (p. 80). In this note
- Ascoli states that he just became aware of the results published by Helly in 1921
and by Hahn in 1927.

It’s Hahn's work [7] that is of interest here. As Ascoli explains in the note, the
title of Hahn’s paper, «Uber lineare Gleichungssysteme in lineare Ratimen» (On
systems of linear equations in linear spaces) [7], does not indicate any geometric
ramifications. Also, Ascoli did not have timely access to the journal in which
Hahn's paper appeared. In fact a review of Hahn’s work did not appear in the
«Jahrbuch tiber die Fortschritte der Mathematik» until 1931 [6]. A shorter re-
view (5 lines) appeared in the «Revue Semestrielle des Publications Mathémati-
ques» [4].
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Even if he had read these reviews, it is doubtful that Ascoli would have infer-
red any geometric ramifications from Hahn’s work. The geometric underpinnings
of this work appear in the first part of Hahn's paper. The reviews concentrate on
the results in the later part of that paper.

Ascoli specifically notes that there are some similarities between Hahn’s
Theorem III, which is the original form of the Hahn-Banach theorem, and some
of his own results on linear varieties. Hahn’s Theorem III may be stated as follo-
ws [7] (p. 215).

Theorem 7. Let M be a complete linear subspace of the complete normed
linear space L. Let f() be a bounded linear functional defined on M with norm
K. Then there exists a bounded linear functional F on L with norm K which
agrees with f on M.

The fact that there is some common ground between Hahn’s and Ascoli’s pa-
pers does not diminish the importance of Ascoli’s work. In particular, his exposi-
tion on touching hyperplanes is original and not found anywhere else prior to this
publication. However, even after he became aware of Hahn’s work and notes so-
me similarities to his own work, Ascoli does not make any connection between his
fundamental result and Hahn’s Theorem III, i.e., Hahn’s form of the Hahn-
Banach theorem.

4 - Mazur’s results

The original statement of the geometrie form of the Hahn-Banach theorem ap-
peared in 1933 in a paper by S. Mazur (8]. In the introductory remarks of this pa-
per Mazur refers to the results of Minkowski and Ascoli. He specifically refers to
the versions of Theorem 3 and Theorem 5 given above and notes that the follo-
wing theorem generalizes these results [8] (p. 73).

Theorem 8. Let L be a normed linear space and M be a linear manifold
which does not contain an interior point of the convex body A. Then there exists a
hyperplane H such that M c H and A lies on one side of H.

The definition of a convex body is the same as Ascoli’s. A set A is said to lie on
one side of the hyperplane H if for any two distinet points «, ¥ € A — H, the line
segment xy does not contain a point of H.

As might be expected, Mazur’s proof is independent of Ascoli’s work. In fact
he uses the analytic form of the Hahn-Banach theorem, i.e., Theorem 1, to obtain
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the extension of a linear functional. However, he does not discuss the relationship
between the Hahn-Banach theorem and his work.

To prove Theorem 7, Mazur shows that the linear manifold M gives rise to a
hyperplane. The linear functional representing this hyperplane can be extended,
by Theorem 1, to a linear functional on L. The latter linear functional represents
the desired hyperplane H and proves the theorem. Mazur’s remarks before pro-
ving this theorem indicate his awareness of the connection between linear fun-
ctionals and hyperplanes. A full page is devoted to a discussion of the relation bet-
ween these two concepts [8] (p. 71). His remarks also show that he was aware of
the geometric characteristics of seminorms through the Minkowski functional [8]
(p. 72). In spite of this, however, Mazur does not discuss the similarities between
his result and Banach’s, i.e., Theorem 1. After proving Theorem 7, Mazur gene-
ralizes some of the other results established by Minkowski and Ascoli.

5 - Dieudonné’s results

In 1941 J. Dieudonné published a paper [5] in which he gives a proof of the
Hahn-Banach theorem using methods from the theory of ordered groups. He re-
fers to the Hahn-Banach theorem in Banach’s «Opérationes Linéaires», i.e., the
original version of Theorem 1, then defines the concepts needed for the geometric
form of the theorem. Dieudonné then states and proves the following theorem
which he calls the Hahn-Banach theorem [5] (p. 642).

Theorem 9. Let E be a real vector space and K a subset of E. If K is a con-
vex set which is balanced with respect to one of its points, and does not contain
the origin of E, then there exists a hyperplane with respect to whick all of the
points of K lie on the same side.

Although the statement of the Hahn-Banach theorem is given in a geometric
form, Dieudonné does not elaborate on it. In fact, he makes no mention of the
works of Minkowski, Ascoli, or Mazur regarding this theorem. However, his pa-
per [5] marks the first time any connection is made between the geometric and
analytic forms of the theorem.

6 - Conclusion

The above analysis clearly shows that the geometric form of the Hahn-Banach
theorem evolved independently of the analytic form. It began with Minkowski,
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was given in a more general setting (although restricted to separable spaces) by
Ascoli, and in the form for general linear spaces by Mazur. Although Mazur was
aware of both forms of the theorem, he did not make the connection between
them,

From the remarks at the end of his book [2] (p. 246), it is evident that Banach
was aware of the results due to Ascoli [1] and Mazur [8]. Even though he devotes
almost a full page to a discussion of the geometry of normed vector space, how-
ever, Banach also does not mention the connection between the geometric and
analytic forms of this fundamental result.

Although Dieudonné does not refer to the geometric ideas of Minkowski,
Ascoli, or Mazur, he does make the first connection between the geometric and
analytic forms of the theorem. Finally, in the 1953 Bourbaki publication «Espaces
Vectoriels Topologiques», Theorem 8 is called the geometric form of the Hahn-
Banach theorem.
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Abstract

Di solito, la forma geometrica, analitica, o algebrica d'un teorema & replica del teore-
ma originale nella quale i vecchi termini vengono sostituiti da una terminologia appro-
priata. Le opere di H. Minkowski, G. Ascoli e S. Mazur indicano che questo non & vero per
quanto riguarda lo forma geometrica del teorema di Hahn-Banach. Un’analisi det loro ri-
sultati e vari saggi posteriori riferendosi al teorema di Hahn-Banach approfondiscono le
nostre conoscenze sull’evoluzione della forma geometrica e per di pitt mostrano la sua in-
dipendenza dal risultato originale.



